Representations of Reductive Groups

Paul Sobaje September 26, 2023 - MasterClass on New Developments in Finite Generation of Cohomology

Spillover From Yesterday's Talk

If G is finite group scheme and k[G] is projective k-module:

 $k[G]^*$ is a cocommutative Hopf algebra, projective and finitely generated as a k-module.

 $k[G]^*$ is sometimes denoted M(G), called **algebra of measures**

 $k[G]^*$ is sometimes denoted kG, called **the group algebra**.

Indeed, for the constant group scheme G_{Γ} , $k[G_{\Gamma}]^*\cong k\Gamma.$

If k is a field of characteristic 0, then k[G] has no nilpotent elements.

Consequence: if $k = \overline{k}$ of char. 0 and G is finite group scheme, then $G \cong G_{\Gamma}$ for some Γ .

Representations

Assume G flat. A G-module M is equivalent to the data of an k[G]-comodule:

A k-module M with a k-linear map

 $\Delta_M: M \to M \otimes_k k[G]$

that is compatible with Δ and ε on k[G].

```
\{G\operatorname{-modules}\} \xrightarrow{\sim} \{k[G]\operatorname{-comodules}\}
```

If G is a finite flat group scheme over k, then there is an equivalence:

 $\{G\text{-modules}\} \xrightarrow{\sim} \{k[G]^*\text{-modules}\}$

Defining Reductive

Let k be an algebraically closed field.

Reductive algebraic groups over k include some familiar groups:

- GL_n, SL_n, PGL_n
- SO_{2n+1}
- *Sp*_{2n}
- *SO*_{2n}
- Simple algebraic groups of exceptional type
- $(\mathbb{G}_m)^{\times r}$

If char(k) = 0, then G reductive \iff **linearly reductive**.

G linearly reductive: all G-modules are semisimple.

In arbitrary characteristic, the following are equivalent

- 1. G is reductive
- 2. G is geometrically reductive
- 3. G is power reductive

For now, we denote as follows various subgroups of GL_n :

- $T_n = \text{diagonal}$
- $B_n =$ lower-triangular
- $U_n =$ strictly lower-triangular (1's on diagonal)

An affine algebraic group U over k is called **unipotent** if for every rational U-module $M \neq \{0\}$, we have

$$M^U \neq \{0\}.$$

Examples: \mathbb{G}_a and U_n are unipotent groups.

Fact: U is unipotent if and only if there is a closed embedding

 $U \rightarrow U_n$

for some n.

There is a maximal connected normal unipotent subgroup $R_u(G) \leq G$, called the **unipotent radical of** *G*.

Example

 $R_u(B_n) = U_n.$

G is called **reductive** if $R_u(G) = \{1\}$.

Every affine algebraic group G has a **reductive quotient** $G/R_u(G)$.

In addition to earlier remarks, reductive groups are nice because:

- Their group structure is well understood.
- Are definable as group schemes over \mathbb{Z} .
- Their representation theory is:
 - well understood in char. 0
 - somewhat understood in char. p
- Roots, weights, and character formulas.

Can fix subgroups in G:

A maximal torus $T \leq G$, $T \cong (\mathbb{G}_m)^{\times n}$

A Borel subgroup *B* with $T \leq B \leq G$

The Weyl group $W = N_G(T)/T$

Can fix subgroups in G:

A maximal torus $T \leq G$, $T \cong (\mathbb{G}_m)^{\times n}$

A Borel subgroup *B* with $T \leq B \leq G$

The Weyl group $W = N_G(T)/T$

Example: for $G = GL_n$, $T = T_n$, $B = B_n$, $U = U_n$ $N_G(T) =$ monomial matrices. $N_G(T)/T \cong S_n$.

Every T-module is a direct sum of 1-dimensional modules.

The character group (or weight lattice) is

$$X(T) = \operatorname{Hom}(T, \mathbb{G}_m) \cong \mathbb{Z}^n$$

If $0 \neq \lambda \in X(T)$, we also write λ for k with T-action via λ .

The completely understood nature of T-modules is exploited by:

- Restricting G-modules down to T (character theory).
- Building *G*-modules from simple *T*-modules.

The action of T on Lie(G) determines a set $\Phi \subseteq X(T)$ of **roots**. $\Phi = \Phi^+ \cup \Phi^-$, where $\Phi^- = -\Phi^+$ (positive and negative roots) For each $\alpha \in \Phi$ there is a root subgroup $U_{\alpha} \leq G$ such that

- $U_{\alpha} \cong \mathbb{G}_{a}$.
- T normalizes U_{α} .
- The negative root subgroups lie in *B*.
- G generated by T all U_{α} .

If *M* is a *G*-module, then $M \cong \bigoplus_{\lambda \in X(T)} M_{\lambda}$

where $M_{\lambda} = \{m \in M \mid t.m = \lambda(t)m \quad \forall t \in T\}$

If $u \in U_lpha, m \in M_\lambda$, then

$$u.m = m + \left(ext{stuff in } \sum_{n>0} M_{\lambda+nlpha}
ight)$$

In view of the above, it is relevant to define partial order \leq on $X(\mathcal{T})$ where

 $\lambda \leq \mu$

if $\mu - \lambda$ is non-negative sum of positive roots.

For each α , the root isogeny $\varphi_{\alpha} : SL_2 \to \langle U_{-\alpha}, U_{\alpha} \rangle$ defines a **coroot** $\alpha^{\vee} \in \text{Hom}(\mathbb{G}_m, T)$ according to

$$s\mapsto \varphi_{\alpha}\left(\begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix}
ight).$$

For $\lambda \in X(T)$, define

$$\langle \lambda, \alpha^{\vee} \rangle = \lambda \circ \alpha^{\vee} \in \mathsf{Hom}(\mathbb{G}_m, \mathbb{G}_m) \cong \mathbb{Z}.$$

Define $X_+(T) = \{\lambda \in X(T) \mid \langle \lambda, \alpha^{\vee} \rangle \ge 0 \quad \forall \alpha \in \Phi^+ \}.$

This group and module structure can be seen explicitly for GL_n , acting in its natural representation.

Each $\lambda \in X(T)$ defines a *B*-module by pulling back via $B o B/U \cong T$

Define the **costandard/induced module** $\nabla(\lambda) = \operatorname{ind}_B^G \lambda$.

The modules $\nabla(\lambda) = \operatorname{ind}_B^G \lambda$ satisfy:

- $\operatorname{Hom}_{G}(M, \nabla(\lambda)) \cong \operatorname{Hom}_{B}(M, \lambda).$
- dim $\nabla(\lambda) < \infty$ (since G/B projective variety).

•
$$\nabla(\lambda) \neq \{0\} \iff \lambda \in X_+(T)$$

- $\operatorname{soc}_{G}(\nabla(\lambda))$ is simple, denoted $L(\lambda)$
- The set {L(λ), λ ∈ X₊(T)} is complete listing of simple G-modules (up to isomorphism).

If char(k) = 0, we have just described all indecomposable *G*-modules.

$$abla(\lambda)\cong L(\lambda)$$
 for all $\lambda\in X_+(\mathcal{T})$

The set is then self-dual:

$$\nabla(\lambda)^* \cong L(\lambda)^* \cong L(-w_0\lambda) \cong \nabla(-w_0\lambda).$$

We can define the **standard/Weyl module** $\Delta(\lambda)$ by

$$\Delta(\lambda) =
abla(-w_0\lambda)^* = (\operatorname{\mathsf{ind}}_{B^+}^{\mathsf{G}}(-\lambda))^*$$

$$\Delta(\lambda)/\mathsf{rad}_G\Delta(\lambda)\cong L(\lambda)\cong\mathsf{soc}_G\nabla(\lambda)$$

 $\Delta(\lambda)$ is only "new" in characteristic *p*.

Standard and Costandards have no cohomology in one direction

$$\mathsf{Ext}^i_G(\Delta(\lambda),
abla(\mu)) \cong egin{cases} k & ext{if } i = 0 ext{ and } \lambda = \mu \ 0 & ext{otherwise} \end{cases}$$

In $\mathcal{C}(\leq \lambda)$ = subcategory of G-Mod gen. by $L(\gamma)$, $\gamma \leq \lambda$,

 $\Delta(\lambda)$ is a projective indecomposable object $\nabla(\lambda)$ is an injective indecomposable object

G-Mod is a highest weight category

$$\nabla(0)\cong k\cong\Delta(0)$$

 $\nabla(0)\cong k\cong\Delta(0)$

From above, it follows that

 $\operatorname{Ext}_{G}^{i}(k, \nabla(\lambda)) = 0$ for all λ and all i > 0.

and specifically that

 $\operatorname{Ext}_{G}^{i}(k,k) = 0$ for all i > 0.

Let M be a G-module. A chain of G-submodules of M

$$\{0\} = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots$$

is a **good filtration** of *M* if every M_i/M_{i-1} is isomorphic to some $\nabla(\lambda_i)$.