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Spillover From Yesterday’s Talk



Algebra of Measures

If G is finite group scheme and k[G] is projective k-module:

k[G]* is a cocommutative Hopf algebra, projective and finitely
generated as a k-module.

k[G]* is sometimes denoted M(G), called algebra of measures



k[G]* is sometimes denoted kG, called the group algebra.

Indeed, for the constant group scheme Gr,



Cartier's Theorem

If k is a field of characteristic 0, then k[G] has no nilpotent

elements.

Consequence: if k = k of char. 0 and G is finite group scheme,
then G = Gr for some I'.



Representations



Assume G flat. A G-module M is equivalent to the data of an
k[G]-comodule:

A k-module M with a k-linear map

Ay M — M &y k[G]

that is compatible with A and € on k[G].



Equivalences

{G-modules} = {k[G]-comodules}

If G is a finite flat group scheme over k, then there is an
equivalence:

{G-modules} = {k[G]*-modules}



Defining Reductive



Let k be an algebraically closed field.

Reductive algebraic groups over k include some familiar groups:

e GL,, SL,, PGL,

502041

Sp2n

50z,

Simple algebraic groups of exceptional type
(G ) <"



If char(k) =0, then G reductive <= linearly reductive.

G linearly reductive: all G-modules are semisimple.

In arbitrary characteristic, the following are equivalent

1. G is reductive
2. G is geometrically reductive

3. G is power reductive



For now, we denote as follows various subgroups of GL,:
e T, = diagonal
e B, = lower-triangular

e U, = strictly lower-triangular (1's on diagonal)



Definition via group structure

An affine algebraic group U over k is called unipotent if for every
rational U-module M # {0}, we have

MY £ {0}.

Examples: G, and U, are unipotent groups.

Fact: U is unipotent if and only if there is a closed embedding
U— U,

for some n.
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Reductive Algebraic Groups

There is a maximal connected normal unipotent subgroup
R,(G) < G, called the unipotent radical of G.

Example

Ru(Bn) = Up.
G is called reductive if R,(G) = {1}.

Every affine algebraic group G has a reductive quotient
G/Ru(G).
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In addition to earlier remarks, reductive groups are nice because:

e Their group structure is well understood.

e Are definable as group schemes over Z.

e Their representation theory is:
e well understood in char. 0
e somewhat understood in char. p

e Roots, weights, and character formulas.
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Group Structure

Can fix subgroups in G:
A maximal torus T < G, T = (Gp,)*"
A Borel subgroup B with T < B < G

The Weyl group W = Ng(T)/T

13



Group Structure

Can fix subgroups in G:

A maximal torus T < G, T = (Gp,)*"
A Borel subgroup B with T < B < G
The Weyl group W = Ng(T)/T

Example: for G=GL,, T =T, B=B, U= U,
Ng(T) = monomial matrices. Ng(T)/T = S,,.
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Every T-module is a direct sum of 1-dimensional modules.

The character group (or weight lattice) is

X(T) = Hom(T,Gp) = 7"

If 0# A € X(T), we also write A for k with T-action via A.
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Some Strategies

The completely understood nature of T-modules is exploited by:
- Restricting G-modules down to T (character theory).

- Building G-modules from simple T-modules.
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Group Structure Il

The action of T on Lie(G) determines a set & C X(T) of roots.
® =t Ud~, where = = —dT  (positive and negative roots)
For each o € ® there is a root subgroup U, < G such that

o U, =G,

e T normalizes U,,.

e The negative root subgroups lie in B.

e G generated by T all U,.
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G-modules as T-modules

If Mis a G-module, then M= (P M,
AeX(T)

where My ={me M |t.m=At)m Vte T}

If ue Uy, me My, then

um=m-++ <stuff in Z M,\Jr,,a)

n>0
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Partial Ordering On X(T)

In view of the above, it is relevant to define partial order < on
X(T) where
A< p

if ;x — X\ is non-negative sum of positive roots.
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Dominant Weights

For each «, the root isogeny ¢, : SLy — (U_q, Uy)

defines a coroot o € Hom(G,,, T) according to

)

For A € X(T), define

(A, aY) =Xoa¥ € Hom(G,, G) = Z.

Define X, (T)={ e X(T) | (N\,a¥) >0 Vaec ot}
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GL, Example

This group and module structure can be seen explicitly for GL,,
acting in its natural representation.
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Each X\ € X(T) defines a B-module by pulling back via

B—B/U=T

Define the costandard/induced module V(\) = ind§ .
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Properties of Induced Modules

The modules V(\) = ind$ \ satisfy:

Homg(M, V(X)) = Homg(M, A).

dimV(A\) < oo (since G/B projective variety).

VA) # {0} <= X e Xy (T)

socg(V(A)) is simple, denoted L(\)

The set {L(\), A € X;(T)} is complete listing of simple
G-modules (up to isomorphism).

22



If char(k) = 0, we have just described all indecomposable
G-modules.

V(A) = L(A) for all A € Xy(T)

The set is then self-dual:

VN 2 LO* 22 L(—wp)) = V(—np)).
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Standard /Weyl modules

We can define the standard/Weyl module A()) by

A(N) = V(=wo))* = (indG: (=\))*
A(N)/radgA(N) = L(A) = socgV(A)

A()) is only “new” in characteristic p.
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Ext-vanishing properties

Standard and Costandards have no cohomology in one direction

; k ifi=0and A=p
Extg(A(N), V() = _
0 otherwise

In C(< \) = subcategory of G-Mod gen. by L(v), v < ),

A()) is a projective indecomposable object

V() is an injective indecomposable object

G-Mod is a highest weight category
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A curious observation
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A curious observation

From above, it follows that
Extl-(k,V(\)) =0 for all A and all i > 0.
and specifically that

Extiz(k, k) =0 for all i > 0.
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Good filtrations

Let M be a G-module. A chain of G-submodules of M
{0} =MyC M CMC---

is a good filtration of M if every M;/M;_; is isomorphic to some
V(A).
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