Derived and Triangulated Categories

Amnon Neeman

Australian National University

amnon.neeman@anu.edu.au

19 April 2023

Amnon Neeman (ANU)

Derived and Triangulated Categories

1 Background—localization of categories

2 Definitions of derived and triangulated categories

3 First lemmas

ヨト

Let \mathcal{A} be a category, and let S be a class of morphisms in \mathcal{A} . There exists a functor $F : \mathcal{A} \longrightarrow S^{-1}\mathcal{A}$ such that

- < f⊒ > <

Let \mathcal{A} be a category, and let S be a class of morphisms in \mathcal{A} . There exists a functor $F : \mathcal{A} \longrightarrow S^{-1}\mathcal{A}$ such that

• *F* takes every morphism in $S \subset A$ to an isomorphism in $S^{-1}A$.

Let \mathcal{A} be a category, and let S be a class of morphisms in \mathcal{A} . There exists a functor $F : \mathcal{A} \longrightarrow S^{-1}\mathcal{A}$ such that

- *F* takes every morphism in $S \subset A$ to an isomorphism in $S^{-1}A$.
- If H : A → B is a functor taking every morphism in S to an isomorphism, then there exists a unique functor G : S⁻¹A → B rendering commutative the triangle

Let \mathcal{A} be a category, and let S be a class of morphisms in \mathcal{A} . There exists a functor $F : \mathcal{A} \longrightarrow S^{-1}\mathcal{A}$ such that

- *F* takes every morphism in $S \subset A$ to an isomorphism in $S^{-1}A$.
- If H : A → B is a functor taking every morphism in S to an isomorphism, then there exists a unique functor G : S⁻¹A → B rendering commutative the triangle

We call this construction formally inverting the morphisms in S.

Reminder of the construction

As on the previous slide: $\mathcal A$ is a category, $\mathcal S\subset \mathcal A$ is a class of morphisms.

Reminder of the construction

As on the previous slide: $\mathcal A$ is a category, $\mathcal S\subset \mathcal A$ is a class of morphisms.

Objects of $S^{-1}A$:

The objects of $S^{-1}\mathcal{A}$ are the same as the objects of \mathcal{A} , and on objects the functor $F : \mathcal{A} \longrightarrow S^{-1}\mathcal{A}$ is the identity.

Reminder of the construction

As on the previous slide: \mathcal{A} is a category, $\mathcal{S} \subset \mathcal{A}$ is a class of morphisms.

Objects of $S^{-1}A$:

The objects of $S^{-1}A$ are the same as the objects of A, and on objects the functor $F : A \longrightarrow S^{-1}A$ is the identity.

Morphisms of $S^{-1}A$:

If A, B are objects of A, then $\operatorname{Hom}_{S^{-1}\mathcal{A}}(A, B)$ is the set of equivalence classes of zigzags

Definition of the derived categories $D_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$

Let \mathcal{A} be an abelian category. The derived category $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$ is as follows:

• Objects: cochain complexes of objects in \mathcal{A} , that is

$$\cdots \longrightarrow A^{-2} \longrightarrow A^{-1} \longrightarrow A^0 \longrightarrow A^1 \longrightarrow A^2 \longrightarrow \cdots$$

where the composites $A^i \longrightarrow A^{i+1} \longrightarrow A^{i+2}$ all vanish. The subscript \mathfrak{C} and superscript \mathfrak{C}' stand for conditions.

• Morphisms: cochain maps are examples, that is

but we formally invert the cohomology isomorphisms.

If \mathcal{E} is any exact category, we define the categories $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{E})$ analoguously. The objects are still cochain complexes satisfying some conditions.

The issue is with the morphisms—what does it mean for a cochain map to induce an isomorphism in cohomology? Which are the cochain maps we should invert?

If \mathcal{E} is any exact category, we define the categories $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{E})$ analoguously. The objects are still cochain complexes satisfying some conditions.

The issue is with the morphisms—what does it mean for a cochain map to induce an isomorphism in cohomology? Which are the cochain maps we should invert?

The solution is to invert those maps $f : A^* \longrightarrow B^*$ such that, for every exact functor $F : \mathcal{E} \longrightarrow \mathcal{A}$, with \mathcal{A} abelian, the induced map $F(f) : F(A^*) \longrightarrow F(B^*)$ is an isomorphism in cohomology.

Let R be an associative ring.

Example

- D(*R*-Mod) has for objects all cochain complexes of left *R*-modules, no conditions.
- If R is coherent, D(R-mod) has for objects all cochain complexes of finitely generated left R-modules.
- If R is coherent, D^b(R-mod) has for objects all bounded cochain complexes of finitely generated left R-modules. A complex A* is bounded if Aⁱ = 0 for all but finitely many i ∈ Z.
- With R still coherent, D⁻(R-mod) has for objects all bounded above cochain complexes of finitely generated left R-modules. A complex A* is bounded above if Aⁱ = 0 for all i ≫ 0.
- With R still coherent, D⁺(R-mod) has for objects all bounded below cochain complexes of finitely generated left R-modules. A complex A* is bounded below if Aⁱ = 0 for all i ≪ 0.

Image: A matrix and a matrix

With R still an associative ring.

Example

- D(*R*-Proj) has for objects all cochain complexes of projective left *R*-modules. Note that the category *R*-Proj isn't abelian, it is only an exact category.
- D(*R*-proj) has for objects all cochain complexes of finitely generated projective left *R*-modules.
- D^b(R-proj) has for objects all bounded cochain complexes of finitely generated, projective left *R*-modules.
- D⁻(*R*-proj) has for objects all bounded above cochain complexes of finitely generated, projective left *R*-modules.

Example

D_{qc}(X) will be our shorthand for D_{qc}(O_X-Mod). The objects are the complexes of sheaves of O_X-modules, and the only condition is that the cohomology must be quasicoherent.

Example

- D_{qc}(X) will be our shorthand for D_{qc}(O_X-Mod). The objects are the complexes of sheaves of O_X-modules, and the only condition is that the cohomology must be quasicoherent.
- The objects of D^{perf}(X) are the perfect complexes. A complex is perfect if it is locally isomorphic to a bounded complex of vector bundles.

< □ > < □ > < □ > < □ > < □ > < □ >

Example

- D_{qc}(X) will be our shorthand for D_{qc}(O_X-Mod). The objects are the complexes of sheaves of O_X-modules, and the only condition is that the cohomology must be quasicoherent.
- The objects of D^{perf}(X) are the perfect complexes. A complex is perfect if it is locally isomorphic to a bounded complex of vector bundles. This means: Let E be an object in D_{qc}(X). It belongs to the full subcategory D^{perf}(X) ⊂ D_{qc}(X)

< □ > < □ > < □ > < □ > < □ > < □ >

Example

- $D_{qc}(X)$ will be our shorthand for $D_{qc}(\mathcal{O}_X Mod)$. The objects are the complexes of sheaves of \mathcal{O}_X -modules, and the only condition is that the cohomology must be quasicoherent.
- The objects of D^{perf}(X) are the perfect complexes. A complex is perfect if it is locally isomorphic to a bounded complex of vector bundles. This means: Let E be an object in D_{qc}(X). It belongs to the full subcategory D^{perf}(X) ⊂ D_{qc}(X) if X has a cover by open sets U_i such that, for each i, the functor u^{*}_i : D_{qc}(X) → D_{qc}(U_i), induced by restriction to U_i, takes E to an object u^{*}_i(E) isomorphic in D_{qc}(U_i) to a bounded complex of vector bundles.

< □ > < □ > < □ > < □ > < □ > < □ >

Example

- D_{qc}(X) will be our shorthand for D_{qc}(O_X-Mod). The objects are the complexes of sheaves of O_X-modules, and the only condition is that the cohomology must be quasicoherent.
- The objects of D^{perf}(X) are the perfect complexes. A complex is perfect if it is locally isomorphic to a bounded complex of vector bundles. This means: Let E be an object in D_{qc}(X). It belongs to the full subcategory D^{perf}(X) ⊂ D_{qc}(X) if X has a cover by open sets U_i such that, for each i, the functor u^{*}_i : D_{qc}(X) → D_{qc}(U_i), induced by restriction to U_i, takes E to an object u^{*}_i(E) isomorphic in D_{qc}(U_i) to a bounded complex of vector bundles.
- Assume X is noetherian. The objects of D^b_{coh}(X) are the complexes with coherent cohomology which vanishes in all but finitely many degrees.

イロト イポト イヨト イヨト

Let X be a scheme, and let $Z \subset X$ be a closed subset.

D_{qc,Z}(X) will be our shorthand for D_{qc,Z}(O_X-Mod). The objects are the complexes of O_X-modules, and the conditions are that (1) the cohomology must be quasicoherent,

Let X be a scheme, and let $Z \subset X$ be a closed subset.

D_{qc,Z}(X) will be our shorthand for D_{qc,Z}(O_X-Mod). The objects are the complexes of O_X-modules, and the conditions are that (1) the cohomology must be quasicoherent, and (2) the restriction to X - Z is acyclic.

Let X be a scheme, and let $Z \subset X$ be a closed subset.

- D_{qc,Z}(X) will be our shorthand for D_{qc,Z}(O_X-Mod). The objects are the complexes of O_X-modules, and the conditions are that (1) the cohomology must be quasicoherent, and (2) the restriction to X Z is acyclic.
- **2** The objects of $D_Z^{\text{perf}}(X) \subset D_{\text{qc},Z}(X)$ are the perfect complexes.

Let X be a scheme, and let $Z \subset X$ be a closed subset.

- D_{qc,Z}(X) will be our shorthand for D_{qc,Z}(O_X-Mod). The objects are the complexes of O_X-modules, and the conditions are that (1) the cohomology must be quasicoherent, and (2) the restriction to X Z is acyclic.
- **2** The objects of $D_Z^{\text{perf}}(X) \subset D_{\text{qc},Z}(X)$ are the perfect complexes.
- Section Assume X is noetherian. The objects of D^b_{coh,Z}(X) ⊂ D_{qc,Z}(X) are the complexes with coherent cohomology which vanishes in all but finitely many degrees.

Definition (formal definition of triangulated categories)

The additive category \mathcal{T} has a triangulated structure if:

- It has an invertible additive endofunctor [1] : T → T, taking the object X and the morphism f in T to X[1] and f[1], respectively.
- We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.

Image: A matrix and a matrix

Definition (formal definition of triangulated categories)

The additive category \mathcal{T} has a triangulated structure if:

- It has an invertible additive endofunctor [1] : T → T, taking the object X and the morphism f in T to X[1] and f[1], respectively.
- ② We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.

This data must satisfy the following axioms [TR1]

[TR2]

Image: A matrix and a matrix

Example (back to $\mathbf{D}^{\mathfrak{C}'}_{\mathfrak{C}}(\mathcal{A})$)

We have asserted that the category $\mathbf{D}^{\mathfrak{C}'}_{\mathfrak{C}}(\mathcal{A})$ is triangulated. The endofunctor $[1]: \mathbf{D}^{\mathfrak{C}'}_{\mathfrak{C}}(\mathcal{A}) \longrightarrow \mathbf{D}^{\mathfrak{C}'}_{\mathfrak{C}}(\mathcal{A})$: It takes the cochain complex \mathcal{A}^* , i.e.

$$\cdots \longrightarrow A^{-2} \xrightarrow{\partial^{-2}} A^{-1} \xrightarrow{\partial^{-1}} A^0 \xrightarrow{\partial^0} A^1 \xrightarrow{\partial^1} A^2 \longrightarrow \cdots$$

to the cochain complex $(A[1])^*$ below:

$$\cdots \longrightarrow A^{-1} \xrightarrow{-\partial^{-1}} A^0 \xrightarrow{-\partial^0} A^1 \xrightarrow{-\partial^1} A^2 \xrightarrow{-\partial^2} A^3 \longrightarrow \cdots$$

If $f^*: A^* \longrightarrow B^*$ is a cochain map

then $(f[1])^*$ is the cochain map

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

Let \mathcal{A} be an abelian category. We let $\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$ be the category with the same objects as $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$, but where the morphisms are the honest cochain maps. And we let S be the class of all morphisms in $\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$ which induce isomorphisms in cohomology.

By definition $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A}) = S^{-1}\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A}).$

Let \mathcal{A} be an abelian category. We let $\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$ be the category with the same objects as $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$, but where the morphisms are the honest cochain maps. And we let S be the class of all morphisms in $\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$ which induce isomorphisms in cohomology.

By definition $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A}) = S^{-1}\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A}).$

Let \mathcal{A} be an abelian category. We let $\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$ be the category with the same objects as $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$, but where the morphisms are the honest cochain maps. And we let S be the class of all morphisms in $\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$ which induce isomorphisms in cohomology.

By definition $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A}) = S^{-1}\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A}).$

The exact triangles: Suppose we are given a commutative diagram in \mathcal{A} , where the rows are objects of $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$

We may view the above as morphisms $X^* \xrightarrow{f^*} Y^* \xrightarrow{g^*} Z^*$ in the category $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$.

19 April 2023

The exact triangles: Suppose we are given a commutative diagram in \mathcal{A} , where the rows are objects of $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$

We may view the above as morphisms $X^* \xrightarrow{f^*} Y^* \xrightarrow{g^*} Z^*$ in the category $\mathbf{D}_{\sigma}^{\mathfrak{C}'}(\mathcal{A})$.

Assume further that, for each $i \in \mathbb{Z}$, the sequence $X^i \xrightarrow{f^i} Y^i \xrightarrow{g^i} Z^i$ is split exact. Choose, for each $i \in \mathbb{Z}$, a splitting $\theta^i : Z^i \longrightarrow Y^i$ of the map $g^i : Y^i \longrightarrow Z^i$.

Now for each i we have the diagram

Now for each i we have the diagram

Thus the difference $\theta^{i+1}\partial_Z^i - \partial_Y^i \theta^i$ is annihilated by the map $g^{i+1}: Y^{i+1} \longrightarrow Z^{i+1}$, hence must factor uniquely as $Z^i \xrightarrow{h^i} X^{i+1} \xrightarrow{f^{i+1}} Y^{i+1}$. Form the diagram

|▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Example (back to $D_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$, continued)

Example (back to $D_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$, continued)

Example (back to $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$, continued)

Amnon Neeman (ANU)

Example (back to $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$, continued)

Thus $h^* : Z^* \longrightarrow X^*[1]$ is a cochain map. We have constructed in the category $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}'}(\mathcal{A})$ a diagram $X^* \xrightarrow{f^*} Y^* \xrightarrow{g^*} Z^* \xrightarrow{h^*} X^*[1]$. We declare

The exact triangles in D^{𝔅'}_𝔅(𝔅) are all the isomorphs, in D^{𝔅'}_𝔅(𝔅), of diagrams that come from our construction.

The additive category \mathcal{T} has a triangulated structure if:

- It has an invertible additive endofunctor [1] : T → T, taking the object X and the morphism f in T to X[1] and f[1], respectively.
- ② We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.

Image: A matrix and a matrix

The additive category \mathcal{T} has a triangulated structure if:

- It has an invertible additive endofunctor [1] : T → T, taking the object X and the morphism f in T to X[1] and f[1], respectively.
- ② We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.

This data must satisfy the following axioms

[TR1] Any isomorph of an exact triangle is an exact triangle. For any object $X \in \mathcal{T}$ the diagram $0 \longrightarrow X \xrightarrow{id} X \longrightarrow 0$ is an exact triangle.

26 / 62

< □ > < □ > < □ > < □ > < □ > < □ >

The additive category \mathcal{T} has a triangulated structure if:

- It has an invertible additive endofunctor [1] : T → T, taking the object X and the morphism f in T to X[1] and f[1], respectively.
- ② We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.

This data must satisfy the following axioms

[TR1] Any isomorph of an exact triangle is an exact triangle. For any object $X \in \mathcal{T}$ the diagram $0 \longrightarrow X \xrightarrow{\text{id}} X \longrightarrow 0$ is an exact triangle. Any morphism $f : X \longrightarrow Y$ may be completed to an exact triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.

< □ > < □ > < □ > < □ > < □ > < □ >

The additive category ${\mathcal T}$ has a triangulated structure if:

- It has an invertible additive endofunctor [1] : T → T, taking the object X and the morphism f in T to X[1] and f[1], respectively.
- ② We are given a collection of exact triangles, meaning diagrams in *T* of the form X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1].

This data must satisfy the following axioms

[TR1] Any isomorph of an exact triangle is an exact triangle. For any object $X \in \mathcal{T}$ the diagram $0 \longrightarrow X \xrightarrow{\text{id}} X \longrightarrow 0$ is an exact triangle. Any morphism $f : X \longrightarrow Y$ may be completed to an exact triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$. [TR2] Any rotation of an exact triangle is exact. That is: $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ is an exact triangle if and only if

< □ > < □ > < □ > < □ > < □ > < □ >

Definition (definition of triangulated categories—continued)

[TR3+4] Given a commutative diagram, where the rows are exact triangles,

イロト 不得下 イヨト イヨト

3

Definition (definition of triangulated categories—continued)

[TR3+4] Given a commutative diagram, where the rows are exact triangles,

we may complete it to a commutative diagram (also known as a morphism of triangles)

Definition (definition of triangulated categories—continued)

[TR3+4] (continued): Moreover: we can do it in such a way that

$$Y \oplus X' \xrightarrow{\begin{pmatrix} -g & 0 \\ v & f' \end{pmatrix}} Z \oplus Y' \xrightarrow{\begin{pmatrix} -h & 0 \\ w & g' \end{pmatrix}} X[1] \oplus Z'$$
$$\begin{pmatrix} -f[1] & 0 \\ u[1] & h' \end{pmatrix} \downarrow$$
$$Y[1] \oplus X'[1]$$
is an exact triangle.

э

The endomorphism [1] : $\mathcal{T} \longrightarrow \mathcal{T}$ gets replaced by $[-1] : \mathcal{T}^{\mathrm{op}} \longrightarrow \mathcal{T}^{\mathrm{op}}$, where $[-1] = [1]^{-1}$.

lf

$$X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \stackrel{h}{\longrightarrow} X[1]$$

is an exact triangle in \mathcal{T} , we declare it to also be an exact triangle in \mathcal{T}^{op} . The point being that the rotation

$$Z[-1] \stackrel{-h}{\longrightarrow} X \stackrel{-f}{\longrightarrow} Y \stackrel{-g}{\longrightarrow} Z$$

has the required form.

If *T* is a triangulated category and *n* ∈ Z is an integer, then [*n*] will be our shorthand for the endofunctor [1]ⁿ : *T* → *T*.

Image: A matrix and a matrix

< ∃⇒

э

- If *T* is a triangulated category and *n* ∈ Z is an integer, then [*n*] will be our shorthand for the endofunctor [1]ⁿ : *T* → *T*.
- We will lazily abbreviate "exact triangle" to just "triangle".

- If *T* is a triangulated category and *n* ∈ Z is an integer, then [*n*] will be our shorthand for the endofunctor [1]ⁿ : *T* → *T*.
- We will lazily abbreviate "exact triangle" to just "triangle".
- A full subcategory S ⊂ T is called triangulated if 0 ∈ S, if S[1] = S, and if, whenever X, Y ∈ S and there exists in T a triangle X → Y → Z → X[1], we must also have Z ∈ S.

- If *T* is a triangulated category and *n* ∈ Z is an integer, then [*n*] will be our shorthand for the endofunctor [1]ⁿ : *T* → *T*.
- We will lazily abbreviate "exact triangle" to just "triangle".
- A full subcategory S ⊂ T is called triangulated if 0 ∈ S, if S[1] = S, and if, whenever X, Y ∈ S and there exists in T a triangle X → Y → Z → X[1], we must also have Z ∈ S.
- The subcategory S is thick if it is triangulated, as well as closed in T under direct summands.

- If *T* is a triangulated category and *n* ∈ Z is an integer, then [*n*] will be our shorthand for the endofunctor [1]ⁿ : *T* → *T*.
- We will lazily abbreviate "exact triangle" to just "triangle".
- A full subcategory $S \subset T$ is called triangulated if $0 \in S$, if S[1] = S, and if, whenever $X, Y \in S$ and there exists in T a triangle $X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$, we must also have $Z \in S$.
- The subcategory S is thick if it is triangulated, as well as closed in T under direct summands.
- Let T be a triangulated category, and let A be an abelian category. A functor H : T → A is homological if it takes triangles to long exact sequences.

イロト イヨト イヨト ・

э

Lemma

If \mathcal{T} is a triangulated category, and if $t \in \mathcal{T}$ is an object, then the functor $\operatorname{Hom}(t, -) : \mathcal{T} \longrightarrow Ab$ is homological.

æ

Lemma

If \mathcal{T} is a triangulated category, and if $t \in \mathcal{T}$ is an object, then the functor $\operatorname{Hom}(t, -) : \mathcal{T} \longrightarrow Ab$ is homological.

Proof.

If $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$ is an exact triangle in \mathcal{T} , we need to prove that

 $\operatorname{Hom}(t,A) \longrightarrow \operatorname{Hom}(t,B) \longrightarrow \operatorname{Hom}(t,C) \longrightarrow \operatorname{Hom}(t,A[1]) \longrightarrow$

is a long exact sequence. By [TR2], the axiom saying that any rotation of an exact triangle is an exact triangle, it suffices to prove that

$$\operatorname{Hom}(t,A) \longrightarrow \operatorname{Hom}(t,B) \longrightarrow \operatorname{Hom}(t,C)$$

is exact.

イロン イ理 とく ヨン イ ヨン

э

Let f be an element in Hom(t, A), that is f is a morphism $f : t \longrightarrow A$. Consider the commutative diagram

The rows are triangles, and [TR3+4] permits us to extend the commutative diagram to a morphism of triangles

The commutativity of the middle square tells us that vuf = 0,

Amnon Neeman (ANU)

Derived and Triangulated Categories

which proves the vanishing of the composite

$$\operatorname{Hom}(t,A) \longrightarrow \operatorname{Hom}(t,B) \longrightarrow \operatorname{Hom}(t,C)$$

Now let f be an element of the kernel of $\operatorname{Hom}(t, B) \longrightarrow \operatorname{Hom}(t, C)$. That is $f: t \longrightarrow B$ is a morphism such that the composite $t \xrightarrow{f} B \xrightarrow{v} C$ vanishes. Thus we have a commutative diagram

By a rotation of [TR3+4] we may complete to a morphism of triangles

33 / 62

and this yields an equality f = ug with $g \in Hom(t, A)$. That is f is the image of $g \in Hom(t, A)$ under the map $Hom(t, A) \longrightarrow Hom(t, B)$.

Corollary

Given any exact triangle

$$A \stackrel{u}{\longrightarrow} B \stackrel{v}{\longrightarrow} C \stackrel{w}{\longrightarrow} A[1]$$

we have vu = 0.

イロト イボト イヨト イヨト

3

Corollary

Given any exact triangle

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$$

we have vu = 0.

Proof.

The image of $1 \in Hom(A, A)$ under the exact sequence

$$\operatorname{Hom}(A,A) \xrightarrow{\operatorname{Hom}(A,u)} \operatorname{Hom}(A,B) \xrightarrow{\operatorname{Hom}(A,v)} \operatorname{Hom}(A,C)$$

must vanish.

æ

A (10) × (10)

In the light of our Lemma, it makes sense to formulate

Definition

Let \mathcal{T} be a triangulated category. A sequence $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$ is called a weak triangle if, for every object $t \in \mathcal{T}$, the functor $\operatorname{Hom}(t, -)$ takes $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$ to a long exact sequence.

In the light of our Lemma, it makes sense to formulate

Definition

Let \mathcal{T} be a triangulated category. A sequence $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$ is called a weak triangle if, for every object $t \in \mathcal{T}$, the functor $\operatorname{Hom}(t, -)$ takes $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$ to a long exact sequence.

Reformulating the first lemma

In terms of the above definition, the first Lemma asserts that every exact triangle is a weak triangle.

Lemma

Let \mathcal{T} be a triangulated category, and let

be a commutative diagram where the rows are weak triangles. If f and g are isomorphisms then so is h.

Lemma

Let \mathcal{T} be a triangulated category, and let

be a commutative diagram where the rows are weak triangles. If f and g are isomorphisms then so is h.

Proof.

For any object $t \in \mathcal{T}$, the functor $\operatorname{Hom}(t, -)$ takes the above to a commutative diagram with long exact rows, in which $\operatorname{Hom}(t, f[n])$ and $\operatorname{Hom}(t, g[n])$ are isomorphisms for all $n \in \mathbb{Z}$. The 5-lemma tells us that $\operatorname{Hom}(t, h[n])$ are also isomorphisms for all $n \in \mathbb{Z}$, and by Yoneda's lemma h must be an isomorphism.

(日) (日) (日) (日) (日)

Corollary

Let \mathcal{T} be a triangulated category. If

$$A \stackrel{u}{\longrightarrow} B \stackrel{v}{\longrightarrow} C \stackrel{w}{\longrightarrow} A[1] , \qquad \qquad A \stackrel{u}{\longrightarrow} B \stackrel{v'}{\longrightarrow} C' \stackrel{w'}{\longrightarrow} A[1]$$

are exact triangles then they are (non-canonically) isomorphic.

æ

Corollary

Let \mathcal{T} be a triangulated category. If

 $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$, $A \xrightarrow{u} B \xrightarrow{v'} C' \xrightarrow{w'} A[1]$

are exact triangles then they are (non-canonically) isomorphic.

Proof.

The commutative diagram

$$A \xrightarrow{u} B \xrightarrow{v'} C' \xrightarrow{w'} A[1]$$

$$\| \qquad \|$$

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$$

has exact triangles for rows, and [TR3+4] permits us to extend to a commutative diagram

< (T) > <

$$A \xrightarrow{u} B \xrightarrow{v'} C' \xrightarrow{w'} A[1]$$
$$\| \qquad \| \qquad \downarrow_{h} \qquad \|$$
$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$$

The identity maps $1: A \longrightarrow A$ and $1: B \longrightarrow B$ are isomorphisms, hence so is $h: C' \longrightarrow C$.

< A > <

< ∃⇒

э

Corollary

Let \mathcal{T} be a triangulated category. If

 $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$, $A' \xrightarrow{u'} B' \xrightarrow{v'} C' \xrightarrow{w'} A'[1]$

are exact triangles then so is

$$A \oplus A' \xrightarrow{u \oplus u'} B \oplus B' \xrightarrow{v \oplus v'} C \oplus C' \xrightarrow{w \oplus w'} (A \oplus A')[1]$$

Proof.

By [TR1] we may complete the morphism $u \oplus u'$ to an exact triangle

$$A \oplus A' \xrightarrow{u \oplus u'} B \oplus B' \xrightarrow{\widetilde{v}} \widetilde{C} \xrightarrow{\widetilde{w}} (A \oplus A')[1]$$

40 / 62

A 回 > A 回 > A 回 >

And by [TR3+4] we may complete the commutative diagrams

and

to commutative diagrams

and

Combining, we have a commutative diagram

Since the rows are weak triangles the map h must be an isomorphism. The bottom row is an exact triangle by construction, and [TR1] now tells us that so is the isomorphic top row.

43 / 62

Corollary

Let ${\mathcal T}$ be a triangulated category. If

$$A \oplus A' \xrightarrow{u \oplus u'} B \oplus B' \xrightarrow{v \oplus v'} C \oplus C' \xrightarrow{w \oplus w'} (A \oplus A')[1]$$

is an exact triangle, then so is the direct summand

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$$
.

Proof.

By [TR1] we may complete the morphism u to an exact triangle

$$A \xrightarrow{u} B \xrightarrow{\widetilde{v}} \widetilde{C} \xrightarrow{\widetilde{w}} A[1]$$

・ 同 ト ・ ヨ ト ・ ヨ ト

And by [TR3+4] we may complete the commutative diagram

to the morphism of triangles

The commutative diagram

where the morphism between the second and third row is the projection to a direct summand, composes to give $\hfill\square$

and as both rows are weak triangles the map h must be an isomorphism. The top row is an exact triangle by construction, and [TR1] now tells us that so is the isomorphic bottom row.

Theorem (octahedral axiom)

Let \mathcal{T} be a triangulated category. Suppose $A \xrightarrow{f} B \xrightarrow{g} B'$ are two composable morphisms, and choose exact triangles

which exist by [TR1].

Then there exist morphisms $h: C \longrightarrow C'$ and $k: C' \longrightarrow B''$ such that

Theorem (octahedral axiom, continued)

the following diagram commutes

and the third column is an exact triangle.

Proof.

We are given the commutative diagram

where the rows are exact triangles. [TR3+4] permits us to extend to a commutative diagram

and do it in such a way that

イロト イポト イヨト イヨト

$$B \oplus A \xrightarrow{\begin{pmatrix} -u & 0 \\ g & gf \end{pmatrix}} C \oplus B' \xrightarrow{\begin{pmatrix} -v & 0 \\ h & u' \end{pmatrix}} A[1] \oplus C'$$
$$\begin{pmatrix} -f[1] & 0 \\ 1 & v' \end{pmatrix} \downarrow$$
$$B[1] \oplus A[1]$$
is an exact triangle.

イロト イヨト イヨト イヨト

а

а

This triangle is isomorphic to the direct sum of

$$B \xrightarrow{\begin{pmatrix} -u \\ g \end{pmatrix}} C \oplus B' \xrightarrow{\begin{pmatrix} (h & u' \end{pmatrix}} C' \xrightarrow{fv'} B[1]$$
nd
$$A \xrightarrow{} 0 \xrightarrow{} 0 \xrightarrow{} A[1] \xrightarrow{} A[1]$$
nd both must be exact triangles.

э

And now the commutative diagram

has exact triangles for rows, and [TR3+4] permits us to extend to a commutative diagram

and do it in such a way that

$$C \oplus B' \oplus B \xrightarrow{\begin{pmatrix} -h & -u' & 0 \\ 0 & 1 & g \end{pmatrix}} C' \oplus B' \xrightarrow{\begin{pmatrix} -fv' & 0 \\ k & g' \end{pmatrix}} B[1] \oplus B''$$
$$\begin{pmatrix} u[1] & 0 \\ -g[1] & 0 \\ 1 & \ell \end{pmatrix} \downarrow$$
$$(C \oplus B' \oplus B)[1]$$
s an exact triangle. And this exact triangle is isomorphic to the direct sum of

(日)

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Lemma

If \mathcal{T} is a triangulated category and $g : B \longrightarrow C$ is an epimorphism, then $B \cong A \oplus C$ and g is the split surjection $A \oplus C \longrightarrow C$.

Proof.

Complete g to an exact triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1]$. The composite $hg : B \longrightarrow A[1]$ vanishes, and as g is an epimorphism we deduce that h = 0.

But now consider the commutative diagram where the rows are triangles

By [TR3+4] we may complete to a commutative diagram

and ρ must be an isomorphism.

No cokernels

Suppose $f: X \longrightarrow B$ is a morphism in a triangulated category \mathcal{T} , and $g: B \longrightarrow C$ is its cokernel. Then g is an epimorphism, and the above lemma says it must be isomorphic to the projection $A \oplus C \longrightarrow C$.

The fact that $f: X \longrightarrow A \oplus C$ has cokernel $A \oplus C \longrightarrow C$ means that map f must factor as $X \xrightarrow{g} A \xrightarrow{i} A \oplus C$, and the map $X \longrightarrow A$ must be an epimorphism. Hence the map $g: X \longrightarrow A$ is isomorphic to the projection $\pi: Y \oplus A \longrightarrow A$.

Thus the morphism $f : X \longrightarrow B$ is isomorphic to the composite $Y \oplus A \xrightarrow{\pi} A \xrightarrow{i} A \oplus C$, where π is the projection and i is the inclusion.

Summarizing: morphisms in triangulated categories rarely have cokernels.

Thank you!

Image: A mathematical states and a mathem

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ →

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ →

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ →