Analytic ideas applied to triangulated categories, 1

Amnon Neeman

Australian National University

26 April 2023

Overview

- 1 t-structures: examples and formal definition
- 2 Ancient history
- 3 First application: a conjecture of Antieau, Gepner and Heller
- Something about the proof

Example (the standard t-structure on $\mathbf{D}(A)$)

Let A be an abelian category. We define two full subcategories of $\mathbf{D}(A)$:

•

$$\mathbf{D}(A)^{\leq 0} = \{A^* \in \mathbf{D}(A) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

Example (the standard t-structure on $\mathbf{D}(\mathcal{A})$)

Let $\mathcal A$ be an abelian category. We define two full subcategories of $\mathbf D(\mathcal A)$:

•

$$\mathbf{D}(A)^{\leq 0} = \{A^* \in \mathbf{D}(A) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

$$\cdots \longrightarrow Y^{-2} \longrightarrow Y^{-1} \longrightarrow Y^0 \longrightarrow Y^1 \longrightarrow Y^2 \longrightarrow \cdots$$

Example (the standard t-structure on $\mathbf{D}(A)$)

Let \mathcal{A} be an abelian category. We define two full subcategories of $\mathbf{D}(\mathcal{A})$:

•

$$\mathbf{D}(\mathcal{A})^{\leq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

•

$$\mathbf{D}(\mathcal{A})^{\geq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$$

Put
$$I = \text{Im}(Y^{-1} \to Y^0)$$
, and $Q = Y^0/I$.

$$\cdots \longrightarrow Y^{-2} \longrightarrow Y^{-1} \longrightarrow Y^0 \longrightarrow Y^1 \longrightarrow Y^2 \longrightarrow \cdots$$

Example (the standard t-structure on $\mathbf{D}(A)$)

Let $\mathcal A$ be an abelian category. We define two full subcategories of $\mathbf D(\mathcal A)$:

$$\mathbf{D}(\mathcal{A})^{\leq 0} = \{A^* \in \mathbf{D}(\mathcal{A}) \mid H^i(A^*) = 0 \text{ for all } i > 0\}$$

 $D(A)^{\geq 0} = \{A^* \in D(A) \mid H^i(A^*) = 0 \text{ for all } i < 0\}$

Put
$$I = \text{Im}(Y^{-1} \to Y^0)$$
, and $Q = Y^0/I$.

Put $I = \operatorname{Im}(Y^{-1} \to Y^0)$, and $Q = Y^0/I$.

For every $Y \in \mathbf{D}(A)$ we have produced

$$X \longrightarrow Y \longrightarrow Z$$

Put $I = \operatorname{Im}(Y^{-1} \to Y^0)$, and $Q = Y^0/I$.

For every $Y \in \mathbf{D}(A)$ we have produced

$$X \longrightarrow Y \longrightarrow Z$$

with $X \in \mathbf{D}(\mathcal{A})^{\leq 0}[1]$ and with $Z \in \mathbf{D}(\mathcal{A})^{\geq 0}$.

Put $I = \operatorname{Im}(Y^{-1} \to Y^0)$, and $Q = Y^0/I$.

For every $Y \in \mathbf{D}(A)$ we have produced an exact triangle

$$X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$$

with $X \in \mathbf{D}(\mathcal{A})^{\leq 0}[1]$ and with $Z \in \mathbf{D}(\mathcal{A})^{\geq 0}$.

A t-structure on a triangulated category $\mathcal T$ is a pair of full subcategories $(\mathcal T^{\leq 0}, \mathcal T^{\geq 0})$ satisfying

- •
- •
- •

A t-structure on a triangulated category $\mathcal T$ is a pair of full subcategories $\left(\mathcal T^{\leq 0},\mathcal T^{\geq 0}\right)$ satisfying

- ullet $\mathcal{T}^{\leq 0}[1]\subset\mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq 0}\subset\mathcal{T}^{\geq 0}[1]$
- •
- •

A t-structure on a triangulated category $\mathcal T$ is a pair of full subcategories $(\mathcal T^{\leq 0}, \mathcal T^{\geq 0})$ satisfying

- $\bullet \ \mathcal{T}^{\leq 0}[1] \subset \mathcal{T}^{\leq 0} \qquad \text{ and } \qquad \mathcal{T}^{\geq 0} \subset \mathcal{T}^{\geq 0}[1]$
- $\bullet \ \operatorname{Hom}\!\left(\mathcal{T}^{\leq 0}[1] \ , \ \mathcal{T}^{\geq 0}\right) = 0$
- •

A t-structure on a triangulated category $\mathcal T$ is a pair of full subcategories $\left(\mathcal T^{\leq 0},\mathcal T^{\geq 0}\right)$ satisfying

- $\bullet \ \mathcal{T}^{\leq 0}[1] \subset \mathcal{T}^{\leq 0} \qquad \text{ and } \qquad \mathcal{T}^{\geq 0} \subset \mathcal{T}^{\geq 0}[1]$
- $\operatorname{Hom}\left(\mathcal{T}^{\leq 0}[1], \mathcal{T}^{\geq 0}\right) = 0$
- For every object $B \in \mathcal{T}$ there exists a triangle $A \longrightarrow B \longrightarrow C \longrightarrow$ with $A \in \mathcal{T}^{\leq 0}[1]$ and $C \in \mathcal{T}^{\geq 0}$.

Given an object $B \in \mathcal{T}$, the third property of a t-structure says that there **exists** an exact triangle

$$A \longrightarrow B \longrightarrow C \longrightarrow A[1]$$

with $A \in \mathcal{T}^{\leq 0}[1]$ and with $C \in \mathcal{T}^{\geq 0}$.

Given an object $B \in \mathcal{T}$, the third property of a t-structure says that there **exists** an exact triangle

$$A \longrightarrow B \longrightarrow C \longrightarrow A[1]$$

with $A \in \mathcal{T}^{\leq 0}[1]$ and with $C \in \mathcal{T}^{\geq 0}$.

This triangle is often written

$$B^{\leq -1} \longrightarrow B \longrightarrow B^{\geq 0} \longrightarrow B^{\leq -1}[1]$$

Notation

For $n \in \mathbb{Z}$ we adopt the shorthand

$$\mathcal{T}^{\leq n} = \mathcal{T}^{\leq 0}[-n] ,$$

$$\mathcal{T}^{\geq n} = \mathcal{T}^{\geq 0}[-n] .$$

Definition (Bounded t-Structures)

Notation

For $n \in \mathbb{Z}$ we adopt the shorthand

$$\mathcal{T}^{\leq n} = \mathcal{T}^{\leq 0}[-n] \ ,$$

$$\mathcal{T}^{\geq n} = \mathcal{T}^{\geq 0}[-n]$$
.

Definition (Bounded t-Structures)

A t-structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is called bounded if, for every object $X \in \mathcal{T}$, there exists an integer n > 0 with

$$X[n] \in \mathcal{T}^{\leq 0}$$

and
$$X[-n] \in \mathcal{T}^{\geq 0}$$
 .

We define $\mathbf{D}^-_{\operatorname{coh},Z}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_X -modules, such that

- 1
- 2
- 3

We define $\mathbf{D}^-_{\operatorname{coh},Z}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_X -modules, such that

- **1** The cohomology vanishes in degrees $n \gg 0$.
- 2
- 3

We define $\mathbf{D}^-_{\operatorname{coh},Z}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_X -modules, such that

- **1** The cohomology vanishes in degrees $n \gg 0$.
- All the cohomology sheaves are coherent.

We define $\mathbf{D}^-_{\mathsf{coh},Z}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_X -modules, such that

- **1** The cohomology vanishes in degrees $n \gg 0$.
- All the cohomology sheaves are coherent.
- 3 The restriction to X Z is acyclic.

We define $\mathbf{D}^-_{\mathbf{coh},Z}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_X -modules, such that

- **1** The cohomology vanishes in degrees $n \gg 0$.
- ② All the cohomology sheaves are coherent.
- **3** The restriction to X Z is acyclic.

Take any $F \in \mathbf{D}^-_{\operatorname{coh},Z}(X)$.

We define $\mathbf{D}^-_{\mathbf{coh},Z}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_X -modules, such that

- **1** The cohomology vanishes in degrees $n \gg 0$.
- ② All the cohomology sheaves are coherent.
- **3** The restriction to X Z is acyclic.

Take any $F \in \mathbf{D}^-_{\operatorname{coh} Z}(X)$.

Resolving F by vector bundles, we may represent it as a complex

$$\cdots \longrightarrow \mathcal{V}^{m-1} \longrightarrow \mathcal{V}^m \longrightarrow \cdots \longrightarrow \mathcal{V}^{n-1} \longrightarrow \mathcal{V}^n \longrightarrow 0 \longrightarrow \cdots$$

We define $\mathbf{D}^-_{\operatorname{coh},Z}(X)$ to be the category whose objects are cochain complexes of \mathcal{O}_X -modules, such that

- **1** The cohomology vanishes in degrees $n \gg 0$.
- 2 All the cohomology sheaves are coherent.
- **1** The restriction to X Z is acyclic.

Take any $F \in \mathbf{D}^{-}_{\operatorname{coh},Z}(X)$.

Resolving F by vector bundles, we may represent it as a complex

$$E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^{-}_{\operatorname{coh}}(X)^{\leq m}$.

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^{-}_{\operatorname{coh}}(X)^{\leq m}$.

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^{-}_{\operatorname{coh}}(X)^{\leq m}$.

We have proved the existence of such triangles as long as the scheme X has the resolution property.

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^{-}_{\operatorname{coh}}(X)^{\leq m}$.

We have proved the existence of such triangles as long as the scheme X has the resolution property.

For an unconditional proof, one needs to use ideas from

Alexei I. Bondal and Michel Van den Bergh, *Generators and representability of functors in commutative and noncommutative geometry*, Mosc. Math. J. **3** (2003), no. 1, 1–36, 258.

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}^{-}_{\operatorname{coh}}(X)^{\leq m}$.

We have proved the existence of such triangles as long as the scheme X has the resolution property.

For an unconditional proof, one needs to use ideas from

- Alexei I. Bondal and Michel Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.
- Joseph Lipman and Amnon Neeman, *Quasi-perfect scheme maps and boundedness of the twisted inverse image functor*, Illinois J. Math. **51** (2007), 209–236.

For a proof that works in the relative context, that is given $F \in \mathbf{D}^-_{\mathsf{coh},Z}(X)$ it produces a triangle

$$D \longrightarrow E \longrightarrow F \longrightarrow D[1],$$

with $E \in \mathbf{D}_Z^{\mathrm{perf}}(X)$ and $D \in \mathbf{D}_{\mathbf{coh},Z}^-(X)^{\leq m}$, see

Tag 36.14 in the Stacks Project.

Let $\mathcal M$ be a model category with homotopy category $\mathcal T$, and assume $\mathcal T$ has a bounded t-structure. Antieau, Gepner and Heller proved:

- If the abelian category \mathcal{T}^{\heartsuit} is noetherian, then $K_n(\mathcal{M}) = 0$ for n < 0.
- **2** Unconditionally we have $K_{-1}(\mathcal{M}) = 0$.

Benjamin Antieau, David Gepner, and Jeremiah Heller, *K-theoretic obstructions to bounded t-structures*, Invent. Math. **216** (2019), no. 1, 241–300.

Let $\mathcal M$ be a model category with homotopy category $\mathcal T$, and assume $\mathcal T$ has a bounded t-structure. Antieau, Gepner and Heller proved:

- **1** If the abelian category \mathcal{T}^{\heartsuit} is noetherian, then $K_n(\mathcal{M}) = 0$ for n < 0.
- **2** Unconditionally we have $K_{-1}(\mathcal{M}) = 0$.

If \mathcal{A} is an abelian category, and $\mathcal{T} = \mathbf{D}^b(\mathcal{A})$ with the usual model structure, the vanishing in negative K-theory is due to Schlichting.

Benjamin Antieau, David Gepner, and Jeremiah Heller, *K-theoretic obstructions to bounded t-structures*, Invent. Math. **216** (2019), no. 1, 241–300.

Corollary

Let X be a finite-dimensional, noetherian scheme. Assume $K_{-1}(X)$ is nonzero. Then the category $\mathbf{D}^{\mathrm{perf}}(X)$ has no bounded t-structure.

Corollary

Let X be a finite-dimensional, noetherian scheme. Assume $K_{-1}(X)$ is nonzero. Then the category $\mathbf{D}^{\mathrm{perf}}(X)$ has no bounded t-structure.

If $K_n(X)$ is nonzero for $n \le -2$, then any bounded t-structure on $\mathbf{D}^{\mathrm{perf}}(X)$ cannot have a noetherian heart.

Corollary

Let X be a finite-dimensional, noetherian scheme. Assume $K_{-1}(X)$ is nonzero. Then the category $\mathbf{D}^{\mathrm{perf}}(X)$ has no bounded t-structure.

If $K_n(X)$ is nonzero for $n \le -2$, then any bounded t-structure on $\mathbf{D}^{\mathrm{perf}}(X)$ cannot have a noetherian heart.

This can be found as Corollary 1.4 in

Conjecture

Let X be a finite-dimensional, noetherian scheme. The category $\mathbf{D}^{\mathrm{perf}}(X)$ has a bounded t-structure if and only if X is regular, in which case $\mathbf{D}^{\mathrm{perf}}(X) = \mathbf{D}^{b}_{\mathrm{coh}}(X)$.

This can be found as Conjecture 1.5 in

Benjamin Antieau, David Gepner, and Jeremiah Heller, *K-theoretic obstructions to bounded t-structures*, Invent. Math. **216** (2019), no. 1, 241–300.

Let X be a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_Z^{\mathrm{perf}}(X)$ be the derived category, with objects the perfect complexes on X whose restriction to X-Z is acyclic.

Let X be a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_Z^{\mathrm{perf}}(X)$ be the derived category, with objects the perfect complexes on X whose restriction to X-Z is acyclic.

Now assume X is noetherian and finite-dimensional. Then the category $\mathbf{D}_Z^{\mathrm{perf}}(X)$ has a bounded t-structure if and only if Z is contained in the regular locus of X,

Let X be a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_Z^{\mathrm{perf}}(X)$ be the derived category, with objects the perfect complexes on X whose restriction to X-Z is acyclic.

Now assume X is noetherian and finite-dimensional. Then the category $\mathbf{D}_Z^{\mathrm{perf}}(X)$ has a bounded t-structure if and only if Z is contained in the regular locus of X, in which case $\mathbf{D}_Z^{\mathrm{perf}}(X) = \mathbf{D}_{\operatorname{coh},Z}^b(X)$.

Let X be a scheme, and let $Z \subset X$ be a closed subset. Let $\mathbf{D}_Z^{\mathrm{perf}}(X)$ be the derived category, with objects the perfect complexes on X whose restriction to X-Z is acyclic.

Now assume X is noetherian and finite-dimensional. Then the category $\mathbf{D}_Z^{\mathrm{perf}}(X)$ has a bounded t-structure if and only if Z is contained in the regular locus of X, in which case $\mathbf{D}_Z^{\mathrm{perf}}(X) = \mathbf{D}_{\mathsf{coh},Z}^b(X)$.

For the proof see

Amnon Neeman, *Bounded t-structures on the category of perfect complexes*, https://arxiv.org/abs/2202.08861.

Reminder: $\mathbf{D}_Z^{\mathrm{perf}}(X) = \mathbf{D}_{\mathsf{coh},Z}^b(X)$ if and only if Z is contained in the regular locus of X

The question is local in X.

Reminder: $\mathbf{D}_Z^{\mathrm{perf}}(X) = \mathbf{D}_{\mathsf{coh},Z}^b(X)$ if and only if Z is contained in the regular locus of X

The question is local in X.

May assume $X = \operatorname{Spec}(R)$ for a local ring R.

Reminder: $\mathbf{D}_{Z}^{\mathrm{perf}}(X) = \mathbf{D}_{\mathsf{coh},Z}^{b}(X)$ if and only if Z is contained in the regular locus of X

The question is local in X.

May assume $X = \operatorname{Spec}(R)$ for a local ring R.

If the closed point of X does not belong to Z, then X = X - Z.

Reminder: $\mathbf{D}_Z^{\mathrm{perf}}(X) = \mathbf{D}_{\mathrm{coh},Z}^b(X)$ if and only if Z is contained in the regular locus of X

The question is local in X.

May assume $X = \operatorname{Spec}(R)$ for a local ring R.

If the closed point of X does not belong to Z, then X = X - Z.

R is a regular local ring if and only if R/m is of finite projective dimension, if and only if every module is of finite projective dimension.

It suffices to show that the inclusion $\mathbf{D}_Z^{\mathrm{perf}}(X) \longrightarrow \mathbf{D}_{\mathsf{coh},Z}^b(X)$ is an equivalence.

It suffices to show that the inclusion $\mathbf{D}_Z^{\mathrm{perf}}(X) \longrightarrow \mathbf{D}_{\mathsf{coh},Z}^b(X)$ is an equivalence.

Take $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)$. Without loss of generality assume $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}^\mathrm{perf}_{Z}(X)$.

It suffices to show that the inclusion $\mathbf{D}_Z^{\mathrm{perf}}(X) \longrightarrow \mathbf{D}_{\mathsf{coh},Z}^b(X)$ is an equivalence.

Take $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)$. Without loss of generality assume $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}^\mathrm{perf}_{Z}(X)$.

The literature we explained gave us an exact triangle

It suffices to show that the inclusion $\mathbf{D}_Z^{\mathrm{perf}}(X) \longrightarrow \mathbf{D}_{\mathsf{coh},Z}^b(X)$ is an equivalence.

Take $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)$. Without loss of generality assume $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}^{\mathrm{perf}}_Z(X)$.

The literature we explained gave us an exact triangle

It suffices to show that the inclusion $\mathbf{D}_Z^{\mathrm{perf}}(X) \longrightarrow \mathbf{D}_{\mathbf{coh},Z}^b(X)$ is an equivalence.

Take $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)$. Without loss of generality assume $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}^{\mathrm{perf}}_Z(X)$.

The literature we explained gave us an exact triangle

Definition

Let \mathcal{T} be a triangulated category. Two t-structures $(\mathcal{T}_1^{\leq 0}, \mathcal{T}_1^{\geq 0})$ and $(\mathcal{T}_2^{\leq 0}, \mathcal{T}_2^{\geq 0})$ are declared equivalent if there exists an integer n>0 with

$$\mathcal{T}_1^{\leq -n} \subset \mathcal{T}_2^{\leq 0} \subset \mathcal{T}_1^{\leq n} \ .$$

Definition

Let \mathcal{T} be a triangulated category. Two t-structures $(\mathcal{T}_1^{\leq 0}, \mathcal{T}_1^{\geq 0})$ and $(\mathcal{T}_2^{\leq 0}, \mathcal{T}_2^{\geq 0})$ are declared equivalent if there exists an integer n>0 with

$$\mathcal{T}_1^{\leq -n} \subset \mathcal{T}_2^{\leq 0} \subset \mathcal{T}_1^{\leq n} \ .$$

We are given a bounded t-structure on $\mathbf{D}_Z^{\mathrm{perf}}(X)$, and we would like to compare it to the standard t-structure on $\mathbf{D}_{\mathrm{coh},Z}^b(X)$. For technical reasons this is easiest to do in $\mathbf{D}_{\mathrm{qc},Z}(X)$.

Definition

Let \mathcal{T} be a triangulated category. Two t-structures $(\mathcal{T}_1^{\leq 0}, \mathcal{T}_1^{\geq 0})$ and $(\mathcal{T}_2^{\leq 0}, \mathcal{T}_2^{\geq 0})$ are declared equivalent if there exists an integer n > 0 with

$$\mathcal{T}_1^{\leq -n} \subset \mathcal{T}_2^{\leq 0} \subset \mathcal{T}_1^{\leq n}$$
.

We are given a bounded t-structure on $\mathbf{D}_{Z}^{\mathrm{perf}}(X)$, and we would like to compare it to the standard t-structure on $\mathbf{D}_{\mathsf{coh},Z}^{b}(X)$. For technical reasons this is easiest to do in $\mathbf{D}_{\mathsf{ac},Z}(X)$.

We appeal to Theorem A.1 in

Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, *Construction of t-structures and equivalences of derived categories*, Trans. Amer. Math. Soc. **355** (2003), no. 6, 2523–2543 (electronic).

Let $\mathcal T$ be a triangulated category with coproducts, and let $\mathcal A\subset \mathcal T$ be a set of compact objects satisfying $\mathcal A[1]\subset \mathcal A$.

Let $\operatorname{Coprod}(\mathcal{A})$ be the smallest full subcategory of \mathcal{T} , containing \mathcal{A} and closed under coproducts and extensions.

Then $\left(\operatorname{Coprod}(\mathcal{A}),\operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ is a t-structure on \mathcal{T} .

This is Theorem A.1 in

Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, *Construction of t-structures and equivalences of derived categories*, Trans. Amer. Math. Soc. **355** (2003), no. 6, 2523–2543 (electronic).

Now suppose we are given a t-structure (A, B) on T^c ,

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}),\operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T} . If $E\in\mathcal{T}^c$ is an object, then $A=E^{\leq -1}$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^c .

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}),\operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T} . If $E\in\mathcal{T}^c$ is an object, then $A=E^{\leq -1}$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^c .

Proof.

Form in \mathcal{T}^c the truncation triangle $A \longrightarrow E \longrightarrow B \longrightarrow$.

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}),\operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T} . If $E\in\mathcal{T}^c$ is an object, then $A=E^{\leq -1}$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^c .

Proof.

Form in \mathcal{T}^c the truncation triangle $A \longrightarrow E \longrightarrow B \longrightarrow$. We have

$$A \in \mathcal{A}[1]$$

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}),\operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T} . If $E\in\mathcal{T}^c$ is an object, then $A=E^{\leq -1}$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^c .

Proof.

Form in \mathcal{T}^c the truncation triangle $A \longrightarrow E \longrightarrow B \longrightarrow$. We have

$$A \in \mathcal{A}[1] \subset \operatorname{Coprod}(\mathcal{A})[1]$$

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}),\operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T} . If $E\in\mathcal{T}^c$ is an object, then $A=E^{\leq -1}$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^c .

Proof.

Form in \mathcal{T}^c the truncation triangle $A \longrightarrow E \longrightarrow B \longrightarrow$. We have

$$A \in \mathcal{A}[1] \subset \operatorname{Coprod}(\mathcal{A})[1]$$

and

$$B\in\mathcal{B}=ig(\mathcal{A} ext{[1]}ig)^{ot}$$

Lemma

Let $\left(\operatorname{Coprod}(\mathcal{A}),\operatorname{Coprod}(\mathcal{A})[1]^{\perp}\right)$ be the induced t-structure on \mathcal{T} . If $E\in\mathcal{T}^c$ is an object, then $A=E^{\leq -1}$ and $B=E^{\geq 0}$ are the same, whether computed in \mathcal{T} or in \mathcal{T}^c .

Proof.

Form in \mathcal{T}^c the truncation triangle $A \longrightarrow E \longrightarrow B \longrightarrow$. We have

$$A \in \mathcal{A}[1] \subset \operatorname{Coprod}(\mathcal{A})[1]$$

and

$$B \in \mathcal{B} = \left(\mathcal{A}[1]\right)^{\perp} \subset \left(\operatorname{Coprod}(\mathcal{A})[1]\right)^{\perp}$$

Now we are assuming that we are given a bounded t-structure $(\mathcal{A},\mathcal{B})$ on the category $\mathbf{D}_Z^{\mathrm{perf}}(X)$, which is the category of compact objects in $\mathbf{D}_{\mathbf{gc},Z}(X)$.

Now we are assuming that we are given a bounded t-structure $(\mathcal{A},\mathcal{B})$ on the category $\mathbf{D}_Z^{\mathrm{perf}}(X)$, which is the category of compact objects in $\mathbf{D}_{\mathbf{qc},Z}(X)$.

Suppose we could prove the inclusions

$$\mathbf{D}_{\mathbf{qc},Z}(X)^{\leq -n} \subset \mathsf{Coprod}(\mathcal{A}) \subset \mathbf{D}_{\mathbf{qc},Z}(X)^{\leq n}$$

for some integer n.

Now we are assuming that we are given a bounded t-structure $(\mathcal{A},\mathcal{B})$ on the category $\mathbf{D}_Z^{\mathrm{perf}}(X)$, which is the category of compact objects in $\mathbf{D}_{\mathbf{qc},Z}(X)$.

Suppose we could prove the inclusions

$$\mathbf{D}_{\mathbf{qc},Z}(X)^{\leq -n} \subset \operatorname{Coprod}(\mathcal{A}) \subset \mathbf{D}_{\mathbf{qc},Z}(X)^{\leq n}$$

for some integer n.

Take $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)$. Without loss of generality assume $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}^\mathrm{perf}_{\mathbf{z}}(X)$.

Now we are assuming that we are given a bounded t-structure $(\mathcal{A},\mathcal{B})$ on the category $\mathbf{D}_Z^{\mathrm{perf}}(X)$, which is the category of compact objects in $\mathbf{D}_{\mathbf{qc},Z}(X)$.

Suppose we could prove the inclusions

$$\mathbf{D}_{\mathbf{qc},Z}(X)^{\leq -n} \subset \mathsf{Coprod}(\mathcal{A}) \subset \mathbf{D}_{\mathbf{qc},Z}(X)^{\leq n}$$

for some integer n.

Take $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)$. Without loss of generality assume $F \in \mathbf{D}^b_{\mathbf{coh},Z}(X)^{\geq 0}$. We want to show that $F \in \mathbf{D}^\mathrm{perf}_{\mathbf{z}}(X)$.

The literature we explained gave us exact triangles

The literature we explained gave us exact triangles

It suffices to show that the standard t-structure on $\mathbf{D}_{qc,Z}(X)$ is equivalent to the t-structure generated by \mathcal{A} , where $(\mathcal{A},\mathcal{B})$ is our bounded t-structure on $\mathbf{D}_{c}^{\mathrm{perf}}(X)$.

It suffices to show that the standard t-structure on $\mathbf{D}_{\mathbf{qc},Z}(X)$ is equivalent to the t-structure generated by \mathcal{A} , where $(\mathcal{A},\mathcal{B})$ is our bounded t-structure on $\mathbf{D}_Z^{\mathrm{perf}}(X)$.

We need to prove the inclusions

$$\mathbf{D}_{\mathbf{qc},Z}(X)^{\leq -n} \subset \operatorname{Coprod}(\mathcal{A}) \subset \mathbf{D}_{\mathbf{qc},Z}(X)^{\leq n}$$

for some integer n.

It suffices to show that the standard t-structure on $\mathbf{D}_{qc,Z}(X)$ is equivalent to the t-structure generated by \mathcal{A} , where $(\mathcal{A},\mathcal{B})$ is our bounded t-structure on $\mathbf{D}_Z^{\mathrm{perf}}(X)$.

We need to prove the inclusions

$$\mathbf{D}_{\mathbf{qc},Z}(X)^{\leq -n} \subset \operatorname{Coprod}(\mathcal{A}) \subset \mathbf{D}_{\mathbf{qc},Z}(X)^{\leq n}$$

for some integer n.

We will sketch how to do half of this, that is prove the inclusion

$$\mathbf{D}_{\mathbf{qc},Z}(X)^{\leq 0} \subset \mathsf{Coprod}(\mathcal{A}[-n])$$

for some integer n.

It suffices to show that the standard t-structure on $\mathbf{D}_{qc,Z}(X)$ is equivalent to the t-structure generated by \mathcal{A} , where $(\mathcal{A},\mathcal{B})$ is our bounded t-structure on $\mathbf{D}_Z^{\mathrm{perf}}(X)$.

We need to prove the inclusions

$$\mathbf{D}_{\mathbf{qc},Z}(X)^{\leq -n} \subset \operatorname{Coprod}(\mathcal{A}) \subset \mathbf{D}_{\mathbf{qc},Z}(X)^{\leq n}$$

for some integer n.

We will sketch how to do half of this, that is prove the inclusion

$$\mathbf{D}_{\mathbf{qc},Z}(X)^{\leq 0} \subset \mathsf{Coprod}(\mathcal{A}[-n])$$

for some integer n.

For simplicity we assume that X is projective and that Z = X.

Pick any object $F \in \mathbf{D}_{\mathbf{qc}}(X)^{\leq 0}$. Resolving it, we may produce an isomorph

$$\cdots \longrightarrow \mathcal{V}^{m-1} \longrightarrow \mathcal{V}^m \longrightarrow \cdots \longrightarrow \mathcal{V}^{-1} \longrightarrow \mathcal{V}^0 \longrightarrow 0 \longrightarrow \cdots$$

where each V^i is a coproduct of line bundles $\mathcal{O}(-\ell)$ for $\ell > 0$.

Pick any object $F \in \mathbf{D}_{\mathbf{qc}}(X)^{\leq 0}$. Resolving it, we may produce an isomorph

$$\cdots \longrightarrow \mathcal{V}^{m-1} \longrightarrow \mathcal{V}^m \longrightarrow \cdots \longrightarrow \mathcal{V}^{-1} \longrightarrow \mathcal{V}^0 \longrightarrow 0 \longrightarrow \cdots$$

where each \mathcal{V}^i is a coproduct of line bundles $\mathcal{O}(-\ell)$ for $\ell > 0$.

Now (A, B) is a bounded t-structure on the category $\mathbf{D}^{perf}(X)$.

Pick any object $F \in \mathbf{D}_{\mathbf{qc}}(X)^{\leq 0}$. Resolving it, we may produce an isomorph

$$\cdots \longrightarrow \mathcal{V}^{m-1} \longrightarrow \mathcal{V}^m \longrightarrow \cdots \longrightarrow \mathcal{V}^{-1} \longrightarrow \mathcal{V}^0 \longrightarrow 0 \longrightarrow \cdots$$

where each \mathcal{V}^i is a coproduct of line bundles $\mathcal{O}(-\ell)$ for $\ell>0$.

Now (A, B) is a bounded t-structure on the category $\mathbf{D}^{perf}(X)$.

Hence, given any integer N > 0, we can find an integer M > 0 such that

$$\mathcal{O}(-\ell) \in \mathcal{A}[-M]$$
 for all $0 \le \ell \le N$.

Alexander A. Beĭlinson, *The derived category of coherent sheaves on* \mathbf{P}^n , Selecta Mathematica Sovietica, vol. 3, 1983/84, Selected translations, pp. 233–237.

Dmitri O. Orlov, *Smooth and proper noncommutative schemes and gluing of DG categories*, Adv. Math. **302** (2016), 59–105.

Let R be a commutative ring. On \mathbb{P}_{R}^{n} we have a surjection

Let R be a commutative ring. On \mathbb{P}_{R}^{n} we have a surjection

$$\bigoplus_{i=0}^n \mathcal{O} \longrightarrow \mathcal{O}(1)$$

The short exact sequence

$$0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow R \longrightarrow 0$$

gives a quasi-isomorphism of R with the complex

$$0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow 0$$

Let R be a commutative ring. On \mathbb{P}_{R}^{n} we have a surjection

$$\bigoplus_{i=0}^{n} \mathcal{O} \longrightarrow \mathcal{O}(1)$$

The short exact sequence

$$0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow R \longrightarrow 0$$

gives a quasi-isomorphism of R with the complex

$$0 \longrightarrow R[x] \xrightarrow{x} R[x] \longrightarrow 0$$

Tensoring together n+1 of these we deduce a quasi-isomorphism of R with the Koszul complex

$$\bigotimes_{i=0}^{n} \left(R[x_i] \xrightarrow{X_i} R[x_i] \right)$$

$$0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

$$0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

Tensoring this with itself $\ell > 0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

$$0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

which has a brutal truncation

$$0 \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

$$0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

which has a brutal truncation

$$0 \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

This brutal truncation defines a class in

$$\operatorname{Ext}^{n+1}(\mathcal{O}(\ell),\mathcal{V})$$

$$0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

which has a brutal truncation

$$0 \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

This brutal truncation defines a class in

$$\operatorname{Ext}^{n+1}(\mathcal{O}(\ell),\mathcal{V}) = \operatorname{Ext}^{n+1}(\mathcal{O},\mathcal{V}(-\ell)) = H^{n+1}(\mathcal{V}(-\ell)) = 0$$
.

$$0 \longrightarrow \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

Tensoring this with itself $\ell>0$ times yields a quasi-isomorphism of $\mathcal{O}(\ell)$ with some complex

$$\cdots \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

which has a brutal truncation

$$0 \longrightarrow \oplus \mathcal{O}(-n) \longrightarrow \oplus \mathcal{O}(-n+1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(-1) \longrightarrow \oplus \mathcal{O} \longrightarrow 0$$

This brutal truncation defines a class in

$$\operatorname{Ext}^{n+1}(\mathcal{O}(\ell),\mathcal{V}) = \operatorname{Ext}^{n+1}(\mathcal{O},\mathcal{V}(-\ell)) = H^{n+1}(\mathcal{V}(-\ell)) = 0$$
.

Hence the brutal truncation must be quasi-isomorphic to $\mathcal{O}(\ell) \oplus \mathcal{V}[n]$ for some vector bundle \mathcal{V} .

Applying the functor $(-)^{\vee} = \mathcal{RH}om(-,\mathcal{O})$, we obtain a quasi-isomorphism of $\mathcal{O}(-\ell) \oplus \mathcal{V}^{\vee}[-n]$ with

$$0 \longrightarrow \oplus \mathcal{O} \longrightarrow \oplus \mathcal{O}(1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(n-1) \longrightarrow \oplus \mathcal{O}(n) \longrightarrow 0$$

Applying the functor $(-)^{\vee} = \mathcal{RH}om(-,\mathcal{O})$, we obtain a quasi-isomorphism of $\mathcal{O}(-\ell) \oplus \mathcal{V}^{\vee}[-n]$ with

$$0 \longrightarrow \oplus \mathcal{O} \longrightarrow \oplus \mathcal{O}(1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(n-1) \longrightarrow \oplus \mathcal{O}(n) \longrightarrow 0$$

Thus if A[-M] contains

$$\mathcal{O}$$
, $\mathcal{O}(1)[-1]$, ..., $\mathcal{O}(n-1)[-n+1]$, $\mathcal{O}(n)[-n]$

then it must contain $\mathcal{O}(-\ell)$ for all $\ell \geq 0$.

Applying the functor $(-)^{\vee} = \mathcal{RH}om(-,\mathcal{O})$, we obtain a quasi-isomorphism of $\mathcal{O}(-\ell) \oplus \mathcal{V}^{\vee}[-n]$ with

$$0 \longrightarrow \oplus \mathcal{O} \longrightarrow \oplus \mathcal{O}(1) \longrightarrow \cdots \longrightarrow \oplus \mathcal{O}(n-1) \longrightarrow \oplus \mathcal{O}(n) \longrightarrow 0$$

Thus if A[-M] contains

$$\mathcal{O}, \ \mathcal{O}(1)[-1], \ \ldots, \ \mathcal{O}(n-1)[-n+1], \ \mathcal{O}(n)[-n]$$

then it must contain $\mathcal{O}(-\ell)$ for all $\ell \geq 0$.

But then

$$\mathbf{D}_{\mathbf{qc}}(X)^{\leq 0} \subset \mathsf{Coprod}(\mathcal{A}[-M])$$
.

Thank you!