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The plan

The stabilization functor

The Yoneda dg category

The singular Yoneda dg category and a comparison theorem

This talk is mainly based on a series of joint work with Zhengfang

Wang (���) at Stuttgart.

Xiao-Wu Chen, USTC The stabilization functor via the singular Yoneda dg category



Section I

The stabilization functor

The Yoneda dg category

The singular Yoneda dg category and a comparison theorem
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Recollement

Recollement, as a categorical gluing, arises naturally in

the study of perverse sheaves

partial tilting complexes

qusi-hereditary algebras and highest weight categories

dg (= differential graded) quotients
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Recollement: the definition

Recall from [BBD 1982] that a recollement is a diagram:

T ′ i // T j //
iλww

iρ
gg T ′′

jλww

jρ

gg

such that

(iλ, i , iρ) and (jλ, j , jρ) are adjoint triples;

i , jλ and jρ are fully faithful;

ji ' 0; by the adjunctions, iλjλ ' 0 and iρjρ ' 0.

For each X ∈ T , there are functorial exact triangles

iiρ(X )
εX−→ X

ηX−→ jρj(X )
δX−→ Σiiρ(X )

and

jλj(X )
φX−−→ X

ψX−−→ iiλ(X )
σX−→ Σjλj(X ).
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Norm and conorm

There exists the norm morphism N : jλ → jρ such that

Nj = η ◦ φ;

There exists the conorm morphism C : iρ → iλ such that

iC = ψ ◦ ε;

Xiao-Wu Chen, USTC The stabilization functor via the singular Yoneda dg category



The intertwining isomorphism

Proposition (BBD 1982, C.-Le 2022)

There exists a unique isomorphism

ξ : iλjρ −→ Σiρjλ

making the following two exact diagram commute.

Σ−1iiλjρ

Σ−1iξ
��

−jλη′◦Σ−1σjρ // jλ
N // jρ

ψjρ // iiλjρ

iξ��
iiρjλ

εjλ // jλ
N // jρ

δjλ◦jρφ′ // Σiiρjλ

Σ−1iλjρj

−Σ−1ξj
��

−ψ′iρ◦Σ−1iλδ // iρ
C // iλ

iλη // iλjρj

−ξj��
iρjλj

iρφ // iρ
C // iλ

iρσ◦ε′iλ // Σiρjλj
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The gluing functor

Definition

The gluing functor of the following recollement is iλjρ : T ′′ → T ′.

T ′ i // T j //
iλww

iρ
gg T ′′

jλww

jρ

gg

In the dg or ∞-categorical setting, the middle category can be

recovered from the gluing functor; see [Kuznetsov-Lunts 2015]

and [Lurie 2017, Dyckerhoff-Jasso-Walde 2021].

In the triangulated setting, we recover T from the comma

category of the gluing functor, up to an epivalence; see [C.-Le

2022]; compare [Geiss-Keller 2002] and [Keller 2020].
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Notation

Λ a left noetherian ring

Λ-proj ⊆ Λ-mod ⊆ Λ-Mod

Kb(Λ-proj) ⊆ Db(Λ-mod) ⊆ D(Λ-Mod)
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The singularity category

Definition (Buchweitz 1986, Orlov 2003)

The singularity category of Λ is the Verdier quotient of

triangulated categories

Dsg(Λ) =
Db(Λ-mod)

Kb(Λ-proj)
.

If gl.dim Λ <∞, for example, a regular commutative ring by

Auslander-Buchsbaum-Serre’s theorem, then Dsg(Λ) = 0.

Buchweitz uses the stabilized derived category. Nowadays, we

follow [Orlov 2003].
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Compactly generated completions

It is well known that D(Λ-Mod) is a compactly generated

completion of Kb(Λ-proj), that is, D(Λ-Mod) is compactly

generated and D(Λ-Mod)c ' Kb(Λ-proj).

In general, the inclusion Kb(Λ-proj) ⊆ Db(Λ-mod) is proper.

Theorem (Krause 2005)

The homotopy category K(Λ-Inj) of unbounded complexes of

injective modules is a compactly generated completion of

Db(Λ-mod).
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Krause’s completion

The dg-injective resolution functor i restricts to the

embedding i : Db(Λ-mod)→ K(Λ-Inj).

Krause’s completion works more generally, namely replacing

Λ-Mod by any locally noetherian Grothendieck category.

In the study of the Grothendieck duality, A. Neeman in a 2008

paper mentioned

“... offers a very promising new angle on this old problem.”

Here, the “old problem” might mean the Grothendieck duality

(in a modern form).
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Krause’s recollement

Theorem (Krause 2005)

There exists a recollement

Kac(Λ-Inj)
inc // K(Λ-Inj)

ā
ww

a′
gg

can // D(Λ-Mod)

p̄
ww

i

gg

Here, i is the dg-injective resolution functor, a′ is determined by

a′I −→ I −→ iI −→ Σa′I

In general, p̄ and ā are mysterious. They are related by

p̄I −→ I −→ āI −→ Σp̄I
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The mysterious upper half

The localizing subcategory Loc〈iΛ〉 is equivalent to D(Λ-Mod)

via the canonical functor can : K(Λ-Inj)→ D(Λ-Mod).

p̄ is the composition of its quasi-inverse with the inclusion

Loc〈iΛ〉 ↪→ K(Λ-Inj).

The norm morphism N : p̄→ i restricts to an isomorphism on

Kb(Λ-proj).

The counit p̄can(I )→ I of (p̄, can) is NOT explicit. So, the

functor ā is (more) mysterious.

Xiao-Wu Chen, USTC The stabilization functor via the singular Yoneda dg category



The completion of the singularity category

Applying Ravenel-Thomason-Trobaugh-Yao’s localization theorem

[Neeman 1992] to the mysterious upper half,

Kac(Λ-Inj) K(Λ-Inj)
āoo D(Λ-Mod)

p̄oo

we have

Theorem (Krause 2005)

The homotopy category Kac(Λ-Inj) of unbounded acyclic

complexes of injective modules is a compactly generated

completion of Dsg(Λ) (up to direct summands).
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The stabilization functor

Recall Krause’s recollement

Kac(Λ-Inj)
inc // K(Λ-Inj)

ā
ww

a′
gg

can // D(Λ-Mod)

p̄
ww

i

gg

Definition (Krause 2005)

The stabilization functor of Λ is

S = āi : D(Λ-Mod) −→ Kac(Λ-Inj).

Therefore, S is the gluing functor of the recollement above.

Moreover, we have S ' Σa′p̄.
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The stabilization functor, continued

The functor S induces the embedding Dsg(Λ) ↪→ Kac(Λ-Inj).

To be more precise,

Db(Λ-mod)
i−→ K(Λ-Inj)

ā−→ Kac(Λ-Inj)

vanishes on Kb(Λ-proj), and induces the required embedding.

If Λ is Gorenstein, S gives functorial Gorenstein injective

resolutions for Λ-modules. More specifically, if Λ is

quasi-Frobenius, then SM is given by

pM −→ iM −→ SM −→ ΣpM.

It is the complete resolution of M; [Tate 1952].
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The dg singularity category

The dg quotient [Keller 1999, Drinfeld 2004] enhances the

Verdier quotient.

For example, the dg derived category Db
dg(Λ-mod) is a

canonical dg enhancement for Db(Λ-mod).

Definition (Keller 2018, Blanc-Robalo-Töen-Vezzosi 2018,

Brown-Dyckerhoff 2020 ...)

The dg singularity category of Λ is the dg quotient

Sdg(Λ) = Db
dg(Λ-mod)/Cb

dg(Λ-proj).

Sdg(Λ) enhances Dsg(Λ), that is, it is pretriangulated such that

H0(Sdg(Λ)) = Dsg(Λ).
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The dg approach to Krause’s recollement

Set D = Db
dg(Λ-mod), P = Cb

dg(Λ-proj) and S = Sdg(Λ).

By a general result of [Keller 1999, Drinfeld 2004], we have

Theorem (Krause 2005, implicitly)

Krause’s recollement is “isomorphic” to the canonical recollement

associated to the dg quotient:

D(S)
can // D(D)

−⊗L
DS

vv

RHomD(S,−)

hh
res // D(P)

−⊗L
PD

vv

RHomP (D,−)

hh

Consequently, the stabilization functor S is “isomorphic” to

RHomP(D,−)⊗L
D S.
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The goal

Goal: to describe S explicitly.

Assume that Λ is over a field k .

Tool: the Yoneda dg category and its strict localization,

namely, the singular Yoneda dg category.
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Section II

The stabilization functor

The Yoneda dg category

The singular Yoneda dg category and a comparison theorem
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The bar resolution

Set Λ = Λ/k , and Σ(Λ) = sΛ. Its typical element is written

sa, which is of degree −1.

The normalized bar resolution

B = Λ⊗ T (sΛ)⊗ Λ =
∏
n≥0

Λ⊗ sΛ
⊗n ⊗ Λ

has differential given

d(a⊗ sa1,n ⊗ b) = aa1 ⊗ sa2,n ⊗ b + (−1)na⊗ sa1,n−1 ⊗ anb

+
n−1∑
i=1

(−1)ia⊗ sa1,i−1 ⊗ saiai+1 ⊗ sai+2,n ⊗ b.

Here, sai ,j = sai ⊗ · · · ⊗ saj .
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The fundamental bar resolution

”One of the fundamental constructions in homological algebra

is the bar resolution, which has been successfully applied to

...”, taken from [Buchsbaum-Rota 1994].

“... is fundamental in governing the homological properties of

the algebra”, taken from [Butler-King 1999].
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The bar resolution, continued

ε : B→ Λ⊗ Λ→ Λ is a quasi-isomorphism.

It provides a functorial dg-projective resolution: for any

complex X of Λ-modules, B⊗Λ X is a dg-projective resolution

of X .

B is a coalgebra in the category of complexes of bimodules:

we have

∆: B −→ B⊗Λ B

given by

∆(a⊗ sa1,n ⊗ b) =
n∑

i=0

(a⊗ sa1,i ⊗ 1)⊗Λ (1⊗ sai+1,n ⊗ b).
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The Yoneda dg category

We define the Yoneda dg category Y; compare [Keller 1994,

Anno-Logvinenko 2021].

The objects are just complexes of Λ-modules.

For any complexes X and Y , we have

Y(X ,Y ) = HomΛ(B⊗Λ X ,Y )

=
∏
n≥0

Hom(sΛ
⊗n ⊗ X ,Y ).

This is NOT a product of complexes. Elements in

Hom(sΛ
⊗n ⊗ X ,Y ) will be said to have filtration-degree n.
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The Yoneda dg category, continued

The composition of f ∈ Y(X ,Y ) and g ∈ Y(Y ,Z ) is defined

as

g � f : B⊗Λ X
∆−→ B⊗Λ B⊗Λ X

f−→ B⊗Λ Y
g−→ Z .

If f is represented by f ∈ Hom(sΛ
⊗n ⊗ X ,Y ) and g is

represented by g ∈ Hom(sΛ
⊗m ⊗ Y ,Z ), then g � f is

represented by the following element in Hom(sΛ
⊗n+m⊗X ,Z ):

sam+n ⊗ x 7−→ (−1)m|f |g(sa1,m ⊗ f (sam+1,m+n ⊗ x)).

Y might be viewed as the coKleisli category of the comonad

B⊗Λ − on the dg category Cdg(Λ-Mod) of complexes.

Xiao-Wu Chen, USTC The stabilization functor via the singular Yoneda dg category



The Yoneda dg category as a dg enhancement

Proposition (Keller 1994 implicitly, C.-Wang)

Y is a dg enhancement of D(Λ-Mod), that is, it is pretriangulated

with H0(Y) = D(Λ-Mod).

Reason: Y(X ,Y ) = HomΛ(B⊗Λ X ,Y ) computes

HomD(Λ-Mod)(X ,Σi (Y )).

To justify the terminology: the dg endomorphism algebra

Y(M,M) computes the Yoneda Ext-algebra Ext∗Λ(M,M).
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The advantages of Y

Noncommutative differential forms as a dg endofunctor Ωnc;

A closed natural transformation θ : IdY → Ωnc;

A explicit homotopy inverse ιX for the dg-projective resolution

ε⊗Λ IdX : B⊗Λ X → X .

These data are compatible.
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Noncommutative differential forms

For a complex X , we define the GRADED noncommutative

differential 1-forms with values in X to be

Ωnc(X ) = sΛ⊗ X .

As a complex, |sa⊗ x | = |x | − 1, d(sa⊗ x) = −sa⊗ dX (x).

The (somewhat nontrivial) Λ-action is given by

b I (sa⊗ x) = sba⊗ x − sb ⊗ ax .

Observe that Ωnc(Λ) is the graded bimodule of right

noncommutative differential 1-forms in [Wang 2016]; compare

[Cuntz-Quillen 1995].
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Noncommutative differential forms, continued

We have Ωnc(X ) ' Ωnc(Λ)⊗Λ X .

For a Λ-module M, we have an exact sequence

0 −→ Λ⊗M −→ Λ⊗M −→ M −→ 0,

where the left arrow a⊗ x 7→ a⊗ x − 1Λ ⊗ ax .

Therefore, we have

Ωnc(M) ' ΣΩ(M).

Here, Ω(M) denotes the first syzygy of M. This isomorphism

justifies the notation “Ωnc”!
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Noncommutative differential forms as a dg endofunctor

Ωnc : Y → Y is a dg endofunctor, whose action on morphisms

is given by

(f : X → Y ) 7−→ (IdsΛ ⊗ f : Ωnc(X )→ Ωnc(Y )).

There is a closed natural transformation of degree zero:

θ : IdY −→ Ωnc

such that θY : Y → Ωnc(Y ) is of filtration-degree one,

represented by IdΩnc(Y ) : sΛ⊗ Y → Ωnc(Y ).

θΩnc = Ωncθ.
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An explicit homotopy inverse

We define a closed morphism of degree zero in Y:

ιX : X −→ B⊗Λ X

such that its entry (ιX )p of filtration-degree p is given by

(sΛ̄)⊗p⊗X −→ B−p⊗ΛX ⊆ B⊗ΛX , sā1,p⊗x 7−→ (1⊗sā1,p⊗1)⊗Λx .

(ε⊗Λ IdX )� ιX = IdX . It follows that ιX is a homotopy

inverse of the dg-projective resolution ε⊗Λ IdX : B⊗Λ X → X .

Xiao-Wu Chen, USTC The stabilization functor via the singular Yoneda dg category



A commutative diagram in Y

Proposition

The following diagram strictly commutes.

X
θX //

ιX

��

Ωnc(X )

ιΩnc(X )

��
B⊗Λ X

pr // B≥1 ⊗Λ X
∼ // B⊗Λ Ωnc(X )

In comparison,

X
θX // Ωnc(X )

B⊗Λ X

ε⊗ΛIdX

OO

// B⊗Λ Ωnc(X )

ε⊗ΛIdΩnc(X )

OO

does NOT commute because of different filtration-degree.
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The dg-injective resolutions via Y

For any complex X , Y(Λ,X ) =
∏

n≥0 Hom((sΛ)⊗n ⊗ Λ,X ) is

a dg-injective complex of Λ-modules.

The natural embedding X → Y(Λ,X ) is a quasi-isomorphism;

consequently, we have i ' Y(Λ,−).

Y(Λ,Λ) is a complex of Λ-bimodules, and Λ→ Y(Λ,Λ) is a

quasi-isomorphism between complexes of bimodules.
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An explicit form of Krause’s recollement

We rewrite Krause’s recollement.

Kac(Λ-Inj)
inc // K(Λ-Inj)

ā
uu

a′=HomΛ(Cone(ε),−)

ii
can // D(Λ-Mod)

p̄=Y(Λ,Λ)⊗ΛB⊗Λ−
uu

i=Y(Λ,−)

ii

Here, p̄ ' Y(Λ,Λ)⊗Λ p−, where p is the dg-projective resolution

functor, and identified with B⊗Λ −.

However, we can NOT describe the counit p̄canI → I explicitly.
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The stabilization functor as a cone

For each complex X , we have a chain map

κX : Y(Λ,Λ)⊗Λ B⊗Λ X −→ Y(Λ,X )

f ⊗Λ (a0 ⊗ sa1,q ⊗ 1)⊗Λ x 7−→ (sb1,p ⊗ b 7→ δq,0f (sb1,p ⊗ b)a0x).

Proposition

We have a functorial exact triangle

Y(Λ,Λ)⊗Λ B⊗Λ X
κX−→ Y(Λ,X ) −→ SX −→ ΣY(Λ,Λ)⊗Λ B⊗Λ X
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Section III

The stabilization functor

The Yoneda dg category

The singular Yoneda dg category and a comparison theorem
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A reminder

The Yoneda dg category Y, composition denoted by �;

A dg endofunctor Ωnc : Y → Y;

A closed natural transformation θ : IdY → Ωnc;

Restricting to bounded complexes of finitely generated

modules, we have Y f ' Db
dg(Λ-mod).
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The singular Yoneda dg category

The singular Yoneda dg category SY of Λ is defined as follows.

It has the same objects as Y.

The Hom complex SY(X ,Y ) is the colimit of

Y(X ,Y )→ Y(X ,Ωnc(Y ))→ Y(X ,Ω2
nc(Y ))→ · · · ,

where the structure maps send f : X → Ωp
nc(Y ) to

θΩp
nc(Y ) � f . The canonical image of such an f in SY(X ,Y ) is

denoted by [f ; p].

The composition of [f ; p] : X → Y and [g ; q] : Y → Z is

[g ; q]�sg [f ; p] = [Ωp
nc(g)� f ; p + q].
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The singular Yoneda dg category vs the dg singularity

category

Recall Sdg(Λ) = Db
dg(Λ-mod)/Cb

dg(Λ-proj).

Theorem (C.-Wang)

We have SY f ' Sdg(Λ). Consequently, the singular Yoneda dg

category SY contains a dg enhancement of Dsg(Λ).

Therefore, SY(M,M) computes the singular Yoneda Ext algebra

or Tate cohomology algebra Êxt
∗
Λ(M,M) of M.
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The Hom complexes in SY

An observationµY(Λ,X ) =
∏

n≥0 Hom((sΛ)⊗n ⊗ Λ,X ) is a

complex of INJECTIVE Λ-modules©

SY(Λ,X ) = colim Y(Λ,Ωp
nc(X )) is also a complex of injective

modules, ACYCLIC!

Proposition

There is a well-defined triangle functor

SY(Λ,−) : D(Λ-Mod) −→ Kac(Λ-Inj).
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The Hom functor SY(Λ,−) as a cone

Proposition

There is a functorial exact triangle

colim Y(Λ,B≤p ⊗Λ X )
ϑX−→ Y(Λ,X ) −→ SY(Λ,X ) −→

where ϑX is induced by B≤p ⊗Λ X → X .

The proof uses the commutative diagram in Y and its

generalization:

X
θX //

ιX

��

Ωnc(X )

ιΩnc(X )

��
B⊗Λ X

pr // B≥1 ⊗Λ X
∼ // B⊗Λ Ωnc(X )
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The comparison theorem

Recall both S, SY(Λ,−) : D(Λ-Mod)→ Kac(Λ-Inj), as certain

explicit cones.

Theorem (C.-Wang)

There is a natural transformation

c : S −→ SY(Λ,−)

such that its restriction to D+(Λ-Mod) is an isomorphism. If Λ is

Gorenstein, then c is an isomorphism.

Remark: it is not clear whether c is an isomorphism for

non-Gorenstein Λ.
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The key ingredient of the proof

We compare the two cones:

Y(Λ,Λ)⊗Λ B⊗Λ X //

��

Y(Λ,X ) // SX

cX

��

//

colim Y(Λ,B≤p ⊗Λ X ) // Y(Λ,X )
can // SY(Λ,X ) //

We have to analyze the leftmost dotted arrow.
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A colimit of cochain maps

The above dotted arrow

Y(Λ,Λ)⊗Λ B⊗Λ X −→ colim Y(Λ,B≤p ⊗Λ X )

is the colimit of the following

Y(Λ,Λ)⊗Λ B≤p ⊗Λ X −→ Y(Λ,B≤p ⊗Λ X ).

Proposition

Assume that X is bounded-below, or Λ is Gorenstein. Then the

above map

Y(Λ,Λ)⊗Λ B≤p ⊗Λ X −→ Y(Λ,B≤p ⊗Λ X )

is a homotopy equivalence.
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Thank you very much for your attention!

���[�

http://home.ustc.edu.cn/∼xwchen

Xiao-Wu Chen, USTC The stabilization functor via the singular Yoneda dg category




