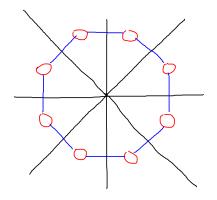
Non-crossing partition lattices and Milnor fibres

Tom Brady Mike Falk Ben Quigley Colum Watt

Bielefeld, 2014

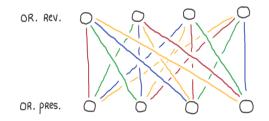
Dihedral Groups I

Cayley graph with the simple reflections as a generating set.



Dihedral Groups II

Cayley graph with all reflections as generating set?

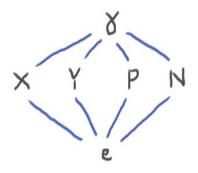


Result is $K_{n,n}$ graph.

This has homotopy type of Milnor fibre of complexified arrangement.

Non-crossing partitions

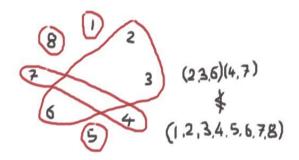
W finite real reflection group of rank n |w| = total reflection lengthpartial order: $w_1 \le w_2 \Leftrightarrow |w_2| = |w_1| + |w_1^{-1}w_2|$. $(abcd = bda^{bd}c^d)$ γ is a fixed Coxeter element. NCP= elements in $[e, \gamma]$ (lattice under \le)



Dihedral NCP lattice

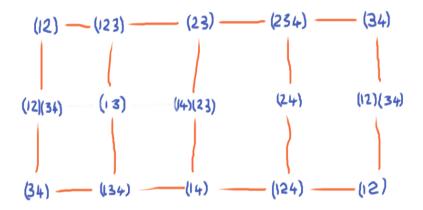
Classical Non-crossing Partitions

Example: $W = \sum_{n+1}$ reflections are transpositions $\gamma = (1, 2, ..., n, n + 1)$, an (n + 1)-cycle $w \le \gamma$ if and only if cyclic order in blocks is that induced by γ and blocks of w are non-crossing.



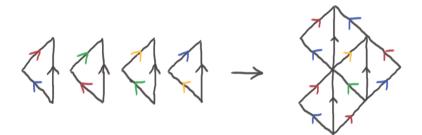
Crossing partition

Proper part of Σ_4 NCP lattice



Braid group of W

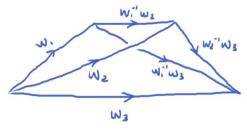
B(W) is the group with generating set $\{[w] \mid w \in NCP, w \neq e\}$ and relations $[w_1][w_1^{-1}w_2] = [w_2]$ whenever $w_1 < w_2$. **Example:** $W = D_4$, dihedral group of square.



The classifying space K

Can extend presentation 2-complex of B(W) by filling in higher dimensional cells for longer chains.

 $w_1 < w_2$ and $w_2 < w_3$ implies $w_1 < w_3$ but also $w_1^{-1}w_2 < w_1^{-1}w_3$.



3-cell

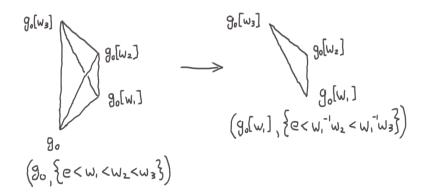
Resulting complex, K, is a K(B(W), 1)!

Universal cover of K

Let X be universal cover of K. This is a simplicial complex with vertex set B(W), the braid group. It has a k-cell on $\{g_0, g_1, \ldots, g_k\}$ if $g_i = g_0[w_i]$ for $1 \le i \le k$ and $e < w_1 < w_2 < \cdots < w_k$ in NCP. Write this cell as $(g_0, \{e < w_1 < w_2 < \dots < w_k\})$. Of course B(W) acts on X by left multiplication: $g \cdot (g_0, \{e < w_1 < \cdots < w_k\}) = (gg_0, \{e < w_1 < \cdots < w_k\}).$ Here $(g_0, \{e < w_1 < w_2 < \cdots < w_k\})$ has facets $(g_0, \{e < w_1 < w_2 < \cdots < \widehat{w}_i < \cdots < w_k\})$ for $1 \le i \le k$ and a 'top facet'

$$(g_0[w_1], \{e < w_1^{-1}w_2 < w_1^{-1}w_3 < \cdots < w_1^{-1}w_k\})$$

Cells of X



Intermediate covers of K

If $H \triangleleft B(W)$ we can construct an intermediate cover $H \setminus X$ vertex set: $H \setminus B(W)$ cells : $(Hg, \{e < w_1 < w_2 < \cdots < w_k\})$ $H \setminus B(W)$ action If $H = \ker(\phi)$ for $\phi : B(W) \twoheadrightarrow G$ identify Hg with $\phi(g)$, giving a G action on $H \setminus X$. $(\phi(g), \{e < w_1 < w_2 < \cdots < w_k\})$ has 'top facet' $(\phi(g)\phi([w_1]), \{e < w_1^{-1}w_2 < w_1^{-1}w_3 < \cdots < w_1^{-1}w_k\})$

Milnor fibre for discriminant

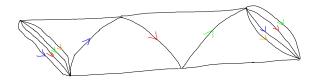
Example: (Milnor fibre of discriminant.)

$$\phi: B(W) \twoheadrightarrow \mathbb{Z} : [w] \mapsto |w|.$$

$$\operatorname{ker}(\phi) \setminus X \text{ cells } (n, \{e < w_1 < w_2 < \cdots < w_k\}), n \in \mathbb{Z}.$$

$$(n, \{e < w_1 < w_2 < \cdots < w_k\}) \text{ has top facet}$$

$$(n + |w_1|, \{e < w_1^{-1}w_2 < \cdots < w_1^{-1}w_k\})$$



Retraction of cover

Definition: We define *N* to be the finite subcomplex of ker $(\phi) \setminus X$ consisting of the cells of the form

$$(m, \{e < w_1 < w_2 < \cdots < w_k\}), 0 \le m < n - |w_k|$$

Note: We observe that *N* is the union of cells of the form

$$(0, \{e \leqslant w_1 \leqslant w_2 \leqslant \cdots \leqslant w_{n-1}\}), |w_{n-1}| = n-1$$

and their faces. In particular, N is (n-1)-dimensional.

Proposition: The subcomplex *N* is a strong deformation retract of ker(ϕ)*X*.

Lemma: If $|w_k| < n$ then, in $H \setminus X$, the cell $(Hg, \{e < w_1 < w_2 < \dots < w_k\})$ is a facet of precisely two cells of form $(Hg', \{e < u_1 < u_2 < \dots < u_k < \gamma\})$. They are $(Hg, \{e < w_1 < w_2 < \dots < w_k < \gamma\})$ and $(Hg[\gamma w_k^{-1}]^{-1}, \{e < \gamma w_k^{-1} < \gamma w_k^{-1} w_1 < \dots < \gamma w_k^{-1} w_{k-1} < \gamma\})$

Full Milnor fibre

Example: (Milnor fibre.) $\theta : B(W) \to \mathbb{Z} \times W : [w] \mapsto (|w|, w)$. cells of ker $(\theta) \setminus X$: $((n, w), \{e < w_1 < w_2 < \cdots < w_k\})$, for $n \in \mathbb{Z}, w \in W$ with parity(w) = parity(n).

$$((n, w), \{e < w_1 < w_2 < \cdots < w_k\})$$
 has top facet
 $((n + |w_1|, ww_1), \{e < w_1^{-1}w_2 < \cdots < w_1^{-1}w_k\})$

Definition: We define *M* to be the finite subcomplex of $ker(\theta) \setminus X$ consisting of the cells of the form

 $((m, w), \{e < w_1 < w_2 < \cdots < w_k\}),\$ where $0 \le m < n - |w_k|$ and parity(w) = parity(m).

Note: We observe that M is the union of cells of the form

$$((0, w), \{e \leq w_1 \leq w_2 \leq \cdots \leq w_{n-1}\}), |w_{n-1}| = n-1, w \in W_+$$

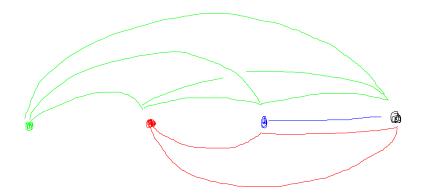
and their faces.

Proposition: The subcomplex *M* is a strong deformation retract of ker(θ)*X*.

Structure of Milnor fibre for discriminant

Define the following subcomplexes of N:

$$N_i = \{ \tau \mid \tau = (j, \sigma) \text{ where } j \ge i \}.$$



Structure of Milnor fibre for discriminant II

Each cell in $N_i \setminus N_{i+1}$ has the form

 $(i, \{e < w_1 < \cdots < w_k\}), \text{ with } i + |w_k| < n.$

 N_i has the structure of the mapping cone of a map

$$\phi_i: |\mathsf{NCP}_{[1,n-i-1]}| \to \mathsf{N}_{i+1}$$

where the cone point corresponds to the vertex $(i, \{e\})$ of N_i .

The corresponding filtration $\{N_0 \supset N_1 \supset \cdots \supset N_{n-1}\}$ of N can be used to compute the homology of N. This is possible since each quotient space N_i/N_{i+1} has the homotopy type of the suspension of $|NCP_{[1,n-i-1]}|$ while $|NCP_{[1,n-i-1]}|$ in turn has the homotopy type of a wedge of spheres.