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Context

Notation: k a field, of finite characteristic p to be interesting. G a finite group
scheme. S = k[x1, . . . , xn] a polynomial ring, graded with the xi in degree 1. G
acts on S preserving grading.

Our aim is to prove:

Theorem hreg(SG ) ≤ −n for all groups G and certain types of group schemes.

and see how this gives us bounds on the degrees of the generators and relations
of G .

The proof will also show that S , considered as a kG -module, only contains
finitely many non-isomorphic indecomposable summands.

We say that S is of finite representation type.



Cech Complex

R is a commutative noetherian Z-graded k-algebra in non-negative degrees,
finite dimensional over k in each degree.

x1, . . . , xr ∈ R, M an R-module.
The (augmented) Cech complex C(x)(M) is the cochain complex

M →
⊕
i

Mxi →
⊕
i<j

Mxi xj → · · · → Mx1···xr ,

where Mx denotes the localization obtained by inverting x . It can be obtained
as follows. C(xi ;R) is the complex

R → Rxi ,

with R in degree 0 and Rxi in degree 1 and

C(x;M) =

(
r⊗

i=1

R C(xi ;R)

)
⊗R M.

If M is an RG -module then C(x)(M) is a complex of RG -modules.



Local Cohomology

Local cohomology H i
(x)(M) is the homology of C(x)(M).

I H i
(x)(M) only depends on rad(x). We will always want

rad(x) = m = radR>0.

I If M is Noetherian then H i
m(M) is 0 in sufficiently high degrees.

Definition hreg(M) is the largest degree for which H∗m(M) 6= 0.

We want to show that hreg(SG ) ≤ −n. (This is slightly stronger than
reg(SG ) ≤ 0.)



Castelnuovo-Mumford Regularity

Let R = k[d1, . . . , dn] be a polynomial ring with deg(di ) > 0. For any finite
R-module M, take the minimal projective resolution

0→ Pn → · · · → P1 → P0 → M → 0.

Pi
∼= ⊕R(−ai,j),

where R(−a) denotes R shifted up in degree by a.

Set ρi (M) = maxj{ai,j},

and hPreg(M) = max{ρi (M)} − Σi deg(di ).

Notice that ρ0(M) is a bound on the degrees of the generators of M as an
R-module and ρ1(M) is a bound on the degrees of the relations. If M is a
k-algebra then max{ρ0(M), deg(di )} is a bound on the degrees of the
generators as a k-algebra and max{2ρ0(M), ρ1(M), deg(di )} is a bound for the
relations.

In terms of hPreg, the two bounds for a k-algebra are
max{hPreg(M) + Σi deg(di ), deg(di )} for the generators and
max{2(hPreg(M) + Σi deg(di )), deg(di )} for the relations.



Local Duality
Local Duality Over a polynomial ring R we have

Homk(H i
m(M), k) ∼= Extn−i

R (M,R(Σ deg di )).

Using this we can show:

Corollary hPreg(M) = hreg(M).

Returning to SG , the aim of this talk is to show that:

Theorem hreg(SG ) ≤ −n.

Now take a Noether normalization R = k[d1, . . . , dn] of SG , i.e. a finite map
R → SG .

Since hPreg(SG ) ≤ −n, we can deduce that SG is generated in degrees at most

max{Σi deg(di )− n, deg(di )}

and the relations are in degrees at most twice this.

By Dade’s Lemma we can take di = NGXi for the Xi in general position. This
leads to the bound

n(|G | − 1)

for the degrees of the generators (provided n, |G | ≥ 2), which was a conjecture
of Kemper (for groups).



Strategy

We want to show that C(x)(S
G )>−n is exact for S a polynomial ring and for

some invariants x such that rad(x) = m.

Suppose we can show that C(x)(S)>−n is split exact over kG .

It is exact because hreg S = −n.

Then C(x)(S)G>−n must also be exact. But C(x)(S)G>−n = C(x)(S
G )>−n, so the

latter is exact, as required.

Example A cyclic group of order p acts on S = k[x , y ] by y 7→ y + x , x 7→ x .
Invariants k[x , dy ], dy = yp − xp−1y

Let T ⊂ S be the k-submodule spanned by the monomials with y -degree < p.

Then S = T ⊗k k[dy ] = T ⊗k U.



Example: Cyclic Group and Two Variables



Example: αp and Two Variables



Relative Projectivity

How can we show that a complex is split?

Let C be a set of subgroup schemes of G .

Definition A kG -module M is projective relative to C if the following equivalent
conditions hold.

a) M is a summand of some ⊕H∈CkG ⊗kH VH .

b) M is a summand of ⊕H∈CkG ⊗kH M.

c) Any surjection L� M that splits on restriction to any H ∈ C is split
over G .

d) IdM ∈
∑

Im TrGH .



Transfer

For G a group, H ≤ G , M a G -module, TrGH : MH → MG is defined by
m 7→

∑
g∈G/H gm.

For group schemes this is a little trickier. Let IndG
H be the left adjoint to

restriction and CoindG
H the right adjoint. They are related by

IndG
H(M) ∼= CoindG

H(µHM),

where µH is a certain 1-dimensional representation of H.

There is the adjunction map η : k → CoindG
H k.

HomH(k, µHM) ∼= HomH(µ−1
H ,M) ∼= HomG (IndG

H µ
−1
H ,M) ∼= HomG (CoindG

H k,M)

η∗−→ HomG (k,M)

This gives us TrGH : (µHM)H → MG

and TrGH : HomH(M, µHM)→ HomG (M,M).



Geometry

Theorem Let S be a commutative ring on which G acts. If Spec(S ⊗k k̄)G = ∅
then SG =

∑
H<G ,p|[G :H] TrGH(SH).

It follows that S is projective relative to proper subgroup schemes.

Background proved using a change of category.

1) If M is of finite decomposition type so is Mx .

2) C(x)(M), considered as a complex of kG -modules, is unique up to
homotopy, depending only on rad(x) and M.



Splitting

(split) ⊗ (anything) = (split)

If A is split in degrees > a and B is split in degrees > b then A⊗ B is split in
degrees > a + b.

Suppose the action on A is trivial. If a and b are best possible so is a + b.

Back to the example.

Cx,dy (S) = Cx(T )⊗ Cdy (U) = Cx(T )⊗ Cdy (k[dy ])

k[dy ]→ k[dy , d
−1
y ] is split in degrees > −p.

T → Tx is split in degrees > p − 2.

So Cx,dy (S) is split in degrees > −2, as required.



Main Theorem

Theorem G acts on S and M is a finitely generated SG -module. Suppose that
hreg(M) ≤ N and for each p-subgroup P of G there exist
y1, . . . , yr , z1, . . . , zs ∈ SP

>0 such that:

a) yi vanishes on Spec(S)P ,

b) rad(y, z) = mS ,

c) there is a k[y]P-module T and a k[z]P-module U such that
M>N

∼= (T ⊗k U)>N as k[yz]P-modules,

d) P acts trivially on U or....

Then:

1) for any x in SG
>0 such that radS(x) = mS , the complex of kG -modules

Cx(M)>N is split exact;

2) hreg(MG ) ≤ N;

3) M is of finite decomposition type.



Polynomial Rings
S = k[V ]. A p-group scheme P acts.

Suppose that we can choose a basis x∗1 , . . . , x
∗
n for V such that the matrices for

the action of P are lower-triangular and x∗r+1, . . . , x
∗
n span V P . x1, . . . , xn ∈ S1

the dual basis.

Let dxi = NGxi . Set

y1, . . . , yr = dx1 , . . . , dxr

z1, . . . , zs = dxr+1 , . . . , dxn

Let T ⊂ S be the subspace spanned by monomials with xr+i -degree < deg zi .
It is a kP-submodule.

U = k[z1, . . . , zn].

Then S ∼= T ⊗ U and the hypotheses of the theorem are satisfied with M = S
(for this subgroup P and N = −n).

We can always find such a basis if the p-group scheme (or, equivalently, its
identity component) is trigonalizable, meaning that every simple module is
1-dimensional.

Thus the regularity result mentioned at the beginnining holds for such group
schemes.



Proof

Reduce to p-groups P (transfer argument). Use induction on |P|.

Spec(Syi ) = Spec(S)− L(yi )

Spec(Syi )
P = ∅ ⇒ Syi projective rel. proper subgroups

⇒ (Tyi ⊗ U)>N projective rel. proper subgroups

⇒ Tyi projective rel. proper subgroups

⇒ Tyi of finite decomposition type.

For Q < P, Cyz(S)>N↓PQ is split, by induction.

Cyz(S) = Cy(T )⊗ Cz(U)

Let d be the top degree in which Cz(U) is not exact.
Then Cy(T )>N−d ↓PQ is split.

We can now split Cy(T )>N−d term by term starting from the right.
Thus (Cy(T )⊗ Cz(U))>N is split.

Also S>N is a summand of ⊕Sxi , so of finite decomposition type, hence also S .



Other Group Schemes

If we consider sl2 acting on k[x , y ] in the canonical way, the theorem does not
apply.

k[x , y ]sl2 = k[xp, yp], so hreg k[x , y ]sl2 = −2p ≤ −2,

so the regularity result does hold.

However, k[x , y ] is not of finite representation type over sl2.

This seems to be related to the failure of the Normal Basis Theorem. Recall
that if a (genuine) group acts on a field K then, as KGG -modules, K ∼= KGG .

For the action of sl2 on K = k(x , y) we find that K is not even projective over
K sl2 ⊗k sl2 and |K : K sl2 | = p2 6= | sl2 |.



Examples

1 G the Klein four group, char(k) = 2. S = k[v ,w , x , y , z]/(vx + wy), all
generators in degree 1.

v ,w , x , y fixed, a(z) = z + x , b(z) = z + v .

Set y1 = v , y2 = w , z1 = w + y and z2 = dz . Let T be the free
k[v , x ]-submodule of S spanned by {1, z , z2, z3, y , yz , yz2, yz3} and
U = k[z1, z2]. Then S ∼= T ⊗k U, verifying the hypotheses of the theorem for
G .

Since the other subgroups are cyclic, so certainly of finite decomposition type,
this shows that S is of finite decomposition type.

 

2 Same except b(z) = z + y . S bigraded by total degree and

v -degree+w -degree. Let An be the part with total degree n + 1 and
v -degree+w -degree=n. dimAn = 2n + 3.

This is known to be indecomposable (Conlon), so S is not of finite
decomposition type.



U3(F3)
degree dimensions of indecomposable summands

0 1
1 3
2 6
3 10
4 15
5 21
6 3′ 9 16
7 9 9′ 18
8 9 18 18′

9 1 3′ 9 18 24
10 3 9 9′ 18 27
11 6 9 18 18′ 27
12 3′ 9 10 18 24 27
13 9 9′ 15 18 27 27
14 9 18 18′ 21 27 27
15 3′ 3′ 9 9 16 18 24 27 27
16 9 9 9′ 9′ 18 18 27 27 27
17 9 9 18 18 18′ 18′ 27 27 27
18 1 3′ 3′ 9 9 18 18 24 24 27 27 27
19 3 9 9 9′ 9′ 18 18 27 27 27 27 27
20 6 9 9 18 18 18′ 18′ 27 27 27 27 27




