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Context

Notation: k a field, of finite characteristic p to be interesting. G a finite group
scheme. S = k[xi,...,xa] a polynomial ring, graded with the x; in degree 1. G
acts on S preserving grading.

Our aim is to prove:
Theorem hreg(SG) < —n for all groups G and certain types of group schemes.

and see how this gives us bounds on the degrees of the generators and relations
of G.

The proof will also show that S, considered as a kG-module, only contains
finitely many non-isomorphic indecomposable summands.

We say that S is of finite representation type.



Cech Complex

R is a commutative noetherian Z-graded k-algebra in non-negative degrees,
finite dimensional over k in each degree.

X1,...,%X € R, M an R-module.
The (augmented) Cech complex Cx)(M) is the cochain complex

M — @ M., — EBMX"X/ — = My,
i i<j

where M, denotes the localization obtained by inverting x. It can be obtained
as follows. C(x;; R) is the complex

R —= Ry,

with R in degree 0 and R,; in degree 1 and

C(x; M) = <®R C(xi; R)> ®r M.

i=1

If M is an RG-module then Cix)(M) is a complex of RG-modules.



Local Cohomology

Local cohomology H("X)(M) is the homology of Cix)(M).

> H("X)(M) only depends on rad(x). We will always want
rad(x) = m = rad R>o.

> If M is Noetherian then Hi (M) is 0 in sufficiently high degrees.

Definition hreg(M) is the largest degree for which Hy (M) # 0.

We want to show that hreg(S€) < —n. (This is slightly stronger than
reg(5¢) <0.)



Castelnuovo-Mumford Regularity

Let R = k[d, ..., d,] be a polynomial ring with deg(d;) > 0. For any finite
R-module M, take the minimal projective resolution

0—-P,— = Pr—Py— M—=0.
Pi = ®R(—a; ),

where R(—a) denotes R shifted up in degree by a.

Set p;(M) = maxj-{a,-,j},
and hPreg(M) = max{pi(M)} — X, deg(d;).

Notice that po(M) is a bound on the degrees of the generators of M as an
R-module and p1(M) is a bound on the degrees of the relations. If M is a
k-algebra then max{po(M), deg(d:)} is a bound on the degrees of the
generators as a k-algebra and max{2po(M), p1(M), deg(d;)} is a bound for the
relations.

In terms of hPreg, the two bounds for a k-algebra are
max{hPreg(M) + X, deg(d;), deg(d;)} for the generators and
max{2(hPreg(M) + X; deg(d;)), deg(d;)} for the relations.



Local Duality
Local Duality Over a polynomial ring R we have

Hom (H, (M), k) = Exty (M, R(X deg d)).

Using this we can show:

Corollary hPreg(M) = hreg(M).

Returning to S¢, the aim of this talk is to show that:

Theorem hreg(5¢) < —n.

Now take a Noether normalization R = k[di, ..., d,] of 5S¢, i.e. a finite map

R — S°.

Since hPreg(5€) < —n, we can deduce that S is generated in degrees at most
max{X; deg(d;) — n, deg(d:)}

and the relations are in degrees at most twice this.

By Dade’'s Lemma we can take di = N X; for the X; in general position. This

leads to the bound
n(|G] —1)

for the degrees of the generators (provided n, |G| > 2), which was a conjecture
of Kemper (for groups).



Strategy

We want to show that C(X)(SG)>,,, is exact for S a polynomial ring and for
some invariants x such that rad(x) = m.

Suppose we can show that Cix)(S)>—n is split exact over kG.
It is exact because hreg S = —n.
Then Cix)(S)S_, must also be exact. But Cix)(S)S_, = Cix)(S€)>—n, so the

latter is exact, as required.

Example A cyclic group of order p acts on S = k[x,y] by y = y + x, x = x.

Invariants k[x, d,], d, = y? — xP"'y

Let T C S be the k-submodule spanned by the monomials with y-degree < p.
Then S =T ®« k[dy)] = T @« U.



Example: Cyclic Group and Two Variables
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Example: ap and Two Variables
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Relative Projectivity

How can we show that a complex is split?

Let C be a set of subgroup schemes of G.
Definition A kG-module M is projective relative to C if the following equivalent
conditions hold.

a) M is a summand of some GreckG Qwn V.

b) M is a summand of ®pecckG Qun M.

) Any surjection L — M that splits on restriction to any H € C is split
over G.

d) Idy € 3 Im Trf.



Transfer

For G a group, H < G, M a G-module, Tr&: M" — MC is defined by
mi= 3 ecc/n &M

For group schemes this is a little trickier. Let Ind§; be the left adjoint to
restriction and Coindy the right adjoint. They are related by

Indf(M) = Coindf(unM),

where py is a certain 1-dimensional representation of H.

There is the adjunction map n: k — Coindy k.

Homy (k, prM) = Homu(py*, M) 22 Home(Indf; it M) 22 Home(Coind§ k, M)
w, Homg(k, M)
This gives us TrS: (uwM)" — M®
and Tr§: Homuy (M, uyM) — Homeg (M, M).



Geometry

Theorem Let S be a commutative ring on which G acts. If Spec(S ®« k)¢ =0
then S€ =37, ¢ e TrA(S")-

It follows that S is projective relative to proper subgroup schemes.

Background proved using a change of category.
1) If M is of finite decomposition type so is M.

2) Cix)(M), considered as a complex of kG-modules, is unique up to
homotopy, depending only on rad(x) and M.



Splitting

(split) ® (anything) = (split)

If Ais split in degrees > a and B is split in degrees > b then A® B is split in
degrees > a + b.

Suppose the action on A is trivial. If a and b are best possible so is a + b.

Back to the example.

Coq,(S) = G(T) @ Cq, (V) = C(T) @ Cy, (k[dy])

k[d,] — k[dy,d; "] is split in degrees > —p.

T — T, is split in degrees > p — 2.

So Ci.4,(S) is split in degrees > —2, as required.



Main Theorem

Theorem G acts on S and M is a finitely generated SG-module. Suppose that
hreg(M) < N and for each p-subgroup P of G there exist
Viyeo s ¥r 21, .., 2 € SEo such that:

a) y; vanishes on Spec(S)”,
b) rad(y, z) = ms,

c) there is a k[y]P-module T and a k[z]P-module U such that
Msn 22 (T ®k U)sn as k[yz] P-modules,

d) P acts trivially on U or....
Then:

1) for any x in S&; such that rads(x) = ms, the complex of kG-modules
G(M)>n is split exact;

2) hreg(M®) < N;
3) M is of finite decomposition type.



Polynomial Rings
S = k[V]. A p-group scheme P acts.

Suppose that we can choose a basis x{', ..., x5 for V such that the matrices for
the action of P are lower-triangular and x7.1,...,x; span VP xi,... . x, € S
the dual basis.

Let dy, = Ngx;. Set
Yi,...,¥r = dX17"‘7dXI
Zly...yZs = dx,+1,--'7dxn

Let T C S be the subspace spanned by monomials with x,;-degree < deg z;.
It is a kP-submodule.

U=klz,...,z)]

Then S 2 T ® U and the hypotheses of the theorem are satisfied with M = §
(for this subgroup P and N = —n).

We can always find such a basis if the p-group scheme (or, equivalently, its
identity component) is trigonalizable, meaning that every simple module is
1-dimensional.

Thus the regularity result mentioned at the beginnining holds for such group
schemes.



Proof

Reduce to p-groups P (transfer argument). Use induction on |P)|.
Spec(Sy,;) = Spec(S) — L(yi)

Spec(S,,)” = 0 = S,, projective rel. proper subgroups
= (T,, ® U)>n projective rel. proper subgroups
= T,, projective rel. proper subgroups
= T,, of finite decomposition type.
For Q < P, Cyz(5)>N¢g is split, by induction.
Ga(S) = G(T) ® G(V)
Let d be the top degree in which G (U) is not exact.
Then Gy(T)>n—d 4§ is split.

We can now split G(T)>n—q term by term starting from the right.
Thus (G(T) ® G(U))sn is split.

Also S.y is a summand of @S,;, so of finite decomposition type, hence also S.



Other Group Schemes

If we consider sl, acting on k[x, y] in the canonical way, the theorem does not
apply.

k[x,y]SI2 = k[xP, y"], so hreg k[x7y]SI2 = -2p< -2,

so the regularity result does hold.
However, k[x, y] is not of finite representation type over sl,.

This seems to be related to the failure of the Normal Basis Theorem. Recall
that if a (genuine) group acts on a field K then, as K¢ G-modules, K = K°G.

For the action of sl on K = k(x, y) we find that K is not even projective over
K2 @k slr and |K : K™2| = p? # |slo|.



Examples
1 G the Klein four group, char(k) =2. S = k[v,w,x,y, z]/(vx + wy), all

generators in degree 1.
v,w,x,y fixed, a(z) =z + x, b(z) =z + v.

Sety1 =v,y2=w,zz1=w+y and z = d,. Let T be the free

k[v, x]-submodule of S spanned by {1, z, 2, 2%, y, yz, yz*, yz*} and

U = k[zi,25]. Then S = T ® U, verifying the hypotheses of the theorem for
G.

Since the other subgroups are cyclic, so certainly of finite decomposition type,
this shows that S is of finite decomposition type.

v-degree+w-degree. Let A, be the part with total degree n+ 1 and
v-degree+w-degree=n. dim A, = 2n+ 3.

! o otz
7 -1 a-1 b1 V &1
o A =" vy

This is known to be indecomposable (Conlon), so S is not of finite
decomposition type.
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