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Overview

@ Background—localization of categories

© Definitions of derived and triangulated categories

© First lemmas

@ Flaws of triangulated categories
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Background—inverting morphisms in a category

Let A be a category, and let S be a class of morphisms in A.
There exists a functor F : A — S~ A such that
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Background—inverting morphisms in a category

Let A be a category, and let S be a class of morphisms in A.
There exists a functor F : A — S~ A such that

o F takes every morphism in S C A to an isomorphism in S™1A.
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Background—inverting morphisms in a category

Let A be a category, and let S be a class of morphisms in A.
There exists a functor F : A — S~ A such that

o F takes every morphism in S C A to an isomorphism in S™1A.

e If H: A — B is a functor taking every morphism in S to an
isomorphism, then there exists a unique functor G : S7'A4 — B
rendering commutative the triangle
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Background—inverting morphisms in a category

Let A be a category, and let S be a class of morphisms in A.
There exists a functor F : A — S~ A such that

o F takes every morphism in S C A to an isomorphism in S™1A.

e If H: A — B is a functor taking every morphism in S to an
isomorphism, then there exists a unique functor G : S7'A4 — B
rendering commutative the triangle

We call this construction formally inverting the morphisms in 5.
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Reminder of the construction

As on the previous slide: A is a category, S C A is a class of morphisms.
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Reminder of the construction

As on the previous slide: A is a category, S C A is a class of morphisms.

Objects of S71A:

The objects of S™1.A are the same as the objects of .4, and on objects the
functor F : A — S~1 A is the identity.
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Reminder of the construction

As on the previous slide: A is a category, S C A is a class of morphisms.

Objects of S71A:

The objects of S™1.A are the same as the objects of .4, and on objects the
functor F : A — S~1 A is the identity.

Morphisms of S~ A:

If A, B are objects of A, then Homg_, 4(A, B) is the set of equivalence
classes of zigzags

where the s; belong to S.
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Definition of the derived categories DS (.A)

Let A be an abelian category. The derived category Dg/(A) is as follows:

@ Objects: cochain complexes of objects in A, that is

A2 A1 A0 Al A2

where the composites A\ — A1 — A™*2 || vanish. The subscript
¢ and superscript €' stand for conditions.

@ Morphisms: cochain maps are examples, that is

A2 AL Al Al A?

S

s B—2 B—l BO Bl B2

but we formally invert the cohomology isomorphisms.
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More generally

If £ is any exact category, we define the categories D%/(E) analoguously.
The objects are still cochain complexes satisfying some conditions.

The issue is with the morphisms—what does it mean for a cochain map to
induce an isomorphism in cohomology? Which are the cochain maps we
should invert?
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More generally

If £ is any exact category, we define the categories D%/(E) analoguously.
The objects are still cochain complexes satisfying some conditions.

The issue is with the morphisms—what does it mean for a cochain map to
induce an isomorphism in cohomology? Which are the cochain maps we
should invert?

The solution is to invert those maps f : A* — B™* such that, for every
exact functor F : £ — A, with A abelian, the induced map
F(f): F(A*) — F(B*) is an isomorphism in cohomology.
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Let R be an associative ring.

@ D(R-Mod) has for objects all cochain complexes of left R-modules,
no conditions.

@ If R is coherent, D(R—mod) has for objects all cochain complexes of

left R-modules.

@ If R is coherent, D?(R—mod) has for objects all cochain
complexes of finitely generated left R-modules. A complex A* is
bounded

@ With R still coherent, D~ (R—mod) has for objects all
cochain complexes of finitely generated left R-modules. A complex
A* is bounded above

@ With R still coherent, D" (R—mod) has for objects all
cochain complexes of finitely generated left R-modules. A complex
A* is bounded below
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With R still an associative ring.

Example
© D(R-Proj) has for objects all cochain complexes of left
R-modules. Note that the category R—Proj isn't abelian, it is only an
exact category.
@ D(R-proj) has for objects all cochain complexes of
projective left R-modules.

@ D’(R-proj) has for objects all cochain complexes of finitely
generated, projective left R-modules.
© D (R-proj) has for objects all cochain complexes of

finitely generated, projective left R-modules.
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Let X be a scheme.

Example

@ D, (X) will be our shorthand for D (Oyx—Mod). The objects are the
complexes of sheaves of Oy—modules, and the only condition is that
the cohomology must be quasicoherent.
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Let X be a scheme.

Example
@ D, (X) will be our shorthand for D (Oyx—Mod). The objects are the
complexes of sheaves of Oy—modules, and the only condition is that
the cohomology must be quasicoherent.
@ The objects of DP°™(X) are the perfect complexes. A complex is
if it is locally isomorphic to a bounded complex of vector
bundles.
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Let X be a scheme.

Example

@ D, (X) will be our shorthand for D (Oyx—Mod). The objects are the
complexes of sheaves of Oy—modules, and the only condition is that
the cohomology must be quasicoherent.

@ The objects of DP°™(X) are the perfect complexes. A complex is
if it is locally isomorphic to a bounded complex of vector
bundles. This means: Let E be an object in Dy(X). It belongs to
the full subcategory DP(X) C D (X)
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Let X be a scheme.

Example

@ D, (X) will be our shorthand for D (Oyx—Mod). The objects are the
complexes of sheaves of Oy—modules, and the only condition is that
the cohomology must be quasicoherent.

@ The objects of DP°™(X) are the perfect complexes. A complex is
if it is locally isomorphic to a bounded complex of vector
bundles. This means: Let E be an object in Dy(X). It belongs to
the full subcategory DPf(X) C Dy (X) if X has a cover by open
sets U; such that, for each 7, the functor uf : Dy (X) — Dgc(U)),
induced by restriction to U;, takes E to an object u}(E) isomorphic in
Dyc(U;) to a bounded complex of vector bundles.

Amnon Neeman (ANU) Derived and Triangulated Categories 19 April 2023 9/62



Let X be a scheme.

Example

@ D, (X) will be our shorthand for D (Oyx—Mod). The objects are the
complexes of sheaves of Oy—modules, and the only condition is that
the cohomology must be quasicoherent.

@ The objects of DP°™(X) are the perfect complexes. A complex is
if it is locally isomorphic to a bounded complex of vector
bundles. This means: Let E be an object in Dy(X). It belongs to
the full subcategory DP°™(X) C Dy (X) if X has a cover by open
sets U; such that, for each 7, the functor uf : Dy (X) — Dgc(U)),
induced by restriction to U;, takes E to an object u}(E) isomorphic in
Dyc(U;) to a bounded complex of vector bundles.

© Assume X is noetherian. The objects of D? , (X) are the complexes

with coherent cohomology which vanishes in all but finitely many
degrees.
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Let X be a scheme, and let Z C X be a closed subset.

Q@ D, ~(X) will be our shorthand for D, (Ox—Mod). The objects are
the complexes of O, —modules, and the conditions are that (1) the
cohomology must be quasicoherent,
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Example
Let X be a scheme, and let Z C X be a closed subset.

Q@ D, ~(X) will be our shorthand for D, (Ox—Mod). The objects are
the complexes of Oy,—modules, and the conditions are that (1) the
cohomology must be quasicoherent, and (2) the restriction to X — Z
is acyclic.
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Example
Let X be a scheme, and let Z C X be a closed subset.

Q@ D, ~(X) will be our shorthand for D, (Ox—Mod). The objects are
the complexes of Oy,—modules, and the conditions are that (1) the
cohomology must be quasicoherent, and (2) the restriction to X — Z
is acyclic.

@ The objects of D‘}CI{(X) C D, #(X) are the perfect complexes.

Amnon Neeman (ANU) Derived and Triangulated Categories 19 April 2023



Let X be a scheme, and let Z C X be a closed subset.

Q@ D, ~(X) will be our shorthand for D, (Ox—Mod). The objects are
the complexes of Oy,—modules, and the conditions are that (1) the
cohomology must be quasicoherent, and (2) the restriction to X — Z
is acyclic.

@ The objects of D‘}CI{(X) C D, #(X) are the perfect complexes.

© Assume X is noetherian. The objects of D?oh,Z(X) C Dy 7(X) are
the complexes with coherent cohomology which vanishes in all but
finitely many degrees.

Amnon Neeman (ANU) Derived and Triangulated Categories 19 April 2023



Definition (formal definition of triangulated categories)
if:

The additive category 7 has a
@ It has an invertible additive endofunctor [1] : 7 — T, taking the
object X and the morphism f in 7 to X[1] and f[1], respectively.

@ We are given a collection of meaning diagrams in T

of the form X - v £ 7 -5 x[1].
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Definition (formal definition of triangulated categories)

The additive category 7 has a if:

@ It has an invertible additive endofunctor [1] : 7 — T, taking the
object X and the morphism f in 7 to X[1] and f[1], respectively.

@ We are given a collection of meaning diagrams in T

of the form X - v £ 7 -5 x[1].
This data must satisfy the following axioms
[TR1]

[TR2]
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Example (back to DS (A))

We have asserted that the category DEI(A) is triangulated.
It takes the cochain complex

A* ie.

A2 92 A1 ot AC & Al ot A2
to the cochain complex (A[1])" below:

_871 —80 A]. —81 A2 —82 A3

A—l AO
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Example (back to DS (A), continued)

If f*: A* — B* is a cochain map
9° 7% % %
A—2 —1 AO Al A2
o N R
) -1 0 1 2
B P B P B P B 7 B
then (f[l])* is the cochain map
A—l _8;1 AO _89‘ Al _8i‘ A2 _8/2‘ A3
o O (O
=il 0 1 2 3
B = B & B Y B e B

Amnon Neeman (ANU) Derived and Triangulated Categories 19 April 2023 13 /62



For the attentive, careful listeners

Let A be an abelian category. We let CEI(A) be the category with the
same objects as Dg/(A), but where the morphisms are the honest cochain
maps. And we let S be the class of all morphisms in C& (A) which induce
isomorphisms in cohomology.

By definition D (A) = S71CE (A).
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For the attentive, careful listeners

Let A be an abelian category. We let CEI(A) be the category with the
same objects as Dg/(A), but where the morphisms are the honest cochain
maps. And we let S be the class of all morphisms in C& (A) which induce
isomorphisms in cohomology.

By definition D (A) = S71CE (A).

/ [
Ce(A) ———
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For the attentive, careful listeners

Let A be an abelian category. We let CEI(A) be the category with the
same objects as Dg/(A), but where the morphisms are the honest cochain
maps. And we let S be the class of all morphisms in C& (A) which induce
isomorphisms in cohomology.

By definition D (A) = S71CE (A).

CE (A) ——

F| |

D (A)
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Example (back to DS (A), continued)

Suppose we are given a commutative diagram in A,
where the rows are objects of D§ (A)

X2 X1 X0 X1 X2
y—2 y-1 Yo yl y?
Z—2 Z—l ZO Zl Z2

We may view the above as morphisms X* Y yx & 7% in the category
DY (A).

V.
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Example (back to DS (A), continued)

Suppose we are given a commutative diagram in A,
where the rows are objects of D§ (A)

X2 X1 X0 X1 X2
y—2 y-1 Yo yl y?
Z—2 Z—l ZO Zl Z2

. : £ < :
We may view the above as morphisms X* — Y* £, Z* in the category

D§ (A).

Choose, for each i € Z, a splitting 6" : Z/ — Y of the map
g Y —Z.

V.
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Example (back to DS (A), continued)

Now for each i we have the diagram

i o i g i
y4 Y Z
8’Zl La'y ok
Zitl 0 vl € Zi+1

Amnon Neeman (ANU) Derived and Triangulated Categories 19 April 2023



Example (back to DS (A), continued)

Now for each i we have the diagram

91‘

Zi— %  Jvyi
azl Lafy

. . i+ .
Zi+1 yi+l g Zi+1
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Example (back to DS (A), continued)

Thus the difference 9"+182 — 8§,(9i is annihilated by the map
gt YTl 5 Z™1 hence must factor uniquely as

. i . i+1 .
zi My xi+1 Pyt Form the diagram

Derived and Triangulated Categories 19 April 2023
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Example (back to DS (A), continued)

Z—2 822 Z—l 621 ZO 820 Zl 8% Z2
LS N L (R
X—l XO Xl 2 X3
—o; ! —0% —0% —0%
Int N N
Y—l YO Yl Y2 Y3
-yt -89 -8% 8%
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Example (back to DS (A), continued)

Z—2 822 Z—l 621 ZO 820 Zl 8% Z2
LS N L (R
X—l XO Xl 2 X3
—o; ! —0% —0% —0%
Int N N
Y—l YO Yl Y2 Y3
-yt -89 -8% 8%
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Example (back to DS (A), continued)

Z—2 822 Z—l 621 ZO 820 Zl 8% Z2
LS N L (R
X—l XO Xl 2 X3
—o; ! —0% —0% —0%
Int N N
Y—l YO Yl Y2 Y3
-yt -89 -8% 8%

Zi z Zi+1

hil Lhi+1

Xi+2
*B?Ll
Lfi+2

yi+2
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Example (back to DS (A), continued)

52 ot a0 oy
7722 .71 2 7022 . 2. 72
th lhl Lho lhl lh2
X—l 0 Xl 2 X3
M R I A

f—l fO f‘l f2 f‘3
Y—l — YO - Yl - Y2 - Y3
—0y -0y —0y -0y

Xi+1 — Xi+2
Oy L ‘

fl+2
yi+2
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Example (back to DS (A), continued)

Thus h* : Z* — X*[1] is a cochain map We have constructed in the

category DS (A) a diagram X* RANSVARC AN G X*[1]. We declare

o The exact triangles in DS (A) are all the isomorphs, in DS (A), of
diagrams that come from our construction.
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Definition (formal definition of triangulated categories)
if:

The additive category 7 has a
@ It has an invertible additive endofunctor [1] : 7 — T, taking the
object X and the morphism f in 7 to X[1] and f[1], respectively.

@ We are given a collection of meaning diagrams in T

of the form X - v £ 7 -5 x[1].
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Definition (formal definition of triangulated categories)
if:

The additive category 7 has a
@ It has an invertible additive endofunctor [1] : 7 — T, taking the
object X and the morphism f in 7 to X[1] and f[1], respectively.

@ We are given a collection of meaning diagrams in T

of the form X - v £ 7 -5 x[1].
This data must satisfy the following axioms
[TR1] Any isomorph of an exact triangle is an exact triangle. For
any object X € T the diagram 0 — X 4y X 5 0isan

exact triangle.
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Definition (formal definition of triangulated categories)
if:

The additive category 7 has a
@ It has an invertible additive endofunctor [1] : 7 — T, taking the
object X and the morphism f in 7 to X[1] and f[1], respectively.

@ We are given a collection of meaning diagrams in T

of the form X - v £ 7 -5 x[1].
This data must satisfy the following axioms
[TR1] Any isomorph of an exact triangle is an exact triangle. For
any object X € T the diagram 0 — X 4y X 5 0isan
exact triangle. Any morphism f : X — Y may be
completed to an exact triangle X LGV I JELN X[1].
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Definition (formal definition of triangulated categories)

The additive category 7 has a if:

@ It has an invertible additive endofunctor [1] : 7 — T, taking the
object X and the morphism f in 7 to X[1] and f[1], respectively.

@ We are given a collection of meaning diagrams in T
of the form X - v £ 7 -5 x[1].
This data must satisfy the following axioms
[TR1] Any isomorph of an exact triangle is an exact triangle. For

any object X € T the diagram 0 — X 4y X 5 0isan
exact triangle. Any morphism f : X — Y may be

completed to an exact triangle X LGV I JELN X[1].

[TR2] Any rotation of an exact triangle is exact. That is:
Xy &z X[1] is an exact triangle if and only if
y =& 7 =8 x) 28 v s,
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Definition (definition of triangulated categories—continued)

[TR3+4] Given a commutative diagram, where the rows are exact
triangles,

X—r -y & .7z " . X[

L

X/ f‘/ hl

X'[1]
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Definition (definition of triangulated categories—continued)

[TR3+4] Given a commutative diagram, where the rows are exact
triangles,

X—r -y & .7z " . X[

L

X’ ! / g 7!

hl

X'[1]

we may complete it to a commutative diagram (also known
as a morphism of triangles)

X— -y & .7z " X[

LT

y & .z M . xp
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Definition (definition of triangulated categories—continued)

[TR3+4] (continued): Moreover: we can do it in such a way that

(> ¢
vE X[1] @ Z

—f[1] ©
( ul1] h’)

Y[1] @ X'[1]

ZaY!

is an exact triangle.
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If T is triangulated then so is 7°P

The endomorphism [1] : 7 — T gets replaced by [—1] : TP — T°P,
where [-1] = [1] 71,

If
X1y £z X))

is an exact triangle in 7, we declare it to also be an exact triangle in T°P.
The point being that the rotation

Z[-1] B x Ly =52z

has the required form.
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Conventions

e If T is a triangulated category and n € Z is an integer, then [n] will
be our shorthand for the endofunctor [1]" : T — T.
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Conventions

e If T is a triangulated category and n € Z is an integer, then [n] will
be our shorthand for the endofunctor [1]" : T — T.

@ We will lazily abbreviate “exact triangle” to just “triangle”.

Amnon Neeman (ANU) Derived and Triangulated Categories 19 April 2023



Conventions

e If T is a triangulated category and n € Z is an integer, then [n] will
be our shorthand for the endofunctor [1]" : T — T.

@ We will lazily abbreviate “exact triangle” to just “triangle”.

@ A full subcategory S C T is called triangulated if 0 € S, if S[1] = S,
and if, whenever X, Y € § and there exists in T a triangle
X — Y — Z — X|[1], we must also have Z € S.
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Conventions

e If T is a triangulated category and n € Z is an integer, then [n] will
be our shorthand for the endofunctor [1]" : T — T.

@ We will lazily abbreviate “exact triangle” to just “triangle”.

@ A full subcategory S C T is called triangulated if 0 € S, if S[1] = S,
and if, whenever X, Y € § and there exists in T a triangle
X — Y — Z — X|[1], we must also have Z € S.

@ The subcategory S is thick if it is triangulated, as well as closed in T
under direct summands.
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Conventions

e If T is a triangulated category and n € Z is an integer, then [n] will
be our shorthand for the endofunctor [1]" : T — T.

We will lazily abbreviate “exact triangle” to just “triangle”.

@ A full subcategory S C T is called triangulated if 0 € S, if S[1] = S,
and if, whenever X, Y € § and there exists in T a triangle
X — Y — Z — X|[1], we must also have Z € S.

@ The subcategory S is thick if it is triangulated, as well as closed in T
under direct summands.

o Let 7 be a triangulated category, and let A be an abelian category. A
functor H : T — A is homological if it takes triangles to long exact
sequences.
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If T is a triangulated category, and if t € T is an object, then the functor
Hom(t, —) : T — Ab is homological.
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If T is a triangulated category, and if t € T is an object, then the functor
Hom(t, —) : T — Ab is homological.

If A=+ B % C % A[1] is an exact triangle in 7, we need to prove that

Hom(t, A) —— Hom(t, B) —— Hom(t, C) —— Hom(t, A[1]) ——

is a long exact sequence. By [TR2], the axiom saying that any rotation of
an exact triangle is an exact triangle, it suffices to prove that

Hom(t, A) —— Hom(t, B) —— Hom(t, C)

is exact. O
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Proof, continued.
Let f be an element in Hom(t, A), that is f is a morphism f : t — A.
Consider the commutative diagram

Lot 0 t[1]

B C— A

u v w

The rows are triangles, and [TR3+4] permits us to extend the
commutative diagram to a morphism of triangles

I 0 t[1]
fl juf L lf[l]
A——B——C— Al1]
The commutativity of the middle square tells us that vuf =0, ]

™ = = = et
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Proof, continued.
which proves the vanishing of the composite

Hom(t, A) —— Hom(t, B) — Hom(t, C)

Now let f be an element of the kernel of Hom(t, B) — Hom(t, C). That

. . . o f
is f : t —> B is a morphism such that the composite t — B — C
vanishes. Thus we have a commutative diagram

t— 0 t[1]

t
[f
B C Al1]

u v w

A

By a rotation of [TR3+4] we may complete to a morphism of triangles []
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Proof, continued.

t—L st 0 t[1]

NN

A—>B—>C—>All]

and this yields an equality f = ug with g € Hom(t, A). That is f is the
image of g € Hom(t, A) under the map Hom(t, A) — Hom(t, B). O

v
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Given any exact triangle

AL B ¢ Al

we have vu = 0.
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Given any exact triangle

AL B-L C5 Al

we have vu = 0.

The image of 1 € Hom(A, A) under the exact sequence

Hom(A, A) —2*) _ Hom(A, B) 22 _ Hom(4, €)

must vanish. ]
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In the light of our Lemma, it makes sense to formulate

Definition
Let 7 be a triangulated category. A sequence A — B — C % A[1] is
called a if, for every object t € T, the functor Hom(t, —)

takes A — B - C - A[1] to a long exact sequence.
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In the light of our Lemma, it makes sense to formulate

Definition

Let 7 be a triangulated category. A sequence A — B — C % A[1] is
called a if, for every object t € T, the functor Hom(t, —)
takes A — B - C - A[1] to a long exact sequence.

Reformulating the first lemma

In terms of the above definition, the first Lemma asserts that every exact
triangle is a weak triangle.
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Let T be a triangulated category, and let

/

AU Voo A

e

A C——A[l]

u v

be a commutative diagram where the rows are weak triangles. If f and g
are isomorphisms then so is h.
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Let T be a triangulated category, and let

Ay AN o Ny |

T

A B C——A[l]

u v

be a commutative diagram where the rows are weak triangles. If f and g
are isomorphisms then so is h.

For any object t € T, the functor Hom(t, —) takes the above to a
commutative diagram with long exact rows, in which Hom(t, f[n]) and
Hom(t, g[n]) are isomorphisms for all n € Z. The 5-lemma tells us that
Hom(¢, h[n]) are also isomorphisms for all n € Z, and by Yoneda's lemma
h must be an isomorphism. O
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Let T be a triangulated category. If

!

A B C ™A, A B Al

are exact triangles then they are (non-canonically) isomorphic.
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Let T be a triangulated category. If

Wl

A B C ™A, A B Al

are exact triangles then they are (non-canonically) isomorphic.

The commutative diagram

CI: B o/ Ay 1)

A
A

B C Al1]

u v w

has exact triangles for rows, and [TR3+4] permits us to extend to a
commutative diagram O
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Proof, continued.

o C/ W

All]
H H th |

¢ —~ Al

The identity maps 1: A— A and 1: B — B are isomorphisms, hence
soish:C' — C. O

v
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Let T be a triangulated category. If

! !

A B C A, ANy AN G LN Y |
are exact triangles then so is

udu’ vV’ wdw'

ApA ——~Ba B Cop

(Ao A1

By [TR1] we may complete the morphism u @ v’ to an exact triangle

AdA " _Bap T _C " (AgA)]
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Proof, continued.

And by [TR3+4] we may complete the commutative diagrams

A u B v C w Al1]

| |

ApA " g Y LC " (AgA)]

and

Al y B —V c—* A

| |

AcA " B T . C " _(AaA)]
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Proof, continued.

to commutative diagrams

|

Y~ (As A1

A u B— Y . WAl
A A —Y _pop VYV . C
and
AI u’ B/ v/ C/

|

udu’

L

Y A

o

ApA — >-BapB Y C

— (As A)[1]

Amnon Neeman (ANU)
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Proof, continued
Combining, we have a commutative diagram

A A Bo B Col (Ap A)1]

| | S

ApA Y gV . C— " (AgA)[]

Since the rows are weak triangles the map h must be an isomorphism. The
bottom row is an exact triangle by construction, and [TR1] now tells us
that so is the isomorphic top row. ]
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Corollary
Let T be a triangulated category. If

udu’ vV ww’

Ap A

Bo B CeoC’

(Aa A)[1]
is an exact triangle, then so is the direct summand

AL B 5 AL

By [TR1] we may complete the morphism u to an exact triangle

A—Y BV C— " . Al
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Proof, continued.

And by [TR3-+4] we may complete the commutative diagram

A u B v C w A1

| |

ApA 2  pgp " coc "2 . (A A

to the morphism of triangles

A u B v C w AlL]

| o]

ADA " _Bap " _coc " (A A)1]

O
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Proof, continued.

The commutative diagram

v C w A[1]

]

A B
ADA " _Bap " _coc " (A A)1]
A B

u

| |

g C v Al1]

where the morphism between the second and third row is the projection to
a direct summand, composes to give O
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Proof, continued.

2 |
l

At BV _C— " . Al
.
A—Y B Y . C—" LAl

and as both rows are weak triangles the map h must be an isomorphism.
The top row is an exact triangle by construction, and [TR1] now tells us
that so is the isomorphic bottom row. []

v,
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Theorem (octahedral axiom)

Let T be a triangulated category. Suppose A B &5 B are two
composable morphisms, and choose exact triangles

f

B—Y ~C—Y Al
Y T S o '\ |
E .p—% .p— L B

which exist by [TRI].

Then there exist morphisms h: C — C' and k : C' — B such that
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Theorem (octahedral axiom, continued)

the following diagram commutes
A—F" . B u C Y Al
|k
AE g Y oA
g’ k
B// B//
L u[1]ol
Bl — .
and the third column is an exact triangle.
19 April 2023 49 /62
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We are given the commutative diagram

A—T g4 _c Y . An

|,k

A g o Y]

where the rows are exact triangles. [TR3+4] permits us to extend to a
commutative diagram

B— Y ~C—Y S A

A f
| |
/-

B —Y ' —Y A

and do it in such a way that [
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Proof, continued.

—u 0 —-v 0
g gf h v
Ba A CpPB Allle C’
—f[1] ©
1 Vv
B[1] ® A[1]
is an exact triangle. O
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Proof, continued.
This triangle is isomorphic to the direct sum of

A 0 AlL]

B

and

and both must be exact triangles.

v’ B[l]

AlL]
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Proof, continued.

And now the commutative diagram

[¢)

B CoB c! iz B[1]
H Jo
B £ B’ £ B ¢ B[1]

has exact triangles for rows, and [TR3+4] permits us to extend to a
commutative diagram

(%) () oo g
| low | |

£ B’ £ B ¢ B[1]
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Proof, continued.
and do it in such a way that

—h =4 0 - 0
0 1 g k g
CeB @B C'a B

B[lle B”
ull] 0
—g[1] 0
1 7

(Ce B & B)[1]

is an exact triangle. And this exact triangle is isomorphic to the direct sum
of

Ol
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Proof, continued.

c—h ok g M
which must all be exact triangles.
O]
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Flaws of triangulated categories

If T is a triangulated category and g : B — C is an epimorphism, then
B = A® C and g is the split surjection A® C — C.

Complete g to an exact triangle A f.g & c A[1]. The composite
hg : B — A[1] vanishes, and as g is an epimorphism we deduce that
h=0. O

v
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Proof, continued.

But now consider the commutative diagram where the rows are triangles

A f B £ C 0 L Al

AaC C 0 L Al

A

By [TR3+4] we may complete to a commutative diagram

A f B < C 0 A
| ],
A A® C C 0 A
and p must be an isomorphism. O
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No cokernels

Suppose f : X —» B is a morphism in a triangulated category 7, and
g : B — Cis its cokernel. Then g is an epimorphism, and the above
lemma says it must be isomorphic to the projection A® C — C.

The fact that f : X — A EB.C has cokernel A@® C — C means that map

f must factor as X %5 A -5 A® C, and the map X — A must be an
epimorphism. Hence the map g : X — A is isomorphic to the projection
T:YPA— A

Thus the morphism f : X — B is isomorphic to the composite
Y® A5 A—5 A® C, where 7 is the projection and i is the inclusion.

Summarizing: morphisms in triangulated categories rarely have cokernels.
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Thank you!
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