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Background and motivation Weak order and reflection cocycle of a Coxeter group

Definition of weak order on Coxeter groups

(W ,S): Coxeter system e.g. W a finite Weyl group.
Φ ⊇ Φ+: (real, reduced) root system and positive roots.
T := {wsw−1 | w ∈W , s ∈ S } = { sα | α ∈ Φ } reflections.

ΦW×{±1} 88 , Φ+
∼=−→ Φ/{±1} ∼= T W

xx
.

l(w) := min{n ∈ N | w ∈ Sn }. (l is the standard length function.)

For w ∈W , Φw := Φ+ ∩ w(−Φ+) (inversions of w).
Weak order: x ≤ y ⇐⇒ l(y) = l(x) + l(x−1y) ⇐⇒ Φx ⊆ Φy .

|Φw | = l(w).
Maximal chains from 1 to w in (W ,≤) correspond naturally to
reduced expressions of w .
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Background and motivation Weak order and reflection cocycle of a Coxeter group

The Boolean ring P(T ) and cocycle N : W → P(T )

Boolean ring R: r2 = r for all r ∈ R.
R is partially ordered: r ≤ s ⇐⇒ rs = r .
For any set X , P(X ) := {A | A ⊆ X } is a Boolean ring:
A + B := (A ∪ B) \ (A ∩ B), AB := A ∩ B, A ≤ B ⇐⇒ A ⊆ B.
Stone’s theorem: any Boolean ring R is canonically isomorphic to
a subring of P(X ) where X = Spec(R).

Define Φ̂ : W → P(Φ) by Φ̂(w) := Φw ∪̇ − Φw = Φ+ + w(Φ+).
Φ̂ ∈ B1(W ,P(Φ)) ⊆ Z 1(W ,P(Φ)) is a 1-cocycle.

Define N : W → P(T ) by N(w) := { sα | α ∈ Φ̂(w) }.
N ∈ Z 1(W ,P(T )), N(w) = { t ∈ T | l(tw) < l(w) }.
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Background and motivation Weak order and reflection cocycle of a Coxeter group

Properties of weak order and the reflection cocycle

Theorem
(a) N : W → P(T ) is a 1-cocycle i.e. N(xy) = N(x) + x · N(y) for all

x , y ∈W, where x · N(y) := xN(y)x−1.
(b) x ≤ y ⇐⇒ N(x) ⊆ N(y).
(c) (W ,≤) is a complete meet semilattice (Björner); it is an even an

order ideal (downset) in some complete ortholattice.
(d) Intervals in (W ,≤) are finite; S is the set of atoms of W.
(e) For s ∈ S and w ∈W, either N(s) ⊆ N(w) or N(s) ∩ N(w) = ∅.

Each of the following determines the others up to isomorphism:

(W ,S)! (W , l)! (W ,Φ,Φ+)! (W ,P(T ),N)! (W ,≤).
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Groupoids with weak orders Groupoids with preorders from a cocycle (PGPs)

Definition
A groupoid-preorder (GP) is a pair (G,≤) where

(i) G is a groupoid. aGb := HomG(b,a), aG := ∪̇ b aGb (left star).
(ii) ≤ is a preorder on mor(G) such that morphisms in distinct left

stars are incomparable.
The restriction a ≤ of ≤ to aG is called the weak preorder of G at a.

Definition
A protorootoid is a triple R = (G,Λ,N) where

(i) G is a groupoid and Λ: G→ BoolRing is a functor.
(iii) N ∈ Z 1(G,Λ) is a 1-cocycle i.e for a ∈ ob(G) and g ∈ aG, there is

given Ng = N(g) ∈ Λ(a) satisfying Ngh = Ng + (Λ(g))(Nh).
The underlying GP of R is (G,≤) where for g,h ∈ aG, one has g≤ h if
Ng ≤ Nh in Λ(a).
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Groupoids with weak orders Groupoids with preorders from a cocycle (PGPs)

Protorootoidal groupoid-preorders (PGPs)

A GP (G,≤) is protorootoidal (a PGP) if it is the underlying GP of a
protorootoid.

PGP’s may be alternatively characterized as GPs coming from a
signed groupoid set (G,Φ,Φ+) via g ≤ h if Φg ⊆ Φh. We have:

(G,≤) (G,Λ,N) (G,Φ,Φ+) (G,Λ′,N ′) (G,≤′)

(natural constructions). If (G,≤) is a PGP, then (G,≤′) = (G,≤).

Theorem
Let R = (G,≤) be a GP. Then R is a PGP iff for all a ∈ ob(G) and
gl ∈ aGδl (l = 1, . . . ,n) one has g−1

i gj δi≤ g−1
i gk if (f (i) = f (j) or

f (j) = f (k)) for all functions f : {1, . . . ,n} → {0,1} such that
(f (p) = f (q) or f (q) = f (r)) whenever g−1

p gq δp≤ g−1
p gr (1 ≤ p,q ≤ r ).
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Groupoids with weak orders Groupoids with preorders from a cocycle (PGPs)

Example

Writing g∗ := g−1 for g ∈ mor(G), a PGP (G,≤) satisfies:

If f ≤ ff ∗ then f ∗ ≤ f ∗g.
If f ≤ fg and f ∗ ≤ g then f ≤ ff ∗.
If f ≤ fg then g∗ ≤ g∗f ∗.
If f ≤ fg and fg ≤ fgh then f ≤ fgh and g ≤ gh.
If f ≤ fg, g ≤ gh and fgh ≤ fghk then g ≤ ghk .
If f ≤ fg, f ≤ fh and g∗k ≤ g∗h then f ≤ fk .

For any GP (G,≤) define an “orthogonality relation” a ⊥ (or ⊥) on
aG by g a ⊥ h if g∗ ≤ g∗h.
For a PGP, g a ⊥ h ⇐⇒ h a ⊥ g (⇐⇒ NgNh = 0 in Λ(a)).
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Groupoids with weak orders PGPs with semilattice weak orders (RGPs)

Rootoidal groupoid-preorders (RGPs)
Definition
A PGP (G,≤) is rootoidal (a RGP) if (i)-(ii) hold for all a ∈ ob(G):

(i) (aG, a ≤) is a complete meet semilattice.
(ii) JOP (join orthogonality property): Let (gi)i∈I be a family in aG with

an upper bound and set g :=
∨

i gi ∈ aG. If h ∈ aG with gi ⊥ h for
all i , then g ⊥ h.

A protorootoid is a rootoid if its underlying GP is a RGP.

Theorem
A PGP (G,≤) is a RGP iff for all a ∈ ob(G), (aG, a ≤) is embeddable
as an order ideal of a complete ortholattice.

(A complete ortholattice is a complete lattice P with an order-reversing
map x 7→ x{ satisfying (x{){ = x , x{ ∨ x = 1P and x ∧ x{ = 0P for all
x ∈ P, where 1P and 0P are the top and bottom elements of P.)
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Groupoids with weak orders Braid presentations of principal RGPs (PRGPs)

Principal RGPs and their braid presentations

Definition
A PRGP (principal RGP) is a RGP such that (i)–(ii) below hold:

(i) For all a ∈ ob(G), each interval [g,h] in aG is finite.
Notation: aS := {atoms of aG} and S := ∪̇a∈ob(G)aS.

(ii) For all a ∈ ob(G), s ∈ aS and g ∈ aG, one has either s a ≤ g or
s a ⊥ g.

Theorem
Let (G,≤) be a PRGP and S be as above. Then
(a) 〈S 〉 = G, S = S∗ (the atomic generators). Set l := lS to be the

corresponding length function.
(b) Braid presentation: G ∼= 〈S | trivial relations, braid relations 〉.
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Groupoids with weak orders Braid presentations of principal RGPs (PRGPs)

Trivial relations: r = s−1 for each r , s ∈ S with r = s∗.
Braid relations: Let a ∈ ob(G) and r 6= s ∈ aS such that z := r ∨ s
exists. Set m := l(z). There are unique reduced S-expressions
z = r1 · · · rm with r1 = r , and z = s1 · · · sm with s1 = s. The “braid
relation” corresponding to (a, r , s) is r1 · · · rm = s1 · · · sm.

Theorem
(a) If r1 · · · rn and s1 · · · sn are reduced S-expressions of g ∈ mor(G),

they are braid equivalent.
(b) If the S-expression r1 · · · rn is not reduced, it is braid equivalent to

an S-expression · · · rr∗ · · · .

There are minimal (“real reduced”) (G,Φ,Φ+) and (G,Λ,N) so
(G,S)! (G, l)! (G,Φ,Φ+)! (G,Λ,N)! (G,≤).
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Categories of groupoids with weak orders Completeness of categories of RGPs

Definitions of the categories RGP and PRGP

Definition
The category RGP has RGPs as objects. Morphisms
π : (G,≤)→ (H,�) are functors π : G→ H such that for all a ∈ ob(G)

(i) aπ : aG→ π(a)H preserves meets of non-empty subsets of aG and
joins of subsets of aG with an upper bound.

(ii) AOP (adjunction orthogonality property) If h ∈ π(a)H and
aπ
⊥(h) := min({g ∈ aG | h π(a)� aπ(g) }) is defined, then

aπ
⊥(h) a⊥ g ⇐⇒ h π(a)⊥ aπ(g), for all for g ∈ aG.

Call aπ
⊥ : dom(aπ

⊥)→ aG the partial left adjoint of aπ: for g ∈ aG,
h ∈ π(a)H, h π(a)� aπ(g) ⇐⇒ h ∈ dom(aπ

⊥) and (aπ
⊥)(h) a ≤ g.

PRGP is the full subcategory of RGP with PRGPs as objects.
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Categories of groupoids with weak orders Completeness of categories of RGPs

Completeness properties of RGP and PRGP

Theorem
(a) RGP is complete (has all small categorical limits).
(b) PRGP has all limits from categories with finitely many objects.

Comments on proof
GP has GPs as objects, morphisms π : (G,≤)→ (H,�) are
functors so all aπ are order preserving. PGP is defined similarly.
A limit in GP has the limit groupoid with limit weak preorders.
RGP→ PGP→ GP create limits; PRGP→ RGP creates limits
from a category J if ob(J) is finite.
In (b), atomic generators for the limit come from partial adjoints;
AOP implies the limit is principal.
AOP is proved using formulae for partial left adjoints as joins.
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Categories of groupoids with weak orders Squares and cubes in RGPs

Definition of squares and cubes in a RPG

Definition
A square of a RGP (G,≤) is a square commutative diagram in G
such that the two morphisms into each vertex are orthogonal:

yoo

x

OO

w

OO

v
oo

where yw = xv , x ⊥ y , y∗ ⊥ w ,w∗ ⊥ v∗, v ⊥ x∗.

Equivalently, yw = xv , y ⊥ x and (Λ(y))(Nw ) = Nx .
Equivalently, yw = xv and y(Φw ) = Φx .
An n-cube of (G,≤) is an n-cubical diagram in G in which each
2-face is a square of (G,≤).
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Categories of groupoids with weak orders Squares and cubes in RGPs

Example
W = S4, S = {r = (1,2), s = (2,3), t = (3,4)}.

rst //

rst //

r
__???????

s
??�������

sr

OO

rst
//

s
���������

ts

OO

t
��???????

sr

OO

rst
//

ts

OO
srts //

srts //

t
__???????

r
??�������

r

OO

srts
//

t
���������

t

OO

r
��???????

r

OO

srts
//

t

OO

The maximal n for which non-trivial n-cubes exist in (W ,≤) is the
maximum rank of a finite parabolic subgroup of (W ,S) (non-trivial
means there are no identity morphisms on edges).
(Ferdinands) Every n-cube in a finite Coxeter group is a face of
one with long diagonal (the composite from source to sink) w0.
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Categories of groupoids with weak orders Squares and cubes in RGPs

The RGP of n-cubes

Theorem
Fix a RGP R = (G,≤). For n ∈ N, there is a morphism π(n) : R(n) → R
in RGP such that R(n) = (G(n),≤(n)), ob(G(n)) = {n-cubes of R},
mor(G(n)) = {(n + 1)-cubes of R},

Hom(x
OO
, y

OO
) = {(n + 1)-cubes

oo
y

OO
x

OO

oo },
oo

z
OO

y
OO

oo ◦
oo

y
OO

x
OO

oo =
oo

z
OO

x
OO

oo

(

goo
y

OO
x

OO

oo y≤(n)
hoo

y
OO

z
OO

oo ) ⇐⇒ g b≤ h, π(n)(

goo
y

OO
x

OO

oo ) = ( b a
goo )

where x , y , z are n-cubes with sinks a,b, c indicated by their
arrowheads and g,h are morphisms in G between these sinks.

If R is a PRGP, then so is R(n) and π(n) is a morphism in PRGP.
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Categories of groupoids with weak orders Squares and cubes in RGPs

Zig-zag construction

Let x ,e ∈ aG with x ⊥ e. Define (if possible) xi , zi ∈ mor(G) by x0 := x ,

a eoo

x

OO
eoo

xi

OO
zi

OO

oo
e∨xi

ggOOOOOOOOOOOOO

e∗ //

e∗∨zi

77ooooooooooooo
xi+1

OO

//

zi

OO

for i ∈ N, x∞ :=
∨

i∈N xi , z∞ :=
∨

i∈N zi .

Theorem

There is a square (∗):
eoo

x ′
OO

z′
OO

oo with x a≤ x ′ iff x∞ and z∞ are defined.

In that case,
eoo

x∞
OO

z∞
OO

oo is a square (∗) with x a≤ x∞ and any square

(∗) with x a≤ x ′ satisfies x∞a≤ x ′ and z∞b≤ z ′ where e∗ ∈ bG.
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Categories of groupoids with weak orders Functor RGPs

Subgroupoid of functor groupoid defined with squares

Let R = (G,≤) be a RGP, H be a groupoid with G, H connected.
The functor category GH is a groupoid. Objects: functors H → G.
For functors α, β : H → G, a morphism ν : α→ β is a natural
transformation ν i.e. ν = (νa : α(a)→ β(a))a∈ob(G) where

α(a)

νa

��

α(h) //α(b)

νb

��
β(a)

β(h)
//β(b)

commutes for all h : a→ b in mor(H).
GH
� is the subgroupoid of GH with all objects but only morphisms

ν : α→ β for which the above diagrams are squares of R.
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Categories of groupoids with weak orders Functor RGPs

Definition of functor RGPs

Fix b ∈ ob(H) and F ∈ ob(GH). Evaluation at b gives a functor
GH → G which restricts to a functor ε : K → G where K is the
component of GH

� containing F . Set a := F (b) = ε(F ) ∈ ob(G).
Give K the structure of GP (K ,�) by pullback along ε: for
k ∈ ob(K ) and α, β ∈ kK , let α k� β if ε(α) ε(k)≤ ε(β).

Theorem
T := (K ,�) is a RGP, called a functor RGP of R.
T depends only on the component K of GH

� (not on b).
ε : T → R is a morphism in RGP. It is independent of choice of b
up to natural isomorphism.
If R is a PRGP, then T is a PRGP and ε is a morphism in PRGP.

Matthew Dyer (University of Notre Dame) Groupoids with weak orders Bielefeld 14 June, 2014 19 / 42



Categories of groupoids with weak orders Functor RGPs

Local embeddings of based connected groupoids

The category E (of local embeddings of based connected
groupoids) has connected groupoids with a specified basepoint as
objects and basepoint preserving groupoid homomorphisms which
are injective on stars as morphisms. Have (G,a), (K ,F ) ∈ ob(E).
The category E/(G,a) has morphisms f ′ : (G′,a′)→ (G,a) of E
as objects. A morphism f ′ → f ′′ is a commutative diagram in E

(G′,a′)

g
��

f ′ // (G,a)

(G′′,a′′)
f ′′

99ttttttttt

The set of isomorphism classes [f ′] of objects f ′ of E/(G,a) forms
a poset Λ = ΛG,a under [f ′] ≤ [f ′′] above.
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Categories of groupoids with weak orders Functor RGPs

Duality

Theorem
R = (G,≤) a RGP, H a groupoid with G and H connected, b ∈ ob(G),
F : H → G. Let a := F (b), ε : K → G be as before.
(a) F ] := ε : (K ,F )→ (G,a) is an object of E/(G,a), hence so is F ]].
(b) There is a unique base-point preserving groupoid homomorphism

F ′ making the following diagram commute:

(H,b)
F //

∃!F ′
���
�
�

(G,a)

(H ′,b′)

F ]]
::ttttttttt
(K ,F )

F ]

OO

(c) The maps ([F ] 7→ [F ]], [F ] 7→ [F ])]) restrict to a Galois connection
on Λ. The stable classes ([F ] = [F ]]]) form a complete lattice.
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Appendix: The category of rootoids

Definition of the category Prtd of protorootoids

Many results can be formulated equivalently in terms of either GPs,
protorootoids or signed groupoid sets (G,Φ,Φ+); however, signed
groupoid sets aren’t as convenient for category-theoretic arguments.

Definition
The category Prtd of protorooids has protorootoids as objects. A
morphism (G,Λ,N)→ (H, Γ,M) in Prtd is a pair (α, ν) where

α : G→ H is a functor.

ν : Λ→ Γα is a natural transformation
G Λ //

α

��

BoolRing

H Γ //BoolRing
M(α(g)) = νa(Ng) ∈ Γ(α(a)) if a ∈ ob(G) and g ∈ aH.

Composition: (β, µ)(α, ν) := (βα, (µα)ν)
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Appendix: The category of rootoids

Abridgement of a protorootoid
Abridgement is a basic construction which produces a “minimal”
version of a protorootoid, somewhat analogous to a “real, reduced”
root system attached to a more general root system.

Let R = (G,Λ,N) be a protorootoid.
Let Λ′ : G→ BoolRing be the subrepresentation of Λ such that
Λ′(a) is the subring of Λ(a) generated by {N(g) | g ∈ aG }.
Let N ′ ∈ Z 1(G,Λ′) be the restriction of N: N ′(g) := N(g), g ∈ aG.
A(R) := (G,Λ′,N ′) is a protorootoid, called the abridgement of R,
with the same underlying GP as R.
There is a morphism (IdG, ι) : A(R)→ R in Prtd where ι : Λ′ → Λ
is the natural transformation with component at a ∈ ob(G) given
by the inclusion Λ′(a)→ Λ(a).
Abridgement extends naturally to a functor A : Prtd→ Prtd.
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Appendix: The category of rootoids

Definition of the category Rtd of rootoids

The “underlying GP” construction (G,Λ,N) (G,≤) extends to a
functor F : Prtd→ GP.
The category Rtd (resp., PRtd) of rootoids (resp., preprincipal
rootoids) is the subcategory of Prtd containing those objects
(morphisms) of Prtd such that F (X ) is an object (resp., morphism)
of RGP (resp., PRGP).

The diagram
Rtd //

��
RGP

��
Prtd // GP

realizes Rtd as a fiber product

category Rtd = Prtd×GP RGP. Similarly PRtd = Prtd×GP PRGP.

Many general arguments involving rootoids can be decomposed into a
(usually tedious but essentially trivial) category-theoretic part involving
Prtd and a (often non-trivial) order-theoretic part involving RGP.
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Appendix: Construction of a protorootoid from a GP

The construction (G,≤) (G,Λ,N).
An example of a good categorical property of Prtd in relation to GP:

Theorem
The “underlying GP” functor F : Prtd→ GP has a left adjoint
GP→ Prtd given on objects by (G,≤) (G,Λ,N) where:

For a ∈ ob(G), Λ(a) is the quotient of the free Boolean ring on
generators (g,h) where h ∈ bG, b ∈ ob(G), g ∈ aGb, by relations
(g,h)(g, l) = (g, l) if h b≤ l , (g,hk) = (g,h) + (gh, k).
Denote the image of (g,h) in the quotient Λ(a) by [g,h].
Λ(j)([g, k ]) := [jg, k ], N(g) := (1a,g).
So [g,h] = (Λ(g))(N(h)).

The underlying GP (G,≤′) of (G,Λ,N) is the coarsest PGP on G such
that ≤′ is finer than ≤ (given preorders �, �′ on a set X , �′ is finer
than �′′, or �′′ is coarser than �′, if x �′′ x ′ =⇒ x �′ x).
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Appendix: Signed groupoid-sets

Signed groupoid-sets (G,Φ,Φ+).

The category SSet of definitely signed sets has as objects sets A with
a given free action by the group {±1} ∼= Z/2Z and a given set of
{±1}-orbit representatives A+ (called the positive elements).
Morphisms are {±1}-equivariant functions (not necessarily preserving
positive elements) with usual composition.

A signed groupoid-set is a triple (G,Φ,Φ+) where G is a groupoid,
Φ: G→ SSet is a functor and for a ∈ ob(G), Φ+(a) := (Φ(a))+.

To compare these with protorootoids, introduce the following notation:

Let P : Set→ BoolRing be the contravariant power set functor.
For any groupoid G, let jG : G→ G be the (contravariant) inversion
functor (fixing objects and sending g 7→ g∗ on morphisms).
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Appendix: Signed groupoid-sets

The construction (G,Φ,Φ+) (G,Λ,N)

Let (G,Φ,Φ+) be a signed groupoid-set.
Define Γ: G→ Set by Γ(a) := Φ(a)/{±1} for a ∈ ob(G).
Set Λ := PΓjG : G→ BoolRing.
N(g) := (Φ+(a) + Φ(g)(Φ+(b))) /{±1} ∈ Λ(a), for g ∈ aGb.

Theorem
(a) (G,Λ,N) is a protorootoid.
(b) In (G, Γ,N), G is a groupoid, Γ: G→ Set and N ∈ Z 1(G,PΓjG).
(c) (G,Φ,Φ+)! (G, Γ,N) (either determines the other up to ∼=).

This shows signed groupoid sets correspond naturally (as objects) to
special protorootoids which we call set protorootoids. Part (c) underlies
classification of principal {±1}-bundles in the category of G-sets.
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Appendix: Signed groupoid-sets

The construction (G,Λ,N) (G,Φ,Φ+).
Protorootoids give rise to signed groupoid sets via Stone’s theorem:

Let (G,Λ,N) be a protorootoid, so Λ: G→ BoolRing
Ψ := Spec ΛjG : G→ Set, Γ := PΨjG : G→ BoolRing.
By Stone’s theorem, there is a natural transformation ι : Λ→ Γ
with injective components defined by
ιa(r) := { p ∈ Spec(Λ(a)) | r 6∈ p } for r ∈ Λ(a), a ∈ ob(G).
M := ιN ∈ Z 1(G, Γ) where M(g) := ιa(N(g)) for g ∈ aG.
Have Ψ: G→ Set and M ∈ Z 1(G,PΨjG).

Theorem
(G, Γ,M) is a set prootorootid and (IdG, ι) : (G,Λ,N)→ (G, Γ,M) is a
morphism in Prtd. Define the construction (G,Λ,N) (G,Φ,Φ+) by
letting (G,Φ,Φ+) be the signed groupoid set from (G, Γ,M).
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Appendix: Signed groupoid-sets

The construction (G,S) (G,Φ,Φ+).

Let G be a groupoid, S = S∗ ⊆ mor(G), 〈S 〉 = G.
l = lS : G→ N: length function. Assume that l(sg) = l(g)± 1 if
s ∈ S, g ∈ mor(G) (say (G,S) is even).
Set aS = S ∩ aG. For s ∈ aS, let αs := {g ∈ aG | l(s∗g) > l(g) }.
For b ∈ ob(G), Φ(b) := {gαs | g ∈ bGa, s ∈ aS,a ∈ ob(G) } where
gαs := {gx | x ∈ αs }.
(Φ(g))(α) := {gx | x ∈ α } ∈ Φ(b) for α ∈ Φ(a) and g ∈ bGa.
Define action of {±1} on Φ(a) by (−1)X := aG \ X if X ∈ Φ(a).
Set Φ+(a) := {X ∈ Φ(a) | 1a ∈ X }.
Then (G,Φ,Φ+) is a signed groupoid set.

This extends to the case (G,S) not necessarily even but S contains no
identity morphism, beginning by replacing the “simple root” αs by the
pair (αs, α

′
s) where α′s := {g ∈ aG | l(s∗g) ≥ l(g) }.
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Appendix: Characterizations of PRGPs

Characterizations of PRGPs amongst RGPs
PRGPs may be characterized among RGPs by familiar properties of a
corresponding “minimal” protorootoid or signed groupoid set.

Theorem
Let R = (G,≤) be an interval finite RGP with atomic generators S. Let
l := lS : mor(G)→ N. Then the following are equivalent:
(a) R is a PRGP.
(b) R is the underlying GP of a signed groupoid set (G,Φ,Φ+) such

that l(g) = |Φg | if g ∈ aGb where Φg := Φ+(a) ∩ Φ(g)(−Φ+(b)).
(c) R is the underlying GP of a rootoid (G,Λ,N) such that for all

g ∈ aG, [0,N(g)]Λ(a) := { z ∈ Λ(a) | z ≤ N(g) } ∼= P({1, . . . , l(g)}).
In that case, the constructions (G,S) (G,Φ,Φ+) (G,Λ,N)
provide structures as in (b), (c). Further, the abridgements of all
rootoids with (G,≤) as underlying GP are isomorphic.
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Appendix: Coverings

Coverings of groupoids

A groupoid G is connected if aGb 6= ∅ for all a,b ∈ ob(G) 6= ∅.
Any groupoid is the disjoint union (categorical coproduct) of its
connected components.
A groupoid G is simply connected (SC) if |aGb| ≤ 1 for all
a,b ∈ ob(G).
A groupoid morphism π : H → G is called a covering if for each
a ∈ ob(H), the restriction aπ : aH → π(a)G is bijective.

Any groupoid G has a universal covering π : Ĝ→ G, namely a
covering π such that Ĝ is SC and π induces a bijection between
components of Ĝ and those of G.

Terminology for groupoids is applied to GPs when it applies to the
underlying groupoid e.g. a SC GP (G,≤) is a GP with G SC.
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Appendix: Coverings

Coverings of GPs

Let G, H be connected groupoids. A local embedding π : G→ H is a
groupoid homomorphism (functor) such that the induced maps
aπ : aG→ π(a)G on stars are injective. Equivalently, π = ip where p is a
covering and i the inclusion of a subgroupoid.

If R = (G,≤) is a GP and π : H → G is a covering, there is a
unique preorder � on H making R′ = (H,�) a GP such that
aπ : aH → π(a)G is an order isomorphism for all a ∈ ob(H).
If R is a PGP (resp., RGP, PRGP) then so is R′ (and conversely if
π is surjective on objects ) and π is a morphism in GP (resp.,
RGP, PRGP). Call R′ a covering GP of R, π : R′ → R a covering.
Define the universal covering of R as π : R′ → R taking π : H → G
a universal covering of groupoids.

Matthew Dyer (University of Notre Dame) Groupoids with weak orders Bielefeld 14 June, 2014 32 / 42



Appendix: Coverings

GPs as quotients of SC GPs

Given a SC PGP R′ = (Ĝ,�), and a group A of automorphisms of
R′ acting freely on ob(Ĝ), there is a covering quotient PGP R′/A
and a covering R′ → R′/A.
A connected PGP R = (G,≤) can be described as a covering
quotient of the universal cover R′ = (Ĝ,�) of R by the group of
covering transformations of the universal covering π : R′ → R.

This reduces study of significant parts of the theory of PGPs, RGPs,
PRGPs to the case of connected SC PGPs, RGPs, PRGPs.

The connected SC PGPs are (up to ∼=) the GPs underlying the
protorootoids arising as in the following very simple class of examples.
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Appendix: Coverings

Connected, SC GPs

Example
For a Boolean ring B (which may be taken to be B = P(X ) for a set X ,
without loss of generality) and a I-indexed family (bi)i∈I , where I 6= ∅, of
elements of B , define a protorootoid R = R(B, (bi)i∈I) by
R := (G,Λ,N) where:

G is the connected SC groupoid with ob(G) = I and iGj = {(i , j)}.
Λ: G→ BoolRing is the constant functor with value B.
N(i , j) := bi + bj ∈ Λ(i) for all i , j ∈ I

The underlying SC GP of R has weak preorders (iG, i≤) given by
(i , j)i≤ (i , k) if bi + bj ≤ bi + bk , for i , j , k ∈ I.

The axioms for PGPs amongst GPs simply characterize the relations
amongst the various weak preorders of all such SC GPs.

Matthew Dyer (University of Notre Dame) Groupoids with weak orders Bielefeld 14 June, 2014 34 / 42



Appendix: Explicit formulae for special adjoints

A left adjoint to an order preserving map f : X → Y between posets X
and Y is an order preserving map f⊥ : Y → X such that
f⊥y ≤ x ⇐⇒ y ≤ fx . If X , Y are complete lattices and f preserves
meets, f⊥(y) :=

∧
x∈X ,f (x)≥y x is a left adjoint (which preserves joins).

Let F : J → Ord be a functor, where Ord is the category of posets
and J is a small category.
PF :=

∏
j∈ob(J) F (j) = { (aj)j∈ob(J) | aj ∈ F (j) for all j ∈ ob(J) }.

LF := lim F = { (aj)j ∈ P | (F (e))(aj) = ak if e : j → k in mor(J) }.
L↓F := { (aj)j ∈ P | (F (e))(aj) ≤ ak if e : j → k in mor(J) }.

L V−→ L↓ U−→ P and ι = UV : L→ P are inclusions.
P, L, L↓ have the componentwise partial orders.
If F (j) is a complete lattice for all j ∈ ob(J) and F (e) preserves
meets whenever e ∈ mor(J), then P, L, L↓ are complete lattices
and V , U, ι preserve meets, hence have left adjoints.
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Appendix: Explicit formulae for special adjoints

Theorem
Assume that for j ∈ ob(J), F (j) has all joins indexed by the left star jJ
and for all e : j → k in mor(J), F (e) preserves such joins. Then U has
a left adjoint U⊥ : P → L↓ given by U⊥(a) := b where for a = (aj)j ∈ P,
b := (bj)j ∈ L↓ with bj :=

∨
(e:k→j)∈mor(J)(F (e))(ak ).

Generalizations and variants of the theorem
There are dual results about L↑ (which is defined dually to L↓).
The theorem extends to F : J → Cat, taking L↓ as the category of
sections of the split opfibered category π :

∫
F → J attached to F

by the/a Grothendieck construction (replace joins by direct sums).
For a diagram F : J → Ord, J a directed graph, PF , LF , L↓F , UF ,
VF , ιF defined as before coincide with corresponding objects and
maps attached to the natural functor F̂ : Ĵ → Ord extending F
where Ĵ is the free category on J (PF = PF̂ since ob( Ĵ ) = ob(J)).
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Appendix: Explicit formulae for special adjoints

Application to adjoints for limits
Suppose F : J → Ord is a diagram and for each e : j → k in J
there is both F (e) : F (j)→ F (k) and F (e)† : F (k)→ F (j) in Ord
such that for a ∈ F (j) and b ∈ F (k), one has

(F (e))(a) = b ⇐⇒ ((F (e))(a) ≤ b and (F (e))†(b) ≤ a). (�)

“Double” F to a diagram H : K → Ord where ob(K ) = ob(J),
arr(K ) := arr(J)∪̇{e] : k → j |(e : j → k) ∈ arr(J) } with
H(a) := F (a) for a ∈ ob(J) and H(e) := F (e) and
H(e]) := (F (e))† for e ∈ mor(G).

Then (ιF : LF → PF ) = (UH : L↓H → PH), trivially by (�).
If all F (j) are complete and each F (e) and (F (e))† preserves
joins, ι⊥F = U⊥H = U⊥

Ĥ
: PF → LF is given by the theorem.
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Appendix: Explicit formulae for special adjoints

Definition
A RGP (G,≤) is complete if for each a ∈ ob(G), (aG, a ≤) has a
maximum element aω (or equivalently, is a complete lattice). Then aω
is called the longest element of aG.

Example
(1) Let F : J → Ord be a diagram so F (j) is a complete lattice if

j ∈ ob(J), F (e) preserves both meets and joins for all e ∈ mor(J).
Take (F (e))† := (F (e))⊥ (a left adjoint, so it preserves joins).
Condition (�) holds by definition of adjoints.

(2) Let (G,≤) be a complete rootoid. Take J a subgraph of G so
ob(J) ⊆ ob(G), arr(J) ⊆ mor(G). For j ∈ ob(J), let
F (j) := (jG, j ≤). For (e : j → k) ∈ arr(J), let F (e) : jG→ kG be
x 7→ e(e∗ ∨ x)). Take (F (e))† := (y 7→ e∗(e ∨ y)). Then

(�) holds; in fact, each side holds iff there is a square
eoo

b
OO

a
OO

oo .
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Appendix: Explicit formulae for special adjoints

Comments on the applications
Technical variants of the formulae for ι⊥F from (1) (resp., (2)) of the
preceding example are key ingredients in checking the AOP in the
proof of completeness of RGP (resp., in checking the AOP in
establishing existence of functor RGPs).
These variants involve complete meet semilattices instead of
complete lattices and are complicated by involvement of partially
defined maps.
For example, the zig-zag construction for a RGP comes from (2) in
case J is a directed graph j e−→ k . It may be regarded as a partially
defined map, which is everywhere defined in the case of a
complete RGP.
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Appendix: Completions

If (G,≤) is a complete RGP, the map g 7→ g{ : aG→ aG given by
g{ := g bω for g ∈ aGb makes aG a complete ortholattice.

Complete PRPGs generalize finite Coxeter groups in several natural
respects (e.g. in properties of longest elements), and complete RGPs
are their (possibly non-discrete) analogues. The theory of complete
RGPs is simpler, more natural and richer than that of RGPs in general.

Definition

(a) A completion of a RGP (G,≤) is a complete RGP (Ĝ,�) such that
G is a subgroupoid of Ĝ and the inclusion ι : G→ Ĝ is a
morphism in RGP.

(b) An ideal completion of RGP (G,≤) is a completion (Ĝ,�) of
(G,≤) such that for all a ∈ ob(G), aG is an order ideal of aĜ.
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Appendix: Completions

Example
(W ,S) a Coxeter system, with standard root system Φ ⊇ Φ+.
The PRGP (W ,≤) is complete iff W is finite.
Say that Γ ⊆ Φ is closed if α, β ∈ Γ, γ ∈ Φ and γ = cα + dβ with
c,d ∈ R≥0 implies γ ∈ Γ.
Let B′ := { Γ ⊆ Φ+ | Γ,Φ+ \ Γ both closed } ⊆ P(Φ+).
Let B := { Γ ∈ B′ | Γ is finite } = {Φw | w ∈W }.
There is a SC GP R := (G,�) with ob(G) = B, ΓG∆ := {(Γ,∆)}
for Γ,∆ ∈ B and (Γ,∆) Γ� (Γ,Θ) if Γ + ∆ ⊆ Γ + Θ.
R is a PRGP isomorphic to the universal cover of (W ,≤).

Conjecture
Define the SC GP R′ = (G′,�′) as R is defined above but with B
replaced by B′. Then R′ is a complete RGP (equivalently, the weak
orders of R′ are all lattices, or R′ is a SC ideal completion of R).
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Appendix: open questions

The preceding conjecture implies (B′,⊆) is a complete ortholattice in
which weak order of W embeds as an order ideal. Study of this
conjectural completion of weak order on W provided the main initial
motivations for the definition of RGPs.

Some fundamental open questions
(a) Which RGPs (G,≤) have (ideal) completions? All RGPs? All SC

RGPs? All SC PRGPs? Only very special ones?
(b) Can properties of RGPs (G,≤) be extended to the case G is a

suitable subcategory of a groupoid (or more generally still)?
(c) Can the requirement the weak orders come from a cocycle be

relaxed (using only some of the axioms for PGPs amongst GPs)?

Questions (b)–(c) may be relevant to study of Garside structures,
where weak-order-like lattice structures appear on submonoids of
certain groups (e.g. braid monoids of braid groups). In any case,
certain complete PRGPs naturally give rise to Garside structures.
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