Drew Armstrong (with B. Rhoades and V. Reiner)

University of Miami www.math.miami.edu/~armstrong

"Non-crossing partitions in representation theory"
Bielefeld, June 2014

Plan

- 1. Parking Functions
- 2. Noncrossing Partitions
- 3. Noncrossing Parking Functions

What is a Parking Function?

What is a Parking Function?

Definition

A parking function is a vector $\vec{a} = (a_1, a_2, \dots, a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \dots \leq b_n$ satisfies:

$$\forall i, b_i \leq i$$

Imagine a one-way street with n parking spaces.

- ightharpoonup There are n cars.
- ► Car *i* wants to park in space *a_i*.
- ▶ If space a_i is full, she parks in first available space.
- ► Car 1 parks first, then car 2, etc.
- " \vec{a} is a parking function" \equiv "everyone is able to park".

What is a Parking Function?

Example (n = 3)

111					
112	121	211			
113	131	311			
122	212	221			
123	132	213	231	312	321

Note that $\#\mathsf{PF}_3 = 16$ and \mathfrak{S}_3 acts on PF_3 with 5 orbits.

In General We Have

$$\#\mathsf{PF}_n = (n+1)^{n-1}$$
 $\#$ orbits $= \frac{1}{n+1} \binom{2n}{n}$ "Catalan"

Structure of Parking Functions

Idea (Pollack, \sim 1974)

Now imagine a circular street with n+1 parking spaces.

- ▶ Choice functions = $(\mathbb{Z}/(n+1)\mathbb{Z})^n$.
- ► Everyone can park. One empty spot remains.
- ▶ Choice is a parking function \iff space n+1 remains empty.
- ▶ One parking function per rotation class.

Conclusion:

- ightharpoonup PF_n = choice functions / rotation
- $ightharpoonup \mathsf{PF}_n pprox_{\mathfrak{S}_n} \left(\mathbb{Z}/(n+1)\mathbb{Z}\right)^n/(1,1,\ldots,1)$
- $PF_n = \frac{(n+1)^n}{n+1} = (n+1)^{n-1}$

Why do We Care?

Culture

The symmetric group \mathfrak{S}_n acts diagonally on the algebra of polynomials in two commuting sets of variables:

$$\mathfrak{S}_n \curvearrowright \mathbb{Q}[\mathbf{x}, \mathbf{y}] := \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_n -action as parking functions:

$$\omega \cdot \mathsf{PF}_n \approx_{\mathfrak{S}_n} \mathbb{Q}[\mathbf{x}, \mathbf{y}]/\mathbb{Q}[\mathbf{x}, \mathbf{y}]^{\mathfrak{S}_n}$$

The proof was hard. It comes down to this theorem:

The isospectral Hilbert scheme of n points in \mathbb{C}^2 is Cohen-Macaulay and Gorenstein.

Pollack's Idea ⇒ Weyl Groups

Haiman, Conjectures on the quotient ring..., Section 7

Let W be a Weyl group with rank r and Coxeter number h. That is, $W \curvearrowright \mathbb{R}^r$ by reflections and stabilizes a "root lattice" $Q \le \mathbb{R}^r$. We define the W-parking functions as

$$\mathsf{PF}_W := Q/(h+1)Q$$

This generalizes Pollack because we have

$$(\mathbb{Z}/(n+1)\mathbb{Z})^n/(1,1,\ldots,1) = Q/(n+1)Q.$$

Recall that $W = \mathfrak{S}_n$ has Coxeter number h = n, and root lattice

$$Q = \mathbb{Z}^n/(1,1,\ldots,1) = \{(r_1,\ldots,r_n) \in \mathbb{Z}^n : \sum_i r_i = 0\}.$$

Pollack's Idea ⇒ Weyl Groups

Haiman, Conjectures on the quotient ring..., Section 7

The W-parking space has dimension generalizing the Cayley numbers

dim
$$PF_W = (h+1)^r (= (n+1)^{n-1})$$

More generally: Given $w \in W$, the character of PF_W is

$$\chi(w) = \#\{\vec{a} \in \mathsf{PF}_W : w(\vec{a}) = w\}$$

= $(h+1)^{r-\mathsf{rank}(1-w)} \left(= (n+1)^{\#\mathsf{cycles}(w)-1} \right)$

and the number of W-orbits generalizes the Catalan numbers

$$\# \text{orbits} = \frac{1}{|W|} \prod_{i=1}^{r} (h + d_i) \left(= \frac{1}{n+1} {2n \choose n} \right)$$

Another Language

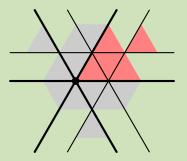
The W-parking space is the same as the Shi arrangement of hyperplanes. Given positive root $\alpha \in \Phi^+ \subseteq Q$ and integer $k \in \mathbb{Z}$ consider the hyperplane $H_{\alpha,k} := \{\mathbf{x} : (\alpha,\mathbf{x}) = k\}$. Then we define

$$\mathsf{Shi}_W := \{ H_{\alpha, \pm 1} : \alpha \in \Phi^+ \}.$$

Cellini-Papi and Shi give an explicit bijection:

elements of
$$Q/(h+1)Q \longleftrightarrow \text{chambers of Shi}_W$$

Example ($W = \mathfrak{S}_3$)



There are $16 = (3+1)^{3-1}$ chambers and $5 = \frac{1}{4} {6 \choose 3}$ orbits.

"Ceiling Diagrams"

I like to think of Shi chambers as elements of the set

$$\{(w,A): w \in W, \text{ antichain } A \subseteq \Phi^+, A \cap \mathsf{inv}(w) = \emptyset\}$$
.

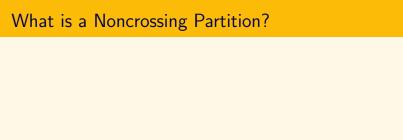
The Shi chamber with "ceiling diagram" (w, A)

- ▶ is in the cone determined by w
- ▶ and has ceilings given by A.

I.O.U.

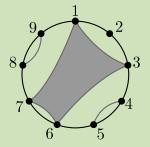
How to describe the W-action on ceiling diagrams?

Pause



What is a Noncrossing Partition?

Definition by Example



We encode this partition by the permutation $(1367)(45)(89) \in \mathfrak{S}_9$.

What is a Noncrossing Partition?

Theorem (Biane, and probably others)

Let $T \subseteq \mathfrak{S}_n$ be the generating set of all transpositions and consider the Cayley metric $d_T: \mathfrak{S}_n \times \mathfrak{S}_n \to \mathbb{N}$ defined by

$$d_T(\pi,\mu) := \min\{k : \pi^{-1}\mu \text{ is a product of } k \text{ transpositions }\}.$$

Let $c=(123\cdots n)$ be the standard n-cycle. Then the permutation $\pi\in\mathfrak{S}_n$ corresponds to a noncrossing partition if and only if

$$d_T(1,\pi) + d_T(\pi,c) = d_T(1,c).$$

" π is on a geodesic between 1 and c"

What is Noncrossing Partition?

Definition (Brady-Watt, Bessis)

Let W be any finite Coxeter group with reflections $T \subseteq W$. Let $c \in W$ be any Coxeter element. We say $w \in W$ is a "noncrossing partition" if

$$d_T(1,w)+d_T(w,c)=d_T(1,c)$$

"w is on a geodesic between 1 and c"

The Mystery of NC and NN

Mystery

Let W be a Weyl group (crystallographic finite Coxeter group). Let NC(W) be the set of noncrossing partitions and let NN(W) be the set of antichains in Φ^+ (called "nonnesting partitions"). Then we have

$$\#NC(W) = \frac{1}{|W|} \prod_{i=1}^{r} (h + d_i) = \#NN(W)$$

- ▶ The right equality has at least two uniform proofs.
- ▶ The left equality is only known case-by-case.
- What is going on here?

The Mystery of NC and NN

Idea and an Anecdote

Idea: Since the parking functions can be though of as

$$\{(w,A): w \in W, A \in \mathsf{NN}(W), A \cap \mathsf{inv}(w) = \emptyset\}$$

maybe we should also consider the set

$$\{(w,\sigma): w \in W, \sigma \in NC(W), \sigma \cap inv(w) = \emptyset\}$$

where " $\sigma \cap \text{inv}(w)$ " means something sensible.

Anecdote: Where did the idea come from?

Pause

Definition of \mathcal{F} -parking functions

Recall the definition of the lattice of flats for W

$$\mathcal{L}(W) := \{ \cap_{\alpha \in J} H_{\alpha,0} : J \subseteq \Phi^+ \},$$

and for any flat $X \in \mathcal{L}(W)$ recall the definition of the parabolic subgroup

$$W_X := \{ w \in W : w(\mathbf{x}) = \mathbf{x} \text{ for all } \mathbf{x} \in X \}.$$

Definition of \mathcal{F} -parking functions

For any set of flats $\mathcal{F} \subseteq \mathcal{L}(W)$ we define the \mathcal{F} -parking functions

$$\mathsf{PF}_{\mathcal{F}} := \{[w,X] : w \in W, X \in \mathcal{F}, w(X) \in \mathcal{F}\} / \sim$$

where
$$[w,X] \sim [w',X'] \Longleftrightarrow X = X'$$
 and $wW_X = w'W_{X'}$

This set carries a natural W-action. For all $u \in W$ we define

$$u \cdot [w, X] := [wu^{-1}, u(X)]$$

The Prototypical Example of \mathcal{F} -Parking Functions

If we consider the set of nonnesting flats

$$\mathcal{F} = \mathcal{N}\mathcal{N} := \{ \cap_{\alpha \in A} H_{\alpha,0} : \text{ antichain } A \subseteq \Phi^+ \}$$

then $\mathsf{PF}_{\mathcal{N}\mathcal{N}}$ is just the set of ceiling diagrams of Shi chambers with the natural action corresponding to $W \curvearrowright Q/(h+1)Q$.

But There is **Another** Example

But There is **Another** Example

But There is **Another** Example

Given any $w \in W$ there is a corresponding flat

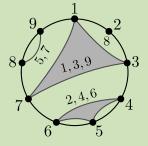
$$\ker(1-w) = \{\mathbf{x} : w(\mathbf{x}) = \mathbf{x}\} \in \mathcal{L}(W).$$

If we consider the set of noncrossing flats

$$\mathcal{F} = \mathcal{NC} := \{ \ker(1 - w) : w \in \mathsf{NC}(W) \}$$

then $\mathsf{PF}_{\mathcal{NC}}$ is something new and possibly interesting. We call $\mathsf{PF}_{\mathcal{NC}}$ the set of noncrossing parking functions.

Example $(W = \mathfrak{S}_9)$



Type A NC parking functions are just NC partitions with labeled blocks.

Theorem

If W is a Weyl group then we have an isomorphism of W-actions:

$$\mathsf{PF}_{\mathcal{NC}} \approx_W \mathsf{PF}_{\mathcal{NN}}$$

This is just a fancy restatement of a theorem of Athanasiadis, Chapoton, and Reiner. Unfortunately the proof is case-by-case using a computer.

However

The noncrossing parking functions have two advantages over the nonnesting parking functions.

- 1. PF_{NN} is defined only for Weyl groups but PF_{NC} is defined also for noncrystallographic Coxeter groups.
- 2. PF $_{\mathcal{NC}}$ carries an exta cyclic action. Let $C = \langle c \rangle \leq W$ where $c \in W$ is a Coxeter element. Then the group $W \times C$ acts on PF $_{\mathcal{NC}}$ by

$$(u, c^d) \cdot [w, X] := [c^d w u^{-1}, u(X)].$$

Cyclic Sieving "Theorem"

Let $h:=|\langle c\rangle|$ be the Coxeter number and let $\zeta:=e^{2\pi i/h}$. Then for all $u\in W$ and $c^d\in C$ we have

$$\begin{split} \chi(u,c^d) &= \# \left\{ [w,X] \in \mathsf{PF}_{\mathcal{NC}} : (u,c^d) \cdot [w,X] = [w,X] \right\} \\ &= \lim_{q \to \zeta^d} \frac{\det(1-q^{h+1}u)}{\det(1-qu)} \\ &= (h+1)^{\mathsf{mult}_u(\zeta^d)}, \end{split}$$

where $\operatorname{mult}_{u}(\zeta^{d})$ is the multiplicity of the eigenvalue ζ^{d} in $u \in W$.

Unfortunately the proof is case-by-case. (And it is not yet checked for all exceptional types.)

For more on noncrossing parking functions see my paper with Brendon Rhoades and Vic Reiner:

Parking Spaces (2012), http://arxiv.org/abs/1204.1760

Vielen Dank!

picture by +Drew Armstrong and +David Roberts