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Let V be complex vector space of finite dimension n.

Definition

A reflection in V is a finite-order element r ∈ GL(V ) such that
codim ker(r − 1) = 1.
A (finite) reflection group in V is a (finite) subgroup W ⊆ GL(V )
that is generated by reflections. For a reflection group W :

we denote by R the set of all reflections in W

if W can be generated by a subset of R of cardinal
dim V /V W , we say that W is well-generated.
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Basic example of a well-generated complex reflection: Sn in
its permutation representation (“type An−1”).

By Coxeter theory, all real reflection groups are well-generated.

Many interesting non-real complex reflection groups are
well-generated.

Non-well-generated example: G31, a reflection group of rank 4
that cannot be generated by 5 reflections.
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Besides its use to classify real reflection groups, Coxeter theory
provides:

canonical generator sets and canonical presentations for real
reflection groups,

associated geometric objects (walls, chambers, galleries,...),

fantastic homotopy-theoretic properties of the space of
reduced decompositions, with corresponding
homotopy-theoretic results about

V −
⋃
r∈R

ker(r − 1).
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Conjecture (Brieskorn and ???, early 1970s)

Let W ⊆ GL(V ) be a finite complex reflection group. Then
V −

⋃
r∈R ker(r − 1) is a K (π, 1) space.

Theorem (Deligne, 1972)

For all finite complexified real reflection group W ,
V −

⋃
r∈R ker(r − 1) is a K (π, 1) space.

Theorem (D.B., 2006, to appear in Annals of Math.)

For all finite complex reflection group W ,
V −

⋃
r∈R ker(r − 1) is a K (π, 1) space.
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Understanding the well-generated case is at the core of proof.

Key ingredient: replace the “walls & chambers” geometry by new
objects, whose combinatorics are controlled by noncrossing
partitions.
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Definition

Let W ⊆ GL(V ) be a finite complex reflection group.
The discriminant of W is the algebraic hypersurface

H ⊆W \V

defined as the image of
⋃

r∈R ker(r − 1) under the quotient map
V 7→W \V .
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⋃
r∈R ker(r − 1)

����

� � // V

����
H �
� //W \V

Theorem (Shephard-Todd)

As an algebraic variety, W \V is an affine space of dimension n.

Theorem (Steinberg)

The restriction of V 7→W \V to V reg := V −
⋃

r∈R ker(r − 1) is
an unramified covering.

In other words, H is the branch locus of the quotient map
V 7→W \V .
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Invariant theory is the algebraic way to study the quotient space.
As an algebraic variety, V can be recovered from

C[V ] ' C[X1, . . . ,Xn]

(algebra of polynomial functions on V ):

V = SpecC[V ]

Similarly,
W \V := SpecC[V ]W .

Shephard-Todd’s theorem implies that, for any complex reflection
group,

C[V ]W ' C[X1, . . . ,Xn].
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Definition

A system of basic invariants for a complex reflection group
W ⊆ GL(V ) is a tuple (f1, . . . , fn) of algebraically independent
generators of C[V ]W such each fi is homogeneous of degree di and
d1 ≤ · · · ≤ dn.

All complex reflection groups admit systems of basic invariants.
Choosing one amounts to choosing an explicit isomorphism

C[V ]W
∼−→ C[X1, . . . ,Xn]

and an explicit isomorphism

W \V = SpecC[V ]W
∼−→ SpecC[X1, . . . ,Xn] = Cn.
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Theorem

Let W ⊆ GL(V ) be an irreducible complex reflection group. The
following assertions are equivalent:

(1) W is well-generated

(2) there exists a system of basic invariants such that the
equation of the discriminant H ⊆W \V is of the form:

X n
n + α2(X1, . . . ,Xn−1)X n−2

n + · · ·+ αn(X1, . . . ,Xn−1) = 0
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Example: type A2 reflection group (S3). The discriminant
equation can be written:

X 2
2 − X 3

1 = 0
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Definition (audience: please interrupt me, this definition isn’t valid)

The braid group B(W ) of W is the fundamental group of
W \V −H = W \V reg.

When W is real, then B(W ) is isomorphic to the associated Artin
group A(W ).
The unramified cover V reg � W \V reg yields an exact sequence:

1 //π1(V reg) //B(W ) = π1(W \V reg) //W //1.
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How do you choose a basepoint?
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Definition (fat basepoint trick)

Let X be a topological space. Let U be a contractible subspace of
X . Let π1(X ) be the fundamental groupoid of X .
The fundamental group of X with respect to the “fat basepoint” U
is defined as the transitive limit

π1(X ,U) := lim
−→

u,v∈U
Homπ1(X )(u, v)

for the transitive system of isomorphisms given by homotopy
classes of paths within U .
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If you don’t like transitive limits, just remember this:

any path starting in u ∈ U and ending in v ∈ U represents an
element of π1(X ,U)

if your intuition requires you to really see a loop, draw a path
within U connecting u and v

the product of an element represented by a path with
endpoints u, v ∈ U with an element represented by a path
with endpoints u′, v ′ ∈ U is well-defined

if your intuition requires you to see this product as
concatenation, draw a path within U connecting v and u′

because U is contractible, all the paths you can draw within U
are homotopic
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∆f = X n
n + α2(X1, . . . ,Xn−1)X n−2

n + · · ·+ αn(X1, . . . ,Xn−1)

Let Y = SpecC[X1, . . . ,Xn−1] and let us identify

W \V ' Y × C

We can rewrite ∆f as:

∆f = X n
n + α2(Y )X n−2

n + · · ·+ αn(Y ).

This formula can be viewed as a map from Y to the space En of
monic degree n one-variable polynomials whose degree n − 1
coefficient is 0.
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The space En is itself the orbit space of a type A reflection group:
for Sn acts irreducibly on the hyperplane H of equation

∑
i Xi = 0

in C, and En

H −→ En

(x1, . . . , xn) 7−→ (X − x1) . . . (X − xn)

= X n + σ2X n−2 − σ3X n−3 + (−1)nσn

In other words: En is the space of centered configurations of n
points in a plane.
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Definition (Lyashko-Looijenga)

The Lyashko-Looijenga morphism associated with an irreducible
well-generated complex reflection group W is the morphism

LL : Y −→ En

associated with the discriminant equation

∆f = X n
n + α2(Y )X n−2

n + · · ·+ αn(Y ).

This depends on the choice of a system of basic invariants.
It is a non-Galois algebraic covering of degree

n!dn
n

|W |
.
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In W \V ' Y ×C, consider a “vertical” line Ly obtained fixing the
first n − 1 coordinates.
The intersection Ly ∩H is the multiset {x1, . . . , xn} of roots of ∆f

at y . Set-theoretically,

LL(y) = {x1, . . . , xn}
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Definition

The standard fat basepoint for an irreducible well-generated
complex reflection group W is the subspace U ⊆ V \W −H
defined by:

U := {(y , x) ∈ Y × C|x is not below any point in LL(y)}.

U∩Ly
•
•

•
•

David Bessis Noncrossing partitions and reflection discriminants



well-generated complex reflection groups
reflection discriminants

chains in the noncrossing partition lattice

Lemma

The standard fat basepoint U is contractible.
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Definition

The braid group of W is

B(W ) := π1(W \V −H,U).
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Let y ∈ Y . The configuration LL(y) contains k distinct points
(with 1 ≤ k ≤ n) that we can order lexicographically (x1, . . . , xk):

•
•

•
•

x1

x2

x3

x4

The reduced label of y is the sequence rlbl(y) = (s1, . . . , sk) ∈W ∗

obtained by mapping via B(W )→W the elements of B(W )
corresponding to the paths:

•
•

•
•ll

s1

ll
s2

ll
s3

ll
s4
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Definition

The reduced label of 0 consists of a single element, which we
denote by c . It is the Coxeter element of W . We set:

Dk(c) := {(s1, . . . , sk) ∈W k |c = s1 . . . sk and lR(c) =
∑
i

lR(si )}.

D•(c) := (Dk(c))k∈Z≥0

Lemma

For all y ∈ Y .

(i) rlbl(y) ∈ D•(c)

(ii) for all i , the reflection length lR(si ) coincides with the
multiplicity of xi in LL(y).
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Definition

Let x ∈ En, let (s1, . . . , sk) ∈ D•(c). We say that x and
(s1, . . . , sk) are compatible if x contains k distinct points and, for
all i , the multiplicity of the i-th point in x (for the lexicographic
ordering) coincides with lR(si ).
We denote by

En � D•(c)

the space of compatible pairs.

Theorem (That’s the nicest theorem of the talk!)

The map LL× rlbl induces a bijection

LL× rlbl : Y
∼−→ En � D•(c)
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⋃
r∈R ker(r − 1) //

��

V

W \
��

H //W \V Y × C

��
K

��

// Y

LL
��

rlbl // D•(c)

HAn−1
// En En � D•(c)oo

OO

⋃
1≤i<j≤n Hi ,j

//

OO

Cn

Sn\

OO
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All elements in sequences in D•(c) lie in NCP(W ), the lattice of
noncrossing partitions of type W :
Let (s1, s2) ∈ D2(c). The condition lR(s1) + lR(s2) = lR(c) implies
that s1 lies in NCP(W ).

There is a 1-to-1 correspondence

(s1, s2, . . . , sk) 7−→ 1 ≤ s1 ≤ s1s2 ≤ · · · ≤ s1s2 . . . sk = c

between D•(c) and the set of chains in NCP(W ).
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The set D•(c) comes equipped with

simplicial set structure: this
consists of:

face operators

(s1, . . . , si , si+1, . . . , sk) 7→ (s1, . . . , si si+1, . . . , sk)

degeneracy operators:

(s1, . . . , si , si+1, . . . , sk) 7→ (s1, . . . , si , 1, si+1, . . . , sk)

Hurwitz action: for each k, the braid group Bk acts on Dk(c) by

(s1, . . . , si , si+1, . . . , sk) 7→ (s1, . . . , si si+1s−1
i , si , . . . , sk)

...and an extra cyclic operator

(s1, s2, . . . , sk) 7→ (s2, . . . , sk , s
c
1 )
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These three structures satisfy many compatibility axioms.

The simplicial set structure on D•(c)

is closely related to the homotopy-theory of W \V −H (there
exists a natural geometric realization functor from the
category of simplicial sets to the category of topological
spaces)

and captures all information about the ramification theory
of the Lyashko-Looijenga morphism.

The Hurwitz structure on D•(c) captures all the information,
stratum-by-stratum, about the monodromy theory of the
Lyashko-Looijenga morphism.
The combination of a simplicial set structure and a compatible
Hurwitz structure is what is needed to fully understand a
ramified covering. I have found adequate axioms and theory of this
generic situation.
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Together, the simplicial set structure on D•(c) and the
compatible cyclic operator are (a minor generalization) of a cyclic
set structure, in the sense of Connes.

Theorem

The geometric realization of a cyclic set comes equipped with a
natural S1-action.

In other words:

C∗-action on W \V and W \V −H ←→ cyclic structure on D•(c)

study of (W \V −H)µd ←→ cyclic sieving phenomenon on D•(c)
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THANKS!
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