Representations of Reductive Groups

Paul Sobaje

September 26, 2023 - MasterClass on New Developments in Finite Generation of Cohomology

Spillover From Yesterday’s Talk

Algebra of Measures

If G is finite group scheme and $k[G]$ is projective k-module:
$k[G]^{*}$ is a cocommutative Hopf algebra, projective and finitely generated as a k-module.
$k[G]^{*}$ is sometimes denoted $M(G)$, called algebra of measures
$k[G]^{*}$ is sometimes denoted $k G$, called the group algebra.

Indeed, for the constant group scheme G_{Γ}, $k\left[G_{\Gamma}\right]^{*} \cong k \Gamma$.

Cartier's Theorem

If k is a field of characteristic 0 , then $k[G]$ has no nilpotent elements.

Consequence: if $k=\bar{k}$ of char. 0 and G is finite group scheme, then $G \cong G_{\Gamma}$ for some Γ.

Representations

Assume G flat. A G-module M is equivalent to the data of an $k[G]$-comodule:

A k-module M with a k-linear map

$$
\Delta_{M}: M \rightarrow M \otimes_{k} k[G]
$$

that is compatible with Δ and ε on $k[G]$.

Equivalences

$\{G$-modules $\} \xrightarrow{\sim}\{k[G]$-comodules $\}$

If G is a finite flat group scheme over k, then there is an equivalence:
$\{G$-modules $\} \xrightarrow{\sim}\left\{k[G]^{*}\right.$-modules $\}$

Defining Reductive

Let k be an algebraically closed field.
Reductive algebraic groups over k include some familiar groups:

- $G L_{n}, S L_{n}, P G L_{n}$
- $\mathrm{SO}_{2 n+1}$
- $S_{2 n}$
- $\mathrm{SO}_{2 n}$
- Simple algebraic groups of exceptional type
- $\left(\mathbb{G}_{m}\right)^{\times r}$

If $\operatorname{char}(k)=0$, then G reductive \Longleftrightarrow linearly reductive.
G linearly reductive: all G-modules are semisimple.

In arbitrary characteristic, the following are equivalent

1. G is reductive
2. G is geometrically reductive
3. G is power reductive

For now, we denote as follows various subgroups of $G L_{n}$:

- $T_{n}=$ diagonal
- $B_{n}=$ lower-triangular
- $U_{n}=$ strictly lower-triangular (1's on diagonal)

Definition via group structure

An affine algebraic group U over k is called unipotent if for every rational U-module $M \neq\{0\}$, we have

$$
M^{U} \neq\{0\} .
$$

Examples: \mathbb{G}_{a} and U_{n} are unipotent groups.

Fact: U is unipotent if and only if there is a closed embedding

$$
U \rightarrow U_{n}
$$

for some n.

Reductive Algebraic Groups

There is a maximal connected normal unipotent subgroup $R_{u}(G) \leq G$, called the unipotent radical of G.

Example

$R_{u}\left(B_{n}\right)=U_{n}$.
G is called reductive if $R_{u}(G)=\{1\}$.

Every affine algebraic group G has a reductive quotient $G / R_{u}(G)$.

In addition to earlier remarks, reductive groups are nice because:

- Their group structure is well understood.
- Are definable as group schemes over \mathbb{Z}.
- Their representation theory is:
- well understood in char. 0
- somewhat understood in char. p
- Roots, weights, and character formulas.

Group Structure

Can fix subgroups in G :
A maximal torus $T \leq G, \quad T \cong\left(\mathbb{G}_{m}\right)^{\times n}$
A Borel subgroup B with $T \leq B \leq G$
The Weyl group $W=N_{G}(T) / T$

Group Structure

Can fix subgroups in G :

A maximal torus $T \leq G, \quad T \cong\left(\mathbb{G}_{m}\right)^{\times n}$

A Borel subgroup B with $T \leq B \leq G$
The Weyl group $W=N_{G}(T) / T$

Example: for $G=G L_{n}, T=T_{n}, B=B_{n}, U=U_{n}$
$N_{G}(T)=$ monomial matrices. $N_{G}(T) / T \cong S_{n}$.

T-modules

Every T-module is a direct sum of 1-dimensional modules.

The character group (or weight lattice) is

$$
X(T)=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right) \cong \mathbb{Z}^{n}
$$

If $0 \neq \lambda \in X(T)$, we also write λ for k with T-action via λ.

Some Strategies

The completely understood nature of T-modules is exploited by:

- Restricting G-modules down to T (character theory).
- Building G-modules from simple T-modules.

Group Structure II

The action of T on $\operatorname{Lie}(G)$ determines a set $\Phi \subseteq X(T)$ of roots.
$\Phi=\Phi^{+} \cup \Phi^{-}$, where $\Phi^{-}=-\Phi^{+} \quad$ (positive and negative roots)
For each $\alpha \in \Phi$ there is a root subgroup $U_{\alpha} \leq G$ such that

- $U_{\alpha} \cong \mathbb{G}_{a}$.
- T normalizes U_{α}.
- The negative root subgroups lie in B.
- G generated by T all U_{α}.

G-modules as T-modules

If M is a G-module, then $M \cong \bigoplus_{\lambda \in X(T)} M_{\lambda}$
where $M_{\lambda}=\{m \in M \mid t . m=\lambda(t) m \quad \forall t \in T\}$
If $u \in U_{\alpha}, m \in M_{\lambda}$, then

$$
\text { u.m }=m+\left(\text { stuff in } \sum_{n>0} M_{\lambda+n \alpha}\right)
$$

Partial Ordering On $X(T)$

In view of the above, it is relevant to define partial order \leq on $X(T)$ where

$$
\lambda \leq \mu
$$

if $\mu-\lambda$ is non-negative sum of positive roots.

Dominant Weights

For each α, the root isogeny $\varphi_{\alpha}: S L_{2} \rightarrow\left\langle U_{-\alpha}, U_{\alpha}\right\rangle$ defines a coroot $\alpha^{\vee} \in \operatorname{Hom}\left(\mathbb{G}_{m}, T\right)$ according to

$$
s \mapsto \varphi_{\alpha}\left(\left(\begin{array}{cc}
s & 0 \\
0 & s^{-1}
\end{array}\right)\right)
$$

For $\lambda \in X(T)$, define

$$
\left\langle\lambda, \alpha^{\vee}\right\rangle=\lambda \circ \alpha^{\vee} \in \operatorname{Hom}\left(\mathbb{G}_{m}, \mathbb{G}_{m}\right) \cong \mathbb{Z}
$$

Define $X_{+}(T)=\left\{\lambda \in X(T) \mid\left\langle\lambda, \alpha^{\vee}\right\rangle \geq 0 \quad \forall \alpha \in \Phi^{+}\right\}$.

$G L_{n}$ Example

This group and module structure can be seen explicitly for $G L_{n}$, acting in its natural representation.

Each $\lambda \in X(T)$ defines a B-module by pulling back via

$$
B \rightarrow B / U \cong T
$$

Define the costandard/induced module $\nabla(\lambda)=\operatorname{ind}_{B}^{G} \lambda$.

Properties of Induced Modules

The modules $\nabla(\lambda)=\operatorname{ind}_{B}^{G} \lambda$ satisfy:

- $\operatorname{Hom}_{G}(M, \nabla(\lambda)) \cong \operatorname{Hom}_{B}(M, \lambda)$.
- $\operatorname{dim} \nabla(\lambda)<\infty \quad$ (since G / B projective variety).
- $\nabla(\lambda) \neq\{0\} \Longleftrightarrow \lambda \in X_{+}(T)$
- $\operatorname{soc}_{G}(\nabla(\lambda))$ is simple, denoted $L(\lambda)$
- The set $\left\{L(\lambda), \lambda \in X_{+}(T)\right\}$ is complete listing of simple G-modules (up to isomorphism).

If $\operatorname{char}(k)=0$, we have just described all indecomposable G-modules.
$\nabla(\lambda) \cong L(\lambda)$ for all $\lambda \in X_{+}(T)$

The set is then self-dual:

$$
\nabla(\lambda)^{*} \cong L(\lambda)^{*} \cong L\left(-w_{0} \lambda\right) \cong \nabla\left(-w_{0} \lambda\right)
$$

Standard/Weyl modules

We can define the standard/Weyl module $\Delta(\lambda)$ by

$$
\Delta(\lambda)=\nabla\left(-w_{0} \lambda\right)^{*}=\left(\operatorname{ind}_{B^{+}}^{G}(-\lambda)\right)^{*}
$$

$\Delta(\lambda) / \operatorname{rad}_{G} \Delta(\lambda) \cong L(\lambda) \cong \operatorname{soc}_{G} \nabla(\lambda)$
$\Delta(\lambda)$ is only "new" in characteristic p.

Ext-vanishing properties

Standard and Costandards have no cohomology in one direction

$$
\operatorname{Ext}_{G}^{i}(\Delta(\lambda), \nabla(\mu)) \cong \begin{cases}k & \text { if } i=0 \text { and } \lambda=\mu \\ 0 & \text { otherwise }\end{cases}
$$

In $\mathcal{C}(\leq \lambda)=$ subcategory of G-Mod gen. by $L(\gamma), \gamma \leq \lambda$,
$\Delta(\lambda)$ is a projective indecomposable object
$\nabla(\lambda)$ is an injective indecomposable object
G-Mod is a highest weight category

A curious observation

$\nabla(0) \cong k \cong \Delta(0)$

A curious observation

$\nabla(0) \cong k \cong \Delta(0)$
From above, it follows that
$\operatorname{Ext}_{G}^{i}(k, \nabla(\lambda))=0 \quad$ for all λ and all $i>0$.
and specifically that
$\operatorname{Ext}_{G}^{i}(k, k)=0 \quad$ for all $i>0$.

Good filtrations

Let M be a G-module. A chain of G-submodules of M

$$
\{0\}=M_{0} \subseteq M_{1} \subseteq M_{2} \subseteq \cdots
$$

is a good filtration of M if every M_{i} / M_{i-1} is isomorphic to some $\nabla\left(\lambda_{i}\right)$.

