Derived and Triangulated Categories

Amnon Neeman

Australian National University
amnon.neeman@anu.edu.au
19 April 2023

Overview

(1) Background-localization of categories
(2) Definitions of derived and triangulated categories
(3) First lemmas
(4) Flaws of triangulated categories

Background-inverting morphisms in a category

Let \mathcal{A} be a category, and let S be a class of morphisms in \mathcal{A}. There exists a functor $F: \mathcal{A} \longrightarrow S^{-1} \mathcal{A}$ such that

Background-inverting morphisms in a category

Let \mathcal{A} be a category, and let S be a class of morphisms in \mathcal{A}. There exists a functor $F: \mathcal{A} \longrightarrow S^{-1} \mathcal{A}$ such that

- F takes every morphism in $S \subset \mathcal{A}$ to an isomorphism in $S^{-1} \mathcal{A}$.

Background-inverting morphisms in a category

Let \mathcal{A} be a category, and let S be a class of morphisms in \mathcal{A}. There exists a functor $F: \mathcal{A} \longrightarrow S^{-1} \mathcal{A}$ such that

- F takes every morphism in $S \subset \mathcal{A}$ to an isomorphism in $S^{-1} \mathcal{A}$.
- If $H: \mathcal{A} \longrightarrow \mathcal{B}$ is a functor taking every morphism in S to an isomorphism, then there exists a unique functor $G: S^{-1} \mathcal{A} \longrightarrow \mathcal{B}$ rendering commutative the triangle

Background-inverting morphisms in a category

Let \mathcal{A} be a category, and let S be a class of morphisms in \mathcal{A}. There exists a functor $F: \mathcal{A} \longrightarrow S^{-1} \mathcal{A}$ such that

- F takes every morphism in $S \subset \mathcal{A}$ to an isomorphism in $S^{-1} \mathcal{A}$.
- If $H: \mathcal{A} \longrightarrow \mathcal{B}$ is a functor taking every morphism in S to an isomorphism, then there exists a unique functor $G: S^{-1} \mathcal{A} \longrightarrow \mathcal{B}$ rendering commutative the triangle

We call this construction formally inverting the morphisms in S.

Reminder of the construction

As on the previous slide: \mathcal{A} is a category, $S \subset \mathcal{A}$ is a class of morphisms.

Reminder of the construction

As on the previous slide: \mathcal{A} is a category, $S \subset \mathcal{A}$ is a class of morphisms.

Objects of $S^{-1} \mathcal{A}$:

The objects of $S^{-1} \mathcal{A}$ are the same as the objects of \mathcal{A}, and on objects the functor $F: \mathcal{A} \longrightarrow S^{-1} \mathcal{A}$ is the identity.

Reminder of the construction

As on the previous slide: \mathcal{A} is a category, $S \subset \mathcal{A}$ is a class of morphisms.

Objects of $S^{-1} \mathcal{A}$:

The objects of $S^{-1} \mathcal{A}$ are the same as the objects of \mathcal{A}, and on objects the functor $F: \mathcal{A} \longrightarrow S^{-1} \mathcal{A}$ is the identity.

Morphisms of $S^{-1} \mathcal{A}$:

If A, B are objects of \mathcal{A}, then $\operatorname{Hom}_{S^{-1} \mathcal{A}}(A, B)$ is the set of equivalence classes of zigzags

where the s_{i} belong to S.

Definition of the derived categories $\mathbf{D}_{\mathbb{C}}^{e^{\prime \prime}}(\mathcal{A})$

Let \mathcal{A} be an abelian category. The derived category $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{c}^{\prime}}(\mathcal{A})$ is as follows:

- Objects: cochain complexes of objects in \mathcal{A}, that is

$$
\cdots \longrightarrow A^{-2} \longrightarrow A^{-1} \longrightarrow A^{0} \longrightarrow A^{1} \longrightarrow A^{2} \longrightarrow \cdots
$$

where the composites $A^{i} \longrightarrow A^{i+1} \longrightarrow A^{i+2}$ all vanish. The subscript \mathfrak{C} and superscript \mathfrak{C}^{\prime} stand for conditions.

- Morphisms: cochain maps are examples, that is

but we formally invert the cohomology isomorphisms.

More generally

If \mathcal{E} is any exact category, we define the categories $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{E})$ analoguously. The objects are still cochain complexes satisfying some conditions.

The issue is with the morphisms-what does it mean for a cochain map to induce an isomorphism in cohomology? Which are the cochain maps we should invert?

More generally

If \mathcal{E} is any exact category, we define the categories $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{E})$ analoguously. The objects are still cochain complexes satisfying some conditions.

The issue is with the morphisms-what does it mean for a cochain map to induce an isomorphism in cohomology? Which are the cochain maps we should invert?

The solution is to invert those maps $f: A^{*} \longrightarrow B^{*}$ such that, for every exact functor $F: \mathcal{E} \longrightarrow \mathcal{A}$, with \mathcal{A} abelian, the induced map $F(f): F\left(A^{*}\right) \longrightarrow F\left(B^{*}\right)$ is an isomorphism in cohomology.

Let R be an associative ring.

Example

(1) $\mathrm{D}(R$-Mod) has for objects all cochain complexes of left R-modules, no conditions.
(2) If R is coherent, $\mathrm{D}(R-\bmod)$ has for objects all cochain complexes of finitely generated left R-modules.
(3) If R is coherent, $\mathrm{D}^{b}(R-\bmod)$ has for objects all bounded cochain complexes of finitely generated left R-modules. A complex A^{*} is bounded if $A^{i}=0$ for all but finitely many $i \in \mathbb{Z}$.
(9) With R still coherent, $\mathbf{D}^{-}(R-\bmod)$ has for objects all bounded above cochain complexes of finitely generated left R-modules. A complex A^{*} is bounded above if $A^{i}=0$ for all $i \gg 0$.
(6) With R still coherent, $\mathbf{D}^{+}(R-\bmod)$ has for objects all bounded below cochain complexes of finitely generated left R-modules. A complex A^{*} is bounded below if $A^{i}=0$ for all $i \ll 0$.

With R still an associative ring.

Example

(1) $\mathrm{D}(R-$ Proj $)$ has for objects all cochain complexes of projective left R-modules. Note that the category R-Proj isn't abelian, it is only an exact category.
(2) $\mathrm{D}(R$-proj) has for objects all cochain complexes of finitely generated projective left R-modules.
(3) $\mathrm{D}^{b}(R-\mathrm{proj})$ has for objects all bounded cochain complexes of finitely generated, projective left R-modules.
(1) $\mathrm{D}^{-}(R-$ proj $)$ has for objects all bounded above cochain complexes of finitely generated, projective left R-modules.

Let X be a scheme.

Example

(1) $\mathbf{D}_{\mathrm{qc}}(X)$ will be our shorthand for $\mathbf{D}_{\mathrm{qc}}\left(\mathcal{O}_{X}-\mathrm{Mod}\right)$. The objects are the complexes of sheaves of \mathcal{O}_{X}-modules, and the only condition is that the cohomology must be quasicoherent.

Let X be a scheme.

Example

(1) $\mathbf{D}_{\mathrm{qc}}(X)$ will be our shorthand for $\mathbf{D}_{\mathrm{qc}}\left(\mathcal{O}_{X}-\operatorname{Mod}\right)$. The objects are the complexes of sheaves of \mathcal{O}_{X}-modules, and the only condition is that the cohomology must be quasicoherent.
(2) The objects of $D^{p e r f}(X)$ are the perfect complexes. A complex is perfect if it is locally isomorphic to a bounded complex of vector bundles.

Let X be a scheme.

Example

(1) $\mathbf{D}_{\mathrm{qc}}(X)$ will be our shorthand for $\mathbf{D}_{\mathrm{qc}}\left(\mathcal{O}_{X}-\mathrm{Mod}\right)$. The objects are the complexes of sheaves of \mathcal{O}_{X}-modules, and the only condition is that the cohomology must be quasicoherent.
(2) The objects of $D^{p e r f}(X)$ are the perfect complexes. A complex is perfect if it is locally isomorphic to a bounded complex of vector bundles. This means: Let E be an object in $\mathbf{D}_{\mathrm{qc}}(X)$. It belongs to the full subcategory $\mathbf{D}^{\text {perf }}(X) \subset \mathbf{D}_{\mathbf{q c}}(X)$

Let X be a scheme.

Example

(1) $\mathbf{D}_{\mathrm{qc}}(X)$ will be our shorthand for $\mathbf{D}_{\mathrm{qc}}\left(\mathcal{O}_{X}-\mathrm{Mod}\right)$. The objects are the complexes of sheaves of \mathcal{O}_{X}-modules, and the only condition is that the cohomology must be quasicoherent.
(2) The objects of $\mathrm{D}^{\text {perf }}(X)$ are the perfect complexes. A complex is perfect if it is locally isomorphic to a bounded complex of vector bundles. This means: Let E be an object in $\mathbf{D}_{\mathrm{qc}}(X)$. It belongs to the full subcategory $\mathbf{D}^{\text {perf }}(X) \subset \mathbf{D}_{\mathbf{q c}}(X)$ if X has a cover by open sets U_{i} such that, for each i, the functor $u_{i}^{*}: \mathbf{D}_{\mathbf{q c}}(X) \longrightarrow \mathbf{D}_{\mathbf{q c}}\left(U_{i}\right)$, induced by restriction to U_{i}, takes E to an object $u_{i}^{*}(E)$ isomorphic in $\mathbf{D}_{\mathrm{qc}}\left(U_{i}\right)$ to a bounded complex of vector bundles.

Let X be a scheme.

Example

(1) $\mathbf{D}_{\mathrm{qc}}(X)$ will be our shorthand for $\mathbf{D}_{\mathrm{qc}}\left(\mathcal{O}_{X}-\mathrm{Mod}\right)$. The objects are the complexes of sheaves of \mathcal{O}_{X}-modules, and the only condition is that the cohomology must be quasicoherent.
(2) The objects of $D^{\text {perf }}(X)$ are the perfect complexes. A complex is perfect if it is locally isomorphic to a bounded complex of vector bundles. This means: Let E be an object in $\mathbf{D}_{\mathrm{qc}}(X)$. It belongs to the full subcategory $\mathbf{D}^{\text {perf }}(X) \subset \mathbf{D}_{\mathbf{q c}}(X)$ if X has a cover by open sets U_{i} such that, for each i, the functor $u_{i}^{*}: \mathbf{D}_{\mathbf{q c}}(X) \longrightarrow \mathbf{D}_{\mathbf{q c}}\left(U_{i}\right)$, induced by restriction to U_{i}, takes E to an object $u_{i}^{*}(E)$ isomorphic in $\mathbf{D}_{\mathrm{qc}}\left(U_{i}\right)$ to a bounded complex of vector bundles.
(3) Assume X is noetherian. The objects of $\mathrm{D}_{\text {coh }}^{b}(X)$ are the complexes with coherent cohomology which vanishes in all but finitely many degrees.

Example

Let X be a scheme, and let $Z \subset X$ be a closed subset.
(1) $\mathbf{D}_{\mathbf{q c}, Z}(X)$ will be our shorthand for $\mathbf{D}_{\mathbf{q}, Z}\left(\mathcal{O}_{X}-\operatorname{Mod}\right)$. The objects are the complexes of \mathcal{O}_{X}-modules, and the conditions are that (1) the cohomology must be quasicoherent,

Example

Let X be a scheme, and let $Z \subset X$ be a closed subset.
(1) $\mathbf{D}_{\mathbf{q c}, Z}(X)$ will be our shorthand for $\mathbf{D}_{\mathbf{q}, Z}\left(\mathcal{O}_{X}-\mathrm{Mod}\right)$. The objects are the complexes of \mathcal{O}_{X}-modules, and the conditions are that (1) the cohomology must be quasicoherent, and (2) the restriction to $X-Z$ is acyclic.

Example

Let X be a scheme, and let $Z \subset X$ be a closed subset.
(1) $\mathbf{D}_{\mathbf{q c}, Z}(X)$ will be our shorthand for $\mathbf{D}_{\mathbf{q}, Z}\left(\mathcal{O}_{X}-\operatorname{Mod}\right)$. The objects are the complexes of \mathcal{O}_{X}-modules, and the conditions are that (1) the cohomology must be quasicoherent, and (2) the restriction to $X-Z$ is acyclic.
(2) The objects of $\mathbf{D}_{Z}^{\text {perf }}(X) \subset \mathbf{D}_{\mathbf{q c}, Z}(X)$ are the perfect complexes.

Example

Let X be a scheme, and let $Z \subset X$ be a closed subset.
(1) $\mathbf{D}_{\mathbf{q c}, Z}(X)$ will be our shorthand for $\mathbf{D}_{\mathbf{q c}, Z}\left(\mathcal{O}_{X}-\mathrm{Mod}\right)$. The objects are the complexes of \mathcal{O}_{X}-modules, and the conditions are that (1) the cohomology must be quasicoherent, and (2) the restriction to $X-Z$ is acyclic.
(2) The objects of $\mathbf{D}_{Z}^{\text {perf }}(X) \subset \mathbf{D}_{\mathbf{q c}, Z}(X)$ are the perfect complexes.
(3) Assume X is noetherian. The objects of $\mathbf{D}_{\text {coh }, Z}^{b}(X) \subset \mathbf{D}_{\mathbf{q c}, Z}(X)$ are the complexes with coherent cohomology which vanishes in all but finitely many degrees.

Definition (formal definition of triangulated categories)

The additive category \mathcal{T} has a triangulated structure if:
(1) It has an invertible additive endofunctor [1]: $\mathcal{T} \longrightarrow \mathcal{T}$, taking the object X and the morphism f in \mathcal{T} to $X[1]$ and $f[1]$, respectively.
(2) We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.

Definition (formal definition of triangulated categories)

The additive category \mathcal{T} has a triangulated structure if:
(1) It has an invertible additive endofunctor [1] : $\mathcal{T} \longrightarrow \mathcal{T}$, taking the object X and the morphism f in \mathcal{T} to X [1] and $f[1]$, respectively.
(2) We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.
This data must satisfy the following axioms [TR1]
[TR2]

Example (back to $\mathbf{D}_{\mathbb{C}}^{\mathfrak{c}^{\prime}}(\mathcal{A})$)

We have asserted that the category $\mathbf{D}_{\mathfrak{C}}^{\mathbb{C}^{\prime}}(\mathcal{A})$ is triangulated. The endofunctor $[1]: \mathbf{D}_{\mathfrak{C}}^{\mathbb{C}^{\prime}}(\mathcal{A}) \longrightarrow \mathbf{D}^{\mathbb{C}^{c^{\prime}}}(\mathcal{A})$: It takes the cochain complex A^{*}, i.e.
$\cdots \longrightarrow A^{-2} \xrightarrow{\partial^{-2}} A^{-1} \xrightarrow{\partial^{-1}} A^{0} \xrightarrow{\partial^{0}} A^{1} \xrightarrow{\partial^{1}} A^{2} \longrightarrow \cdots$
to the cochain complex $(A[1])^{*}$ below:
$\cdots \longrightarrow A^{-1} \xrightarrow{-\partial^{-1}} A^{0} \xrightarrow{-\partial^{0}} A^{1} \xrightarrow{-\partial^{1}} A^{2} \xrightarrow{-\partial^{2}} A^{3}$ \qquad

Example (back to $\mathbf{D}_{\mathbb{C}}^{\mathbb{C}^{\prime \prime}}(\mathcal{A})$, continued)

If $f^{*}: A^{*} \longrightarrow B^{*}$ is a cochain map

then $(f[1])^{*}$ is the cochain map

For the attentive, careful listeners

Let \mathcal{A} be an abelian category. We let $\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})$ be the category with the same objects as $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})$, but where the morphisms are the honest cochain maps. And we let S be the class of all morphisms in $\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})$ which induce isomorphisms in cohomology.

By definition $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{c}^{\prime}}(\mathcal{A})=S^{-1} \mathbf{C}_{\mathscr{C}}^{\mathfrak{c}^{\prime \prime}}(\mathcal{A})$.

For the attentive, careful listeners

Let \mathcal{A} be an abelian category. We let $\mathbf{C}_{\mathscr{C}}^{\mathbb{C}^{\prime}}(\mathcal{A})$ be the category with the same objects as $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})$, but where the morphisms are the honest cochain maps. And we let S be the class of all morphisms in $\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})$ which induce isomorphisms in cohomology.

By definition $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})=S^{-1} \mathbf{C}_{\mathfrak{C}}^{\mathfrak{c}^{\prime}}(\mathcal{A})$.

$$
\begin{aligned}
& \mathbf{C}_{\mathbb{C}^{\mathbb{C}^{\prime}}}(\mathcal{A}) \xrightarrow{[1]} \mathbf{C}_{\mathbb{C}}^{\mathbb{C}^{\prime}}(\mathcal{A}) \\
& F \downarrow \\
& \mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A}) \\
& \mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})
\end{aligned}
$$

For the attentive, careful listeners

Let \mathcal{A} be an abelian category. We let $\mathbf{C}_{\mathfrak{C}^{\mathfrak{C}^{\prime}}}(\mathcal{A})$ be the category with the same objects as $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})$, but where the morphisms are the honest cochain maps. And we let S be the class of all morphisms in $\mathbf{C}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})$ which induce isomorphisms in cohomology.

By definition $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})=S^{-1} \mathbf{C}_{\mathfrak{C}}^{\mathfrak{c}^{\prime}}(\mathcal{A})$.

$$
\begin{aligned}
& \mathbf{C}_{\mathfrak{C}^{\mathfrak{C}^{\prime}}}(\mathcal{A}) \xrightarrow{[1]} \mathbf{C}_{\mathscr{C}}^{\mathbb{C}^{\prime}}(\mathcal{A}) \\
& { }^{F}{ }_{\downarrow} \\
& \mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A}) \quad \exists![1] \quad>\mathbf{D}_{\mathfrak{C}}^{\mathbb{C}^{\prime}}(\mathcal{A})
\end{aligned}
$$

Example (back to $\mathbf{D}_{\mathbb{C}}^{e^{\prime}}(\mathcal{A})$, continued)

The exact triangles: Suppose we are given a commutative diagram in \mathcal{A}, where the rows are objects of $\mathbf{D}_{\mathfrak{C}}^{\mathbb{C}^{\prime}}(\mathcal{A})$

We may view the above as morphisms $X^{*} \xrightarrow{f^{*}} Y^{*} \xrightarrow{g^{*}} Z^{*}$ in the category $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})$.

Example (back to $\mathbf{D}_{\mathbb{C}}^{\mathbb{C}^{\prime \prime}}(\mathcal{A})$, continued)

The exact triangles: Suppose we are given a commutative diagram in \mathcal{A}, where the rows are objects of $\mathbf{D}_{\mathfrak{C}}^{\mathbb{C}^{\prime}}(\mathcal{A})$

We may view the above as morphisms $X^{*} \xrightarrow{f^{*}} Y^{*} \xrightarrow{g^{*}} Z^{*}$ in the category $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{c}^{\prime}}(\mathcal{A})$.

Assume further that, for each $i \in \mathbb{Z}$, the sequence $X^{i} \xrightarrow{f^{i}} Y^{i} \xrightarrow{g^{i}} Z^{i}$ is split exact. Choose, for each $i \in \mathbb{Z}$, a splitting $\theta^{i}: Z^{i} \longrightarrow Y^{i}$ of the map $g^{i}: Y^{i} \longrightarrow Z^{i}$.

Example (back to $\mathbf{D}_{\mathbb{C}}^{\mathbb{c}^{\prime}}(\mathcal{A})$, continued)

Now for each i we have the diagram

Example (back to $\mathbf{D}_{\mathscr{C}}^{\mathbb{C}^{\prime}}(\mathcal{A})$, continued)

Now for each i we have the diagram

$$
\begin{gathered}
Z^{i} \xrightarrow{\theta^{i}} Y^{i} \\
\partial_{Z}^{i} \\
Z^{i+1} \xrightarrow{\theta^{i+1}} \xrightarrow{\partial_{Y}^{i}} Y^{i+1} \xrightarrow{g^{i+1}} Z^{i+1}
\end{gathered}
$$

Example (back to $\mathbf{D}_{\mathfrak{C}}^{\mathbb{C}^{\prime}}(\mathcal{A})$, continued)

Thus the difference $\theta^{i+1} \partial_{Z}^{i}-\partial_{Y}^{i} \theta^{i}$ is annihilated by the map $g^{i+1}: Y^{i+1} \longrightarrow Z^{i+1}$, hence must factor uniquely as $Z^{i} \xrightarrow{h^{i}} X^{i+1} \xrightarrow{f^{i+1}} Y^{i+1}$. Form the diagram

Example (back to $\mathbf{D}_{\mathbb{C}}^{e^{\prime}}(\mathcal{A})$, continued)

Example (back to $\mathbf{D}_{\mathbb{C}}^{e^{\prime}}(\mathcal{A})$, continued)

Example (back to $\mathbf{D}_{\mathbb{C}}^{e^{\prime}}(\mathcal{A})$, continued)

Example (back to $\mathbf{D}_{\mathbb{C}}^{e^{\prime}}(\mathcal{A})$, continued)

$$
\begin{aligned}
& Z^{i} \xrightarrow{\partial_{Z}^{i}} Z^{i+1} \\
& h^{i} \downarrow \quad{ }^{\downarrow} \quad h^{i+1} \\
& X^{i+1} \xrightarrow[-\partial_{X}^{i+1}]{ } X_{\not f^{i+2}}^{i+2} \\
& Y^{i+2}
\end{aligned}
$$

Example (back to $\mathbf{D}_{\mathbb{C}}^{e^{\prime}}(\mathcal{A})$, continued)

Thus $h^{*}: Z^{*} \longrightarrow X^{*}[1]$ is a cochain map. We have constructed in the category $\mathbf{D}_{\mathfrak{C}}^{\mathbb{C}^{\prime}}(\mathcal{A})$ a diagram $X^{*} \xrightarrow{f^{*}} Y^{*} \xrightarrow{g^{*}} Z^{*} \xrightarrow{h^{*}} X^{*}[1]$. We declare

- The exact triangles in $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})$ are all the isomorphs, in $\mathbf{D}_{\mathfrak{C}}^{\mathfrak{C}^{\prime}}(\mathcal{A})$, of diagrams that come from our construction.

Definition (formal definition of triangulated categories)

The additive category \mathcal{T} has a triangulated structure if:
(1) It has an invertible additive endofunctor [1]: $\mathcal{T} \longrightarrow \mathcal{T}$, taking the object X and the morphism f in \mathcal{T} to $X[1]$ and $f[1]$, respectively.
(2) We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.

Definition (formal definition of triangulated categories)

The additive category \mathcal{T} has a triangulated structure if:
(1) It has an invertible additive endofunctor [1]: $\mathcal{T} \longrightarrow \mathcal{T}$, taking the object X and the morphism f in \mathcal{T} to $X[1]$ and $f[1]$, respectively.
(2) We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.
This data must satisfy the following axioms
[TR1] Any isomorph of an exact triangle is an exact triangle. For any object $X \in \mathcal{T}$ the diagram $0 \longrightarrow X \xrightarrow{\text { id }} X \longrightarrow 0$ is an exact triangle.

Definition (formal definition of triangulated categories)

The additive category \mathcal{T} has a triangulated structure if:
(1) It has an invertible additive endofunctor [1]: $\mathcal{T} \longrightarrow \mathcal{T}$, taking the object X and the morphism f in \mathcal{T} to $X[1]$ and $f[1]$, respectively.
(2) We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.
This data must satisfy the following axioms
[TR1] Any isomorph of an exact triangle is an exact triangle. For any object $X \in \mathcal{T}$ the diagram $0 \longrightarrow X \xrightarrow{\text { id }} X \longrightarrow 0$ is an exact triangle. Any morphism $f: X \longrightarrow Y$ may be completed to an exact triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.

Definition (formal definition of triangulated categories)

The additive category \mathcal{T} has a triangulated structure if:
(1) It has an invertible additive endofunctor [1]: $\mathcal{T} \longrightarrow \mathcal{T}$, taking the object X and the morphism f in \mathcal{T} to $X[1]$ and $f[1]$, respectively.
(2) We are given a collection of exact triangles, meaning diagrams in \mathcal{T} of the form $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.
This data must satisfy the following axioms
[TR1] Any isomorph of an exact triangle is an exact triangle. For any object $X \in \mathcal{T}$ the diagram $0 \longrightarrow X \xrightarrow{\text { id }} X \longrightarrow 0$ is an exact triangle. Any morphism $f: X \longrightarrow Y$ may be completed to an exact triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$.
[TR2] Any rotation of an exact triangle is exact. That is:

$$
\begin{aligned}
& X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1] \text { is an exact triangle if and only if } \\
& Y \xrightarrow{-g} Z \xrightarrow{-h} X[1] \xrightarrow{-f[1]} Y[1] \text { is. }
\end{aligned}
$$

Definition (definition of triangulated categories-continued)

[TR3+4] Given a commutative diagram, where the rows are exact triangles,

Definition (definition of triangulated categories-continued)

[TR3+4] Given a commutative diagram, where the rows are exact triangles,

we may complete it to a commutative diagram (also known as a morphism of triangles)

Definition (definition of triangulated categories-continued)

[TR3+4] (continued): Moreover: we can do it in such a way that

$$
Y \oplus X^{\prime} \xrightarrow{\left(\begin{array}{rr}
-g & 0 \\
v & f^{\prime}
\end{array}\right)} Z \oplus Y^{\prime} \xrightarrow{\left(\begin{array}{rr}
-h & 0 \\
w & g^{\prime}
\end{array}\right)} X[1] \oplus Z^{\prime}
$$

is an exact triangle.

If \mathcal{T} is triangulated then so is $\mathcal{T}^{\mathrm{op}}$

The endomorphism [1]: $\mathcal{T} \longrightarrow \mathcal{T}$ gets replaced by [-1]: $\mathcal{T}^{\mathrm{op}} \longrightarrow \mathcal{T}^{\mathrm{op}}$, where $[-1]=[1]^{-1}$.

If

$$
X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]
$$

is an exact triangle in \mathcal{T}, we declare it to also be an exact triangle in $\mathcal{T}^{\mathrm{op}}$.
The point being that the rotation

$$
Z[-1] \xrightarrow{-h} X \xrightarrow{-f} Y \xrightarrow{-g} Z
$$

has the required form.

Conventions

- If \mathcal{T} is a triangulated category and $n \in \mathbb{Z}$ is an integer, then [n] will be our shorthand for the endofunctor $[1]^{n}: \mathcal{T} \longrightarrow \mathcal{T}$.

Conventions

- If \mathcal{T} is a triangulated category and $n \in \mathbb{Z}$ is an integer, then [n] will be our shorthand for the endofunctor $[1]^{n}: \mathcal{T} \longrightarrow \mathcal{T}$.
- We will lazily abbreviate "exact triangle" to just "triangle".

Conventions

- If \mathcal{T} is a triangulated category and $n \in \mathbb{Z}$ is an integer, then [n] will be our shorthand for the endofunctor $[1]^{n}: \mathcal{T} \longrightarrow \mathcal{T}$.
- We will lazily abbreviate "exact triangle" to just "triangle".
- A full subcategory $\mathcal{S} \subset \mathcal{T}$ is called triangulated if $0 \in \mathcal{S}$, if $\mathcal{S}[1]=\mathcal{S}$, and if, whenever $X, Y \in \mathcal{S}$ and there exists in \mathcal{T} a triangle $X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$, we must also have $Z \in \mathcal{S}$.

Conventions

- If \mathcal{T} is a triangulated category and $n \in \mathbb{Z}$ is an integer, then [n] will be our shorthand for the endofunctor $[1]^{n}: \mathcal{T} \longrightarrow \mathcal{T}$.
- We will lazily abbreviate "exact triangle" to just "triangle".
- A full subcategory $\mathcal{S} \subset \mathcal{T}$ is called triangulated if $0 \in \mathcal{S}$, if $\mathcal{S}[1]=\mathcal{S}$, and if, whenever $X, Y \in \mathcal{S}$ and there exists in \mathcal{T} a triangle $X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$, we must also have $Z \in \mathcal{S}$.
- The subcategory \mathcal{S} is thick if it is triangulated, as well as closed in \mathcal{T} under direct summands.

Conventions

- If \mathcal{T} is a triangulated category and $n \in \mathbb{Z}$ is an integer, then [n] will be our shorthand for the endofunctor $[1]^{n}: \mathcal{T} \longrightarrow \mathcal{T}$.
- We will lazily abbreviate "exact triangle" to just "triangle".
- A full subcategory $\mathcal{S} \subset \mathcal{T}$ is called triangulated if $0 \in \mathcal{S}$, if $\mathcal{S}[1]=\mathcal{S}$, and if, whenever $X, Y \in \mathcal{S}$ and there exists in \mathcal{T} a triangle $X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$, we must also have $Z \in \mathcal{S}$.
- The subcategory \mathcal{S} is thick if it is triangulated, as well as closed in \mathcal{T} under direct summands.
- Let \mathcal{T} be a triangulated category, and let \mathcal{A} be an abelian category. A functor $H: \mathcal{T} \longrightarrow \mathcal{A}$ is homological if it takes triangles to long exact sequences.

First Lemmas

Lemma

If \mathcal{T} is a triangulated category, and if $t \in \mathcal{T}$ is an object, then the functor $\operatorname{Hom}(t,-): \mathcal{T} \longrightarrow A b$ is homological.

First Lemmas

Lemma

If \mathcal{T} is a triangulated category, and if $t \in \mathcal{T}$ is an object, then the functor $\operatorname{Hom}(t,-): \mathcal{T} \longrightarrow A b$ is homological.

Proof.

If $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$ is an exact triangle in \mathcal{T}, we need to prove that $\operatorname{Hom}(t, A) \longrightarrow \operatorname{Hom}(t, B) \longrightarrow \operatorname{Hom}(t, C) \longrightarrow \operatorname{Hom}(t, A[1]) \longrightarrow$ is a long exact sequence. By [TR2], the axiom saying that any rotation of an exact triangle is an exact triangle, it suffices to prove that

$$
\operatorname{Hom}(t, A) \longrightarrow \operatorname{Hom}(t, B) \longrightarrow \operatorname{Hom}(t, C)
$$

is exact.

Proof, continued.

Let f be an element in $\operatorname{Hom}(t, A)$, that is f is a morphism $f: t \longrightarrow A$. Consider the commutative diagram

The rows are triangles, and [TR3+4] permits us to extend the commutative diagram to a morphism of triangles

The commutativity of the middle square tells us that vuf $=0$,

Proof, continued.

which proves the vanishing of the composite

$$
\operatorname{Hom}(t, A) \longrightarrow \operatorname{Hom}(t, B) \longrightarrow \operatorname{Hom}(t, C)
$$

Now let f be an element of the kernel of $\operatorname{Hom}(t, B) \longrightarrow \operatorname{Hom}(t, C)$. That is $f: t \longrightarrow B$ is a morphism such that the composite $t \xrightarrow{f} B \xrightarrow{v} C$ vanishes. Thus we have a commutative diagram

By a rotation of [TR3+4] we may complete to a morphism of triangles

Proof, continued.

and this yields an equality $f=u g$ with $g \in \operatorname{Hom}(t, A)$. That is f is the image of $g \in \operatorname{Hom}(t, A)$ under the map $\operatorname{Hom}(t, A) \longrightarrow \operatorname{Hom}(t, B)$.

Corollary

Given any exact triangle

$$
A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]
$$

we have $v u=0$.

Corollary

Given any exact triangle

$$
A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]
$$

we have $v u=0$.

Proof.

The image of $1 \in \operatorname{Hom}(A, A)$ under the exact sequence

$$
\operatorname{Hom}(A, A) \xrightarrow{\operatorname{Hom}(A, u)} \operatorname{Hom}(A, B) \xrightarrow{\operatorname{Hom}(A, v)} \operatorname{Hom}(A, C)
$$

must vanish.

In the light of our Lemma, it makes sense to formulate

Definition

Let \mathcal{T} be a triangulated category. A sequence $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$ is called a weak triangle if, for every object $t \in \mathcal{T}$, the functor $\operatorname{Hom}(t,-)$ takes $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$ to a long exact sequence.

In the light of our Lemma, it makes sense to formulate

Definition

Let \mathcal{T} be a triangulated category. A sequence $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$ is called a weak triangle if, for every object $t \in \mathcal{T}$, the functor $\operatorname{Hom}(t,-)$ takes $A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]$ to a long exact sequence.

Reformulating the first lemma
In terms of the above definition, the first Lemma asserts that every exact triangle is a weak triangle.

Lemma

Let \mathcal{T} be a triangulated category, and let

be a commutative diagram where the rows are weak triangles. If f and g are isomorphisms then so is h.

Lemma

Let \mathcal{T} be a triangulated category, and let

be a commutative diagram where the rows are weak triangles. If f and g are isomorphisms then so is h.

Proof.

For any object $t \in \mathcal{T}$, the functor $\operatorname{Hom}(t,-)$ takes the above to a commutative diagram with long exact rows, in which $\operatorname{Hom}(t, f[n])$ and $\operatorname{Hom}(t, g[n])$ are isomorphisms for all $n \in \mathbb{Z}$. The 5-lemma tells us that $\operatorname{Hom}(t, h[n])$ are also isomorphisms for all $n \in \mathbb{Z}$, and by Yoneda's lemma h must be an isomorphism.

Corollary

Let \mathcal{T} be a triangulated category. If

$$
A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1], \quad A \xrightarrow{u} B \xrightarrow{v^{\prime}} C^{\prime} \xrightarrow{w^{\prime}} A[1]
$$

are exact triangles then they are (non-canonically) isomorphic.

Corollary

Let \mathcal{T} be a triangulated category. If

$$
A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1], \quad A \xrightarrow{u} B \xrightarrow{v^{\prime}} C^{\prime} \xrightarrow{w^{\prime}} A[1]
$$

are exact triangles then they are (non-canonically) isomorphic.

Proof.

The commutative diagram

$$
\begin{aligned}
& A \xrightarrow{u} B \xrightarrow{v^{\prime}} C^{\prime} \xrightarrow{w^{\prime}} A[1] \\
& A \xrightarrow[u]{ } \|_{\text {v }} A[C \xrightarrow[w]{\longrightarrow} A[1]
\end{aligned}
$$

has exact triangles for rows, and [TR3+4] permits us to extend to a commutative diagram

Proof, continued.

The identity maps $1: A \longrightarrow A$ and $1: B \longrightarrow B$ are isomorphisms, hence so is $h: C^{\prime} \longrightarrow C$.

Corollary

Let \mathcal{T} be a triangulated category. If

$$
A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1], \quad A^{\prime} \xrightarrow{u^{\prime}} B^{\prime} \xrightarrow{v^{\prime}} C^{\prime} \xrightarrow{w^{\prime}} A^{\prime}[1]
$$

are exact triangles then so is

$$
A \oplus A^{\prime} \xrightarrow{u \oplus u^{\prime}} B \oplus B^{\prime} \xrightarrow{v \oplus v^{\prime}} C \oplus C^{\prime} \xrightarrow{w \oplus w^{\prime}}\left(A \oplus A^{\prime}\right)[1]
$$

Proof.

By [TR1] we may complete the morphism $u \oplus u^{\prime}$ to an exact triangle

$$
A \oplus A^{\prime} \xrightarrow{u \oplus u^{\prime}} B \oplus B^{\prime} \xrightarrow{\widetilde{v}} \widetilde{C} \xrightarrow{\widetilde{w}}\left(A \oplus A^{\prime}\right)[1]
$$

Proof, continued.

And by $[$ TR3 +4$]$ we may complete the commutative diagrams

and

Proof, continued.

to commutative diagrams

and

Proof, continued.

Combining, we have a commutative diagram

Since the rows are weak triangles the map h must be an isomorphism. The bottom row is an exact triangle by construction, and [TR1] now tells us that so is the isomorphic top row.

Corollary

Let \mathcal{T} be a triangulated category. If

$$
A \oplus A^{\prime} \xrightarrow{u \oplus u^{\prime}} B \oplus B^{\prime} \xrightarrow{v \oplus v^{\prime}} C \oplus C^{\prime} \xrightarrow{w \oplus w^{\prime}}\left(A \oplus A^{\prime}\right)[1]
$$

is an exact triangle, then so is the direct summand

$$
A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1] .
$$

Proof.

By [TR1] we may complete the morphism u to an exact triangle

$$
A \xrightarrow{u} B \xrightarrow{\tilde{v}} \widetilde{C} \xrightarrow{\widetilde{w}} A[1]
$$

Proof, continued.

And by $[T R 3+4]$ we may complete the commutative diagram

to the morphism of triangles

Proof, continued.

The commutative diagram

where the morphism between the second and third row is the projection to a direct summand, composes to give

Proof, continued.

and as both rows are weak triangles the map h must be an isomorphism. The top row is an exact triangle by construction, and [TR1] now tells us that so is the isomorphic bottom row.

Theorem (octahedral axiom)

Let \mathcal{T} be a triangulated category. Suppose $A \xrightarrow{f} B \xrightarrow{g} B^{\prime}$ are two composable morphisms, and choose exact triangles

which exist by [TR1].
Then there exist morphisms $h: C \longrightarrow C^{\prime}$ and $k: C^{\prime} \longrightarrow B^{\prime \prime}$ such that

Theorem (octahedral axiom, continued)

the following diagram commutes

and the third column is an exact triangle.

Proof.

We are given the commutative diagram

where the rows are exact triangles. [TR3+4] permits us to extend to a commutative diagram

and do it in such a way that

Proof, continued.

$$
B \oplus A \xrightarrow{\left(\begin{array}{rr}
-u & 0 \\
g & g f
\end{array}\right)} C \oplus B^{\prime} \xrightarrow{\left(\begin{array}{rr}
-v & 0 \\
h & u^{\prime}
\end{array}\right)} A[1] \oplus C^{\prime}
$$

is an exact triangle.

Proof, continued.

This triangle is isomorphic to the direct sum of

$$
B \xrightarrow{\binom{-u}{g}} C \oplus B^{\prime} \xrightarrow{\left(\begin{array}{ll}
h & u^{\prime}
\end{array}\right)} C^{\prime} \xrightarrow{f v^{\prime}} B[1]
$$

and

$$
A \longrightarrow 0 \longrightarrow A[1] \Longrightarrow A[1]
$$

and both must be exact triangles.

Proof, continued.

And now the commutative diagram

has exact triangles for rows, and [TR3+4] permits us to extend to a commutative diagram

Proof, continued.

and do it in such a way that

$$
C \oplus B^{\prime} \oplus B \xrightarrow{\left(\begin{array}{rrr}
-h & -u^{\prime} & 0 \\
0 & 1 & g
\end{array}\right)} C^{\prime} \oplus B^{\prime} \xrightarrow{\left(\begin{array}{rr}
-f v^{\prime} & 0 \\
k & g^{\prime}
\end{array}\right)} B[1] \oplus B^{\prime \prime}
$$

is an exact triangle. And this exact triangle is isomorphic to the direct sum of

Proof, continued.

$$
\begin{aligned}
& C \longrightarrow C^{\prime} \longrightarrow B^{\prime \prime} \xrightarrow{u[1] \rho \ell} C^{h}[1] \\
& B^{\prime} \longrightarrow B^{\prime}[1] \\
& B \longrightarrow B[1] \longrightarrow B[1]
\end{aligned}
$$

which must all be exact triangles.

Flaws of triangulated categories

Lemma

If \mathcal{T} is a triangulated category and $g: B \longrightarrow C$ is an epimorphism, then $B \cong A \oplus C$ and g is the split surjection $A \oplus C \longrightarrow C$.

Proof.

Complete g to an exact triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1]$. The composite $h g: B \longrightarrow A[1]$ vanishes, and as g is an epimorphism we deduce that $h=0$.

Proof, continued.

But now consider the commutative diagram where the rows are triangles

By [TR3+4] we may complete to a commutative diagram

and ρ must be an isomorphism.

No cokernels

Suppose $f: X \longrightarrow B$ is a morphism in a triangulated category \mathcal{T}, and $g: B \longrightarrow C$ is its cokernel. Then g is an epimorphism, and the above lemma says it must be isomorphic to the projection $A \oplus C \longrightarrow C$.

The fact that $f: X \longrightarrow A \oplus C$ has cokernel $A \oplus C \longrightarrow C$ means that map f must factor as $X \xrightarrow{g} A \xrightarrow{i} A \oplus C$, and the map $X \longrightarrow A$ must be an epimorphism. Hence the map $g: X \longrightarrow A$ is isomorphic to the projection $\pi: Y \oplus A \longrightarrow A$.

Thus the morphism $f: X \longrightarrow B$ is isomorphic to the composite $Y \oplus A \xrightarrow{\pi} A \xrightarrow{i} A \oplus C$, where π is the projection and i is the inclusion.

Summarizing: morphisms in triangulated categories rarely have cokernels.

Thank you!

