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Complex reflection groups

Let V be a finite dimensional vector space over a subfield k of C.

A (complex) reflection s ∈ GL(V ) is an element of finite order such that
Ker(s − Id) is an hyperplane.

A finite complex reflection group is a finite subgroup of GL(V ) generated
by (complex) reflections.

If k is a subfield of R we get ordinary reflections and reflection groups.
The irreducible finite complex reflection groups have been classified by
Shepard and Todd (1954). They consist of and infinite series G (de, e, r)
and exceptional groups denoted G4, . . . ,G37.
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Jean Michel (Université Paris VII) Presentations Bielefeld, 12th june 2014 2 / 21



Complex reflection groups

Let V be a finite dimensional vector space over a subfield k of C.

A (complex) reflection s ∈ GL(V ) is an element of finite order such that
Ker(s − Id) is an hyperplane.

A finite complex reflection group is a finite subgroup of GL(V ) generated
by (complex) reflections.

If k is a subfield of R we get ordinary reflections and reflection groups.
The irreducible finite complex reflection groups have been classified by
Shepard and Todd (1954).

They consist of and infinite series G (de, e, r)
and exceptional groups denoted G4, . . . ,G37.
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The irreducible groups

G (de, e, r) consists of the monomial matrices with coefficients in µde
and product of non-zero coefficients in µd , where µi is the group of
i-th roots of unity in C.

We have
G (1, 1, r + 1) G (2, 1, r) G (2, 2, r) G (e, e, 2)

Ar Br Dr I2(E )

In the exceptional groups we have
G23 G28 G30 G35 G36 G37

H3 F4 H4 E6 E7 E8

If r = dim V , irreducible complex reflection groups may be generated by r
reflections, in which case we say they are well-generated, or they may need
r + 1 reflections.
The well generated groups are G (e, 1, r),G (e, e, r) and the exceptional
groups except G7,G11,G12,G13,G15,G19,G22 and G31.
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Braid group

Let W ⊂ GL(V ) be a finite (complex) reflection group. Let H be the
collection of reflecting hyperplanes of reflections of W .

Let V reg be the
complement in V of all H ∈ H.
By a theorem of Steinberg, the stabilizer in W of a point in V reg is trivial,
thus the covering V reg → V reg/W is regular.

The braid group of W is B(W ) := Π1(V reg/W ).

The covering V reg → V reg/W induces an exact sequence
1→ Π1(V reg)→ B(W )→W → 1.
The braid group is generated by braid reflections which are elements of
B(W ) “above” reflections.
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Braid reflection

here is a braid reflection above a reflection s with eigenvalue e2iπ/e

0

x0
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Braid reflection

here is a braid reflection above a reflection s with eigenvalue e2iπ/e

0

x0

γ

2π/e

s(γ)s(x0)
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Presentations of B(W )

When W is a finite Coxeter group, by the work of Brieskorn (1971) the
group B(W ) is generated by r braid reflections with presentation

B(W ) = 〈s ∈ S | sts . . .︸ ︷︷ ︸
ms,t

= tst . . .︸ ︷︷ ︸
ms,t

〉

Adding the relations s2 one gets a presentation of W .
Broué, Malle and Rouquier [1998] conjectured the following theorem which
was proved by David Bessis in 2001:

B(W ) can be generated by the same number of braid reflections as W
needs reflections, and is presented by some relations of the form w1 = w2

where wi are positive words of the same length in the generating braid
reflections.
Further, adding the relations se = 1 where e is the order of the image in
W of the braid reflection s gives a presentation of W .
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Presentations of B(W )

Broué, Malle and Rouquier (1998) describe presentations of the braid
group of G (de, e, r). Also at that time presentations of dimension 2 braid
groups were known (Bannai 1976).

Here are examples:
group A2 G4 G8 G16

diagram ©
s
2 ©

t
2 ©

s
3 ©

t
3 ©

s
4 ©

t
4 ©

s
5 ©

t
5

reflection degrees 2, 3 4, 6 8, 12 20, 30

and some examples of not well generated groups
group G (4, 2, 2) G7 G11 G19

diagram s 2© n2©t

2©u
s 2© n3©t

3©u
s 2© n3©t

4©u
s 2© n3©t

5©u

reflection degrees 4, 4 12, 12 24, 24 60, 60
Here the circle means the braid relations: stu = tus = ust.
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Jean Michel (Université Paris VII) Presentations Bielefeld, 12th june 2014 7 / 21



2-reflection groups

The following can be observed case-by-case and according to Bessis might
be deduced case-free from the work of (Couwenberg, Heckman and
Looijenga 2005)

For any finite complex reflection group W there is a 2-reflection group
which has an isomorphic space V reg/W .

If the 2-reflection group is a Coxeter group, we say that W is a Shephard
group. The dimension ≥ 3 groups which are not Shephard groups are G24,
G27, G29, G31, G33 and G34. They are all 2-reflection groups. Only G31 is
not well generated.
Thus, at the time of Broué, Malle and Rouquier (1998) these 6 braid
groups were the only one whose presentation was unknown. Broué, Malle
and Rouquier conjectured presentations for these 6 groups.

Jean Michel (Université Paris VII) Presentations Bielefeld, 12th june 2014 8 / 21



2-reflection groups

The following can be observed case-by-case and according to Bessis might
be deduced case-free from the work of (Couwenberg, Heckman and
Looijenga 2005)

For any finite complex reflection group W there is a 2-reflection group
which has an isomorphic space V reg/W .

If the 2-reflection group is a Coxeter group, we say that W is a Shephard
group. The dimension ≥ 3 groups which are not Shephard groups are G24,
G27, G29, G31, G33 and G34. They are all 2-reflection groups. Only G31 is
not well generated.
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Thus, at the time of Broué, Malle and Rouquier (1998) these 6 braid
groups were the only one whose presentation was unknown.
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Computing the braid group

Broué, Malle and Rouquier guessed wrong for G24:

©
s
©
t

�
©u

�
with

utusut = sutusu; this presents W but not B(W ). There is such a
presentation but with the relation stustustu = tstustust. They were also
wrong for G27.
In V /W the image of H is an hypersurface, the discriminant. The
problem is computing the Π1 of the complement of the discriminant.

By a theorem of Zariski, the Π1 of the complement of the
determinant is the same as the Π1 of the complement of the curve
obtained by cutting by a “generic” complex 2-plane.

One can check that a particular plane is generic using Withney
conditions.

With David Bessis, we created in 2004 VKcurve, a GAP3 package which
can compute the Π1 of the complement of any curve in C2, using the
Zariski- Van Kampen method.
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Presentations of B(G24)

In Bessis-M. (2004) we found 3 “simple” presentations of B(G24):

P1:〈s, t,u |sus = usu, sts = tst, tutu = utut, (tus)3 = utu(stu)2〉
P2:〈s, t,u |sus = usu, stst = tsts, tutu = utut, t(stu)2 = (stu)2s〉
P3:〈s, t,u |stst = tsts, tutu = utut, susu = usus,

(tus)2t = (stu)2s = (ust)2u〉

and similarly we found 5 presentations of B(G27), two of B(G29), and
quite a few for B(G33) and B(G34).
These presentations are obtained by simplifying heuristically those given by
the Zariski-Van Kampen method, which have many generators and
relations.
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Well-generated groups
Let now W be an irreducible well-generated finite (complex) reflection
group, and let h be its (unique) highest reflection degree.

Then there exists a unique conjugacy class C , the Coxeter class, of W
whose elements have an eigenvector in V reg for the eigenvalue e2iπ/h.

(Bessis 2006) Let c be a Coxeter element. Then there is a “good” lift c of
c in B(W ), an element c which is the product of r = dim V braid
reflexions (“tunnels”) which generate B(W ), and such that ch generates
the center of the pure braid group Π1(V reg).

Following Brady and Watt (2002), we define a partial order on GL(V ) by

A 4 B ⇔ dim Image(A− Id) + dim Image(A−1B− Id) = dim Image(B− Id).

A maximal element for this order has no fixed points.

(Brady and Watt 2002) Let M be maximal for 4 and unitary; the set of
elements A 4 M in the unitary group form a lattice.
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Non-crossing partitions

(Bessis 2006) Let c be a Coxeter element. The set of elements w ∈W
such that w 4 c (seen as unitary transformations) form a lattice, called
the lattice of non-crossing partitions of type W

The proof is case-by-case. Brady and Watt (2008) have a nice casefree
proof in the Coxeter case.

We define on W a length lR as the minimum of reflections of which an
element is the product. The order 4 can be reformulated in W as
v 4 w ⇔ lR(v) + lR(v−1w) = lR(w).
Thus is c = s1 . . . sr is a decomposition into reflections, all the prefixes of
this decomposition are non-crossing partitions.
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Hurwitz orbit
Let c be a good lift to B(W ) of a Coxeter element, and let c = s1 . . . sr
the decomposition of c as the product of r braid reflections (“tunnels”) as
in Bessis (2006).

Consider the Hurwitz action of the ordinary braid group

Br = 〈σ1, . . . , σr−1 | σiσj = σjσi if |i − j | > 1, σiσi+1σi = σi+1σiσi+1〉

on this decomposition, given by

σi : (s1, . . . , sr ) 7→ (s1, . . . , si+1, s
−1
i+1sisi+1, . . . , sr ),

σ−1
i : (s1, . . . , sr ) 7→ (s1, . . . , sisi+1s

−1
i , si , . . . , sr ),

(Bessis 2007) The Hurwitz orbit on the decomposition c = s1 . . . sr is
finite, of cardinality r !hr/|W |. The projection to W is an isomorphism to
the Hurwitz orbit on the decompositions of c into r reflections, where the
Hurwitz action is transitive.
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The dual monoid

We call simples all prefixes of c in a decompostion in the Hurwitz orbit;
thus the simples are in bijection with the non-crossing partitions. We then
define

The dual braid monoid is the submonoid of B(W ) generated by the
simples. The simples, together with the relations given by the partial
products, give a presentation of B(W ).

Note that, while in the Coxeter case all reflections appear in a
decomposition of c as a product of r reflections, as soon as the group is
complex, only a (large) subset of them appears.
The dual braid monoid gives a more efficient way to compute
presentations of (at least 5 of the 6) difficult exceptional groups.
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Jean Michel (Université Paris VII) Presentations Bielefeld, 12th june 2014 14 / 21



The dual monoid

We call simples all prefixes of c in a decompostion in the Hurwitz orbit;
thus the simples are in bijection with the non-crossing partitions. We then
define

The dual braid monoid is the submonoid of B(W ) generated by the
simples. The simples, together with the relations given by the partial
products, give a presentation of B(W ).

Note that, while in the Coxeter case all reflections appear in a
decomposition of c as a product of r reflections, as soon as the group is
complex, only a (large) subset of them appears.

The dual braid monoid gives a more efficient way to compute
presentations of (at least 5 of the 6) difficult exceptional groups.
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Hurwitz action on presentations

For all the presentations of (Bessis-Michel 2004) the product of the
generators in some order is the lift c of a Coxeter element.

Starting from one of these presentations, we may do the Hurwitz action on
the corresponding decomposition of c. If we take the braid reflections
which appear in another decomposition in the Hurwitz orbit, we get
another set of generators. It turns out that in this way we get the set of
generators which appear in the various presentations obtained in
Bessis-Michel.

For instance, for G24, the reflection degrees are 4, 6, 14 and the
Hurwitz orbit has 3!143/(4 · 6 · 14) = 49 elements. The presentation
P1 (resp. P2, P3) appears 21, (resp. 21, 7) times in the Hurwitz orbit.

For G27, the reflection degrees are 6, 12, 30 and the Hurwitz orbit has
3!303/(6 · 12 · 30) = 75 elements, given rise to 5 different
presentations appearing each 15 times.
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Jean Michel (Université Paris VII) Presentations Bielefeld, 12th june 2014 15 / 21



Hurwitz action on presentations

For all the presentations of (Bessis-Michel 2004) the product of the
generators in some order is the lift c of a Coxeter element.
Starting from one of these presentations, we may do the Hurwitz action on
the corresponding decomposition of c. If we take the braid reflections
which appear in another decomposition in the Hurwitz orbit, we get
another set of generators.

It turns out that in this way we get the set of
generators which appear in the various presentations obtained in
Bessis-Michel.

For instance, for G24, the reflection degrees are 4, 6, 14 and the
Hurwitz orbit has 3!143/(4 · 6 · 14) = 49 elements. The presentation
P1 (resp. P2, P3) appears 21, (resp. 21, 7) times in the Hurwitz orbit.

For G27, the reflection degrees are 6, 12, 30 and the Hurwitz orbit has
3!303/(6 · 12 · 30) = 75 elements, given rise to 5 different
presentations appearing each 15 times.
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Case of type A

I do not know if the Hurwitz action on the presentations of the ordinary
braid group has been considered. Here are some examples:

For type A2 the orbit is of size 3 giving 3 times the usual presentation.

For type A3 the orbit is of size 16 giving 12 times the usual

presentation and 4 times the presentation©
t

4←−©
s

�
©u
�

where the number 4

means the “cyclic” relation stus = tust = ustu.

For type A4 the orbit is of size 125 giving 60 times the usual

presentation, 60 times the presentation©
s
©
t

4←−©
u

�
©w
�

and 5 times a

presentation where the diagram is a tetrahedron, each face being

©
4←−©

�
©
�

.
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“quality” of presentations

For the Coxeter groups, the “Poincaré polynomials”, the generating
function of the length of the elements of the group, are given by∏

di
(qdi − 1)/(q − 1) where the product runs over the reflection degrees.

The length series depends on the presentation.

For G24, we have∏
di

(qdi − 1)/(q − 1) =x21+3x20+6x19+10x18+14x17+18x16+21x15+23x14+24x13+

24x12+24x11+24x10+24x9+24x8+23x7+21x6+18x5+14x4+10x3+6x2+3x+1.
For the presentations P1, P2, P3 we get respectively for length series:

q15+3q14+6q13+12q12+27q11+46q10+55q9+54q8+44q7+31q6+22q5+15q4+10q3+6q2+3q+1

q13+4q12+16q11+39q10+56q9+58q8+52q7+42q6+29q5+18q4+11q3+6q2+3q+1

q13+5q12+12q11+24q10+45q9+54q8+59q7+57q6+36q5+21q4+12q3+6q2+3q+1

There are reasons to think that the presentation giving the highest degree
polunomial (“closest” to the Poincaré polynomial) is “best”.
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Hecke algebras

The Hecke algebra of a finite Coxeter group is the quotient of
Z[q±1]B(W ) by the ideal generated by the (s− q)(s + 1) = 0, where s
runs over the braid reflections.

As two reduced expressions of an element of a Coxeter group are
equivalent by the braid relations, there is a canonical lift
w 7→ w : W ↪→W ⊂ B(W ) obtain by lifting reduced expressions.

Let {Tw}w∈W be the image of W in the Hecke algebra:

{Tw}w∈W is a basis of the Hecke algebra over Z[q±1].

The linear form t(Tw) = δw ,1 is a symmetrizing trace, that is
(x , y) 7→ t(xy) is symmetric (a trace) and non-degenerate.

When W is the Weyl group of the reductive group G over Fq, we have

H = EndG(Fq) Ind
G(Fq)
B(Fq) Id, and t is a multiple of the trace of this

representation.
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Hecke algebras of 2-reflection groups

The definition of the Hecke algebra makes sense for a 2-reflection group
(there is an extended definition in general we do not need). We will call H
this algebra.

Broué, Malle and Rouquier have shown that H “does not collaps”, that is
H⊗ C[q±1] specializes to CW for q 7→ 1.

Conjecture

H is free of rank |W | over Z[q±1].

This conjecture is known for all but the six “annoying” groups.
For b ∈ B(W ) let Tb be the image in H. The conjecture implies that for
any section W ↪→W ⊂ B(W ) the set {Tw}w∈W is a Q(q)-basis. We may
conjecture further that there exists such a section which gives an a
Z[q±1]-basis.
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Conjectures on Hecke algebras

It is conjectured that H is symmetric. In (Broué-Malle-Michel 1999) it is
proven that there is at most one symmetrizing trace that specializes to the
canonical trace on the group algebra of W for q = 1 and satisfies another
“natural” condition.

Again, such a trace has been constructed in almost all cases. Such a trace
is determined by the values t(Tw) when w runs over representatives of
conjugacy classes of W . Gunter Malle has constructed a trace by
assuming that t(Tw) = δw ,1 for a specific set of representatives; there are
good reasons to think is trace is “correct”.

Conjecture

There exists a section 1 ∈W ⊂ B of W , such that {Tw | w ∈W} is an
Z[q±1]-basis of H, and such that t(Tw) = δw,1.

For finite Coxeter groups, such a section consists of lifts of minimal length
representatives; Bremke and Malle (1997) have shown that this works also
for G (d , 1, r).
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proven that there is at most one symmetrizing trace that specializes to the
canonical trace on the group algebra of W for q = 1 and satisfies another
“natural” condition.
Again, such a trace has been constructed in almost all cases. Such a trace
is determined by the values t(Tw) when w runs over representatives of
conjugacy classes of W . Gunter Malle has constructed a trace by
assuming that t(Tw) = δw ,1 for a specific set of representatives; there are
good reasons to think is trace is “correct”.

Conjecture

There exists a section 1 ∈W ⊂ B of W , such that {Tw | w ∈W} is an
Z[q±1]-basis of H, and such that t(Tw) = δw,1.

For finite Coxeter groups, such a section consists of lifts of minimal length
representatives; Bremke and Malle (1997) have shown that this works also
for G (d , 1, r).
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“Quality” of presentations

For G24, for P1 and P3 all minimal length words for elements of
W − {1} lift in B(W ) to elements such that t(Tw) = 0. For P2 there
exists 3 among the 336 elements for which some minimal words fail
this condition; this shows that, in contrast to the case of Coxeter
groups, lifts of minimal length words are not always conjugate in
B(W ).

For G27 the situation is worse: even for the “best” presentation, there
exists one element for which the lift of no minimal length
representtive has zero trace. But in each case (including the other
presentations where the number of failures may rise to 41 out of the
2160 elements) there are slightly longer words for which t(Tw) = 0.
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