A Primer On Affine Group Schemes

Paul Sobaje September 25, 2023 - MasterClass on New Developments in Finite Generation of Cohomology Let k be a commutative ring. The goal of this lecture is to introduce:

- Affine group schemes over *k*.
- Their representations.
- Functors on and features of category of *G*-modules.

Eventually, k will be assumed to be Noetherian.

- Background needed varies by person.
- Generality poses challenge to accuracy and simplicity.
- Concepts and terms will be many, proofs will be few/none.

Basic Notions

An affine group scheme G (over k) is a representable functor from commutative k-algebras to groups.

 $G : \{ commutative k-algebras \} \rightarrow \mathbf{Grps}$

An affine group scheme G (over k) is a representable functor from commutative k-algebras to groups.

 $G : \{ commutative k-algebras \} \rightarrow \mathbf{Grps}$

k[G] = representing algebra for G (or **coordinate algebra**).

i.e. for all commutative k-algebras A,

 $G(A) \cong \operatorname{Hom}_{k-alg}(k[G], A)$

The additive group scheme \mathbb{G}_a assigns to A the group (A, +).

 $k[\mathbb{G}_a] \cong k[t].$

The additive group scheme \mathbb{G}_a assigns to A the group (A, +).

 $k[\mathbb{G}_a] \cong k[t].$

The **multiplicitive group scheme** \mathbb{G}_m assigns to A the group (A^{\times}, \cdot) .

 $k[\mathbb{G}_m]\cong k[t,t^{-1}].$

k[G] is a commutative Hopf algebra over k, with co-structure

comultiplication: $\Delta : k[G] \rightarrow k[G] \otimes_k k[G]$

counit (augmentation): $\varepsilon: k[G] \rightarrow k$

coinverse (antipode): $\eta: k[G] \rightarrow k[G]$

Can obtain affine group schemes from many directions:

- Commutative Hopf algebras.
- Abelian groups.
- Finite duals of co-commutative Hopf algebras.
- Finite groups.
- Group functors that are representable.
- Affine algebraic groups (k a field). These correspond to affine group schemes such that k[G] is finitely generated and nilpotent free.

If Γ is an abstract finite group, then G_{Γ} is the **constant group** scheme corresponding to Γ , where

$$G_{\Gamma}(A) \cong \Gamma \times \cdots \times \Gamma$$
 ($\pi_0(A)$ -times)

 $k[G_{\Gamma}]$ is the dual of the group algebra $k\Gamma$.

If Γ is an abstract finite group, then G_{Γ} is the **constant group** scheme corresponding to Γ , where

$$G_{\Gamma}(A) \cong \Gamma imes \cdots imes \Gamma$$
 ($\pi_0(A)$ -times)

 $k[G_{\Gamma}]$ is the dual of the group algebra $k\Gamma$.

Example The trivial group $\{1\}$ is represented by k.

Remark: The truly constant group functor that assigns Γ to every *A* is not representable if $1 < |\Gamma|$.

Let $n \ge 1$. The affine group scheme GL_n is defined by

 $GL_n(A) = \{n \times n \text{ invertible matrices with entries in } A\}$

$$k[GL_n] \cong k[X_{11}, X_{12}, \dots, X_{nn}, Y]/(\det(X_{ij})Y - 1).$$

Let $n \ge 1$. The affine group scheme GL_n is defined by

 $GL_n(A) = \{n \times n \text{ invertible matrices with entries in } A\}$

$$k[GL_n] \cong k[X_{11}, X_{12}, \dots, X_{nn}, Y]/(\det(X_{ij})Y - 1).$$

- *SL_n* is defined analogously.
- These are primary examples of reductive group schemes.

• If G and H are affine group schemes, then $G \times H$ is also, with $k[G \times H] \cong k[G] \otimes_k k[H]$.

- If G and H are affine group schemes, then $G \times H$ is also, with $k[G \times H] \cong k[G] \otimes_k k[H]$.
- If g is a *p*-restricted Lie algebra over a field of characteristic *p*, then its restricted enveloping algebra is a finite dimensional cocommutative Hopf algebra, thus its dual represents an affine group scheme over *k*.

A homomorphism between affine group schemes

$$\phi: H \to G$$

is a natural transformation between group functors.

It is equivalent to a homomorphism of Hopf algebras

$$\phi^*: k[G] \to k[H].$$

 $(\phi^* \text{ called the comorphism of } \phi)$ (examples: \mathbb{G}_a to GL_2 , GL_N , and \mathbb{G}_m , split tori to \mathbb{G}_m).

The image of H is a **closed subgroup scheme** of G if

$$\phi^*: k[G] \to k[H]$$

is surjective.

i.e. $k[H] \cong k[G]/I$, where I is a Hopf ideal of k[G], meaning $\Delta(I) \subseteq I \otimes k[G] + k[G] \otimes I$ Let $n \geq 1$.

The *n*-th roots of unity μ_n is the group scheme where $\mu_n(A) = \{a \in A \mid a^n = 1\}$ We have $k[\mu_n] \cong k[t](t^n - 1) \cong k\mathbb{Z}/n\mathbb{Z}$. Since $k[\mathbb{G}_m] \cong k\mathbb{Z}$, there is a surjective Hopf algebra homomorphism

 $k[\mathbb{G}_m] \to k[\mu_n]$

so that $\mu_n \leq \mathbb{G}_m$.

If k' is a commutative k-algebra, we get affine group scheme $G_{k'}$ over k' where

 $k'[G_{k'}] = k[G] \otimes_k k'$

If k_1 a subring of k, then G is defined over k_1 if $k[G] \cong k_1[G_1]$ for some affine group scheme G_1 over k_1 .

Example: The groups GL_n , SL_n , \mathbb{G}_a , \mathbb{G}_m , μ_n are all defined over \mathbb{Z} .

Frobenius Morphisms

If k has characteristic p and G is defined over \mathbb{F}_p , then

 $k[G] \cong \mathbb{F}_p[G] \otimes_{\mathbb{F}_p} k.$

There is a Frobenius morphism

 $F: G \rightarrow G$

having comorphism

$$F^*(x\otimes_{\mathbb{F}_p}a)=x^p\otimes_{\mathbb{F}_p}a.$$

We denote by $G_{(r)}$ the kernel of F^r (the *r*-**th Frobenius kernel of** *G*)

- G_a • G_m
- GL_n

Remark: $\mathbb{G}_{a(1)}$ is defined over \mathbb{Z} as an affine scheme, but not as a affine group scheme.

An affine group scheme G over k is

flat - if k[G] is flat as an <u>k-module</u>.

algebraic - if k[G] is finitely generated as a k-algebra.

finite - if k[G] is finitely generated as an <u>k-module</u>.

Finally, an **affine algebraic group** will be an affine algebraic group scheme over k a field such that k[G] is reduced.

Example

 μ_n is a finite flat group scheme over k since

 $k[\mu_n]$ is free k-module on $\{1, t, t^2, \dots, t^{n-1}\}$

All G_{Γ} , and the Frobenius kernels encountered earlier, are also examples.

If G is finite group scheme and k[G] is projective k-module:

 $k[G]^*$ is a cocommutative Hopf algebra, projective and finitely generated as a k-module.

 $k[G]^*$ is sometimes denoted M(G), called **algebra of measures**

 $k[G]^*$ is sometimes denoted kG, called **the group algebra**

Indeed, for the constant group scheme G_{Γ} , $k[G_{\Gamma}]^*\cong k\Gamma.$

If k is a field of characteristic 0, then k[G] has no nilpotent elements.

Consequence: if $k = \overline{k}$ of char. 0 and G is finite group scheme, then $G \cong G_{\Gamma}$ for some Γ .

Representations

Let M be a k-module.

For each commutative k-algebra A we get an A-module

 $M \otimes_k A$.

M becomes a G-module if for each A we have A-linear

$$G(A) \times (M \otimes_k A) \to (M \otimes_k A)$$

i.e. given by a natural transformation $G \times M \rightarrow M$.

(here *M* refers to set-functor defined above)

A *G*-module *M* is equivalent to the data of an k[G]-comodule:

A k-module M with an k-linear map

 $\Delta_M: M \to M \otimes_k k[G]$

that is compatible with Δ and ε on k[G].

```
\{G\operatorname{-modules}\} \xrightarrow{\sim} \{k[G]\operatorname{-comodules}\}
```

If G is a finite flat group scheme over k, then there is an equivalence:

 $\{G\text{-modules}\} \xrightarrow{\sim} \{k[G]^*\text{-modules}\}$

We assume from now on that

k - is a Noetherian commutative ring.

G - is a flat affine group scheme over k.

- Simple and indecomposable modules.
- k the trivial module
- k[G] G-module via left and right regular representations (isomorphic to each other)
- Any homomorphism $G \rightarrow GL_n$ makes k^n into G-module.
- *G*-module structures on *k* correspond to character group

$$X(G) := \operatorname{Hom}(G, \mathbb{G}_m)$$

Let M be a G-module, so a k[G]-comodule.

The submodule of fixed points $M^G \subseteq M$ is all $m \in M$ such that either hold:

- $\Delta_M(m) = m \otimes 1$.
- $g(m \otimes_k 1) = m \otimes 1$ for all $g \in G(A)$ and all A.

The Category of G-modules

The category of G-modules (not necessarily finitely generated over k)

- Has enough injectives.
- If G is finite, also has enough projectives.

In all cases we can define right derived functors to left exact functors.

Let M be a G-module. Then $\text{Hom}_G(M, _)$ is left exact, having right derived functors

 $\operatorname{Ext}^i_G(M, _)$

These

- Can be computed via injective resolutions.
- Can also be computed via projective resolutions (when available).
- Can be interpreted as Yoneda Extension groups.

Given $H \leq G$, there is a restriction functor

```
\mathsf{res}^H_G: G\text{-}\mathsf{mod} \to H\text{-}\mathsf{mod}
```

(describe it in terms of restricting the action, and in terms of comodules.)

it has a right-adjoint

 $\operatorname{ind}_{H}^{G}: H\operatorname{-mod} \to G\operatorname{-mod}$

(You will hear more about these in Antoine's talk.)