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Let k be a commutative ring; we fix it throughout.

Let k–Mod be the category of k-modules and k-linear maps.

Let C(k) be the category of cochain complexes of k-modules. The objects
are cochain complexes A∗ of k-modules, and the morphisms are the
cochain maps. In pictures

Objects:

· · · // A−2 ∂−2
//

f −2

��

A−1

f −1

��

∂−1
// A0

f 0
��

∂0
// A1

f 1
��

∂1
// A2

f 2
��

// · · ·

· · · // B−2 ∂−2
// B−1 ∂−1

// B0 ∂0
// B1 ∂1

// B2 // · · ·
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The categories k–Mod and C(k) are both closed monoidal categories.
Both have tensor products and internal Homs.

In k–Mod: if A and B are k-modules, then so are A⊗k B and
Homk(A,B). The identity for the tensor product is the rank-one free
module k .

In C(k): if A∗,B∗ ∈ Ob(C(k)) then A∗ ⊗ B∗ and Hom(A∗,B∗) are
objects of C(k) given by the formulas

[
A∗ ⊗ B∗]n =

⊕
i∈Z

[
A−i ⊗k B

n+i
]

[
Hom(A∗,B∗)

]n
=

∏
i∈Z

[
Homk(A

i ,Bn+i )
]

The unit 1 ∈ Ob(C(k)) is the complex with k in degree zero

· · · // 0 // 0 // k // 0 // 0 // · · ·
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k-linear and dg (differential graded) categories

Definition (k linear and dg categories)

A k-linear category is a category enriched over k–Mod, and a dg category
is a category enriched over C(k).

G. Maxwell Kelly, Basic concepts of enriched category theory, London
Mathematical Society Lecture Note Series, vol. 64, Cambridge
University Press, Cambridge-New York, 1982.

G. Maxwell Kelly, Basic concepts of enriched category theory, Repr.
Theory Appl. Categ. (2005), no. 10, vi+137, Reprint of the 1982
original [Cambridge Univ. Press].
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k-linear and dg (differential graded) categories

Definition (k linear and dg categories)

A k-linear category is a category enriched over k–Mod, and a dg category
is a category enriched over the closed monoidal category C(k).

Thus to specify the dg category C we must:

1 Give a set of objects Ob(C).
2 For every pair of objects C1,C2 ∈ Ob(C) we must give a cochain

complex HomC(C1,C2).

3 There must be a composition law. Thus for every triple of objects
C1,C2,C3 ∈ Ob(C) we must be given a cochain map

HomC(C2,C3)⊗HomC(C1,C2) // HomC(C1,C3)

4 For every object C ∈ Ob(C) we must give a map 1 −→ HomC(C ,C ).
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dg functors

Let C,D be dg categories. A dg functor f : C −→ D is the following:

1 A function Ob(C) −→ Ob(D).

2 For every pair of objects C ,C ′ ∈ Ob(C), we must be given a cochain
map

HomC(C ,C ′) // HomD(f (C ), f (C ′))

3 Composition and identities are respected.
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Let C be a dg category. The k-linear category H0(C) has
1

Ob(H0(C)) = Ob(C)
2

HomH0(C)(C1,C2) = H0
[
HomC(C1,C2)

]
If f : C −→ D is a dg functor between dg categories, then
H0(f ) : H0(C) −→ H0(D) is the obvious k-linear functor between k-linear
categories.
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Pretriangulated dg categories

Every dg category C has a Yoneda functor

Y : C // Homdg(Cop,C(k))

On objects Y(C ) = HomC(−,C )

The category C is pretriangulated if the essential image of the functor Y is
closed in Homdg(Cop,C(k)) under mapping cones.

The information relevant to us

If C is pretriangulated then H0(C) is a k-linear triangulated category. If
f : C −→ D is a dg functor of pretriangulated dg categories, then
H0(f ) : H0(C) −→ H0(D) is a k-linear exact functor of k-linear
triangulated categories.

Amnon Neeman (ANU) In the footsteps of Krause 26 September 2022 19 / 124



Quasi-equivalences and unique enhancements

Definition

Let C,D be dg categories. A dg functor f : C −→ D is a quasi-equivalence
if H0(f ) : H0(C) −→ H0(D) is an equivalence of categories.

Definition

Let T be a k-linear triangulated category. We say that T has a unique
enhancement if any two pretriangulated dg categories D and D′, with
H0(D) ∼= T ∼= H0(D′) as triangulated categories, admit a zigzag of dg
functors, all quasi-equivalences

C1

�� ��

C2

�� ��

· · ·

  ��

Cn

��~~
D C′

1 C′
2 · · · C′

n−1 D′
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Enhancement of functors

If D,D′ are pretriangulated dg categories and F : H0(D) −→ H0(D′) is a
k-linear exact functor of k-linear triangulated categories, we say that F is
enhanceable to D,D′ if there is a zigzag of dg functors

C1

�� ��

C2

�� ��

· · ·

  ��

Cn

��~~
D C′

1 C′
2 · · · C′

n−1 D′

whose image under H0 composes to F .
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Questions

Does every k-linear triangulated category have a dg enhancement?

Can a k-linear triangulated category have two or more nonequivalent
enhancements?

Does every k-linear triangulated functor F : H0(C) −→ H0(D) have a dg
enhancement to C,D?

Note

If H0(C) and/or H0(D) have more than one enhancement, saying that a
functor F : H0(C) −→ H0(D) is enhanceable depends on the choice of
enhancements.
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Alexey I. Bondal and Mikhail M. Kapranov, Enhanced triangulated
categories, Mat. Sb. 181 (1990), no. 5, 669–683.

This paper is the origin of dg enhancements—it sets up the theory.

Amnon Neeman, Stable homotopy as a triangulated functor,
Inventiones Mathematicae 109 (1992), 17–40.

Gave the first example of a non-enhanceable exact functor of triangulated
categories. More precisely: it produces a non-enhanceble exact functor
F : Db(Z[12 ]) −→ T b[12 ].

The category T b[12 ] is topological; it is the category of finite spectra with
2 inverted. It doesn’t have a dg enhancement—but it is topologically
enhanceable.
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Example (Triangulated category with two nonequivalent
enhancements)

Let k = Z/p, the field with p elements. For any integer n > 0 consider the
(tensor) triangulated category T , defined by

1 A[2pn − 2] = A.

2 Every object A ∈ T is a direct sum of shifts of 1, the identity of the
tensor product.

3

Hom(1,1[r ]) =

{
k if (2pn − 2)|r
0 otherwise

4 The exact triangles are all isomorphic to direct sums of rotations of

0 −→ 1
1−→ 1 −→ 0.

Obvious dg enhancement

The category of graded vector spaces over the graded field k[x , x−1],
where degree(x) = 2pn − 2.
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Second enhancement, topological

The category of modules over the ring spectrum K (n), the nth Morava
K -theory at the prime p.

I first learned about this, as a conjectured counterexample, from Jeff
Smith in the mid 1990s. For a proof that the enhancements are different
see Section 2.1 of

Stefan Schwede, The stable homotopy category has a unique model at
the prime 2, Adv. Math. 164 (2001), no. 1, 24–40.

Amnon Neeman (ANU) In the footsteps of Krause 26 September 2022 25 / 124



Uniqueness of enhancements of triangulated categories,
second counterexample

Marco Schlichting, A note on K -theory and triangulated categories,
Invent. Math. 150 (2002), no. 1, 111–116.

Provided the second example of a triangulated category with two
nonequivalent enhancements.

Let k be a perfect field of characteristic p > 0. Then it’s easy to see that
there is an equivalence of k-linear triangulated categories

Dsg(k[ε]/ε
2) ∼= Dsg(W2(k)) ,

where W2(k) is the length-2 Witt ring of k .

Thus the triangulated category comes with two natural dg enhancements,
one k-linear and one W2(k)-linear.

If k = Z/p Schlichting proves that these aren’t equivalent.
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Enhanceability for functors
F : Db(coh(X )) −→ Db(coh(Y )), with X ,Y smooth and
projective over a field k and with the standard
enhancements for Db(coh(X )) and Db(coh(Y ))

Dmitri O. Orlov, Equivalences of derived categories and K3 surfaces,
J. Math. Sci. (New York) 84 (1997), no. 5, 1361–1381, Algebraic
geometry, 7.

Yujiro Kawamata, Equivalences of derived categories of sheaves on
smooth stacks, Amer. J. Math. 126 (2004), no. 5, 1057–1083.

Alberto Canonaco and Paolo Stellari, Twisted Fourier-Mukai functors,
Adv. Math. 212 (2007), no. 2, 484–503.

Alice Rizzardo, On the existence of Fourier-Mukai functors, Math. Z.
287 (2017), no. 1-2, 155–179.
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Alice Rizzardo, Michel Van den Bergh, and Amnon Neeman, An
example of a non-Fourier-Mukai functor between derived categories of
coherent sheaves, Invent. Math. 216 (2019), no. 3, 927–1004.

Vadim Vologodsky, Triangulated endofunctors of the derived category
of coherent sheaves which do not admit DG liftings, Arnold Math. J.
5 (2019), no. 1, 139–143.
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The article with brave conjectures

Alexey I. Bondal, Michael Larsen, and Valery A. Lunts, Grothendieck
ring of pretriangulated categories, Int. Math. Res. Not. (2004), no. 29,
1461–1495.

Conjectured that (a) reasonable categories, such as Db(coh(X )), have
unique enhancements, and (b) exact functors between them are all
enhanceable.
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Existence of enhancement, counterexamples

Fernando Muro, Stefan Schwede, and Neil Strickland, Triangulated
categories without models, Invent. Math. 170 (2007), no. 2, 231–241.

Shows that there exist non-enhanceable categories. More precisely: the
category of free Z/4-modules.

The triangulated structure is given as follows.

1 A[1] = A.

2 The exact triangles are isomorphs of direct sums of rotations of two
basic triangles:

0 // Z/4 1 // Z/4 // 0

Z/4 2 // Z/4 2 // Z/4 2 // Z/4
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Existence of enhancement, counterexamples

Alice Rizzardo and Michel Van den Bergh, A k-linear triangulated
category without a model, Ann. of Math. (2) 191 (2020), no. 2,
393–437.

Shows that there exist non-enhanceable categories linear over a field k .
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Uniqueness of enhancements, early positive results

Stefan Schwede, The stable homotopy category has a unique model at
the prime 2, Adv. Math. 164 (2001), no. 1, 24–40.

Stefan Schwede, The stable homotopy category is rigid, Ann. of Math.
(2) 166 (2007), no. 3, 837–863.
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Uniqueness of enhancements, positive results

Valery A. Lunts and Dmitri O. Orlov, Uniqueness of enhancement for
triangulated categories, J. Amer. Math. Soc. 23 (2010), no. 3,
853–908.

Alberto Canonaco and Paolo Stellari, Uniqueness of dg enhancements
for the derived category of a Grothendieck category, J. Eur. Math.
Soc. (JEMS) 20 (2018), no. 11, 2607–2641.

Benjamin Antieau, On the uniqueness of infinity-categorical
enhancements of triangulated categories, arXiv:1812.01526.
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The categories D?(A)

Theorem (Canonaco, N- and Stellari)

Let A be an abelian category. For ? ∈ {b,+,−, ∅} we have that the
category D?(A) has a unique enhancement.

1 If A is a Grothendieck category with a small set of compact
generators, the uniqueness of the enhancement of D(A) is due to
Lunts and Orlov.

2 If A is an arbitrary Grothendieck abelian category, the fact that D(A)
has a unique enhancement is due to Canonaco and Stellari.

3 The special case, showing Db(coh(X )) has a unique enhancement,
was shown by Lunts and Orlov if X is quasi-projective and by
Canonaco and Stellari if X has the resolution property.

4 Antieau proved that Db(A), D−(A) and D+(A) have unique
enhancements, for any abelian category A.
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Maurice Auslander, Representation theory of Artin algebras, Queen
Mary College, London (1971).

G. Maxwell Kelly, Chain maps inducing zero homology maps, Proc.
Cambridge Philos. Soc. 61 (1965), 847–854.

Henning Krause, Deriving Auslander’s formula, Doc. Math. 20 (2015),
669–688.
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Key new ideas

Let A be an abelian category, and consider the Verdier quotient functor
π : K?(A) −→ D?(A).

We will study a diagram

V?(A) //
� _

��

B?(A)� _

��
K?(A)

π // D?(A)

where the vertical maps are inclusions of full subcategories.
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The objects, of either V?(A) or B?(A), are the complexes with zero
differentials

· · · // A−2 0 // A−1 0 // A0 0 // A1 0 // A2 // · · ·

We will write such an object as

∞⊕
i=−∞

Ai [−i ]

In the category V?(A) we have

∞⊕
i=−∞

Ai [−i ] =
∞∐

i=−∞
Ai [−i ] =

∞∏
i=−∞

Ai [−i ] .
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Key lemmas

Lemma (1)

With the notation as above we have that, in the category D?(A),

0⊕
i=−∞

Ai [−i ] =
0∐

i=−∞
Ai [−i ] ,

∞⊕
i=0

Ai [−i ] =
∞∏
i=0

Ai [−i ] .

Lemma (2)

With the notation as on the next slide, we have ⟨V?(A)⟩3 = K?(A) and
therefore also ⟨B?(A)⟩3 = D?(A).
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With the notation as above we have that, in the category D?(A),

0⊕
i=−∞

Ai [−i ] =
0∐

i=−∞
Ai [−i ] ,

∞⊕
i=0

Ai [−i ] =
∞∏
i=0

Ai [−i ] .

Lemma (2)
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Reminder of the terminology in the second lemma

Alexey I. Bondal and Michel Van den Bergh, Generators and
representability of functors in commutative and noncommutative
geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.

Reminder

Let T be a small triangulated category, and let S ⊂ T be a set of objects.
We define

1 ⟨S⟩1 is the set of all direct summands of finite direct sums of shifts of
objects in S .

2 An object y belongs to ⟨S⟩n+1 if there exists a triangle

x // y ⊕ y ′ // z // x [1]

with x ∈ ⟨S⟩n and z ∈ ⟨S⟩1.

Amnon Neeman (ANU) In the footsteps of Krause 26 September 2022 46 / 124



Where Auslander’s formula comes in

Given an abelian category A, Auslander considered the embedding
A −→ modA. That is A embeds in the category of finitely presented
additive functors F : A −→ AB.

Recall: the functor F : A −→ AB is finitely presented if there exists an
exact sequence

Hom(−,A) // Hom(−,B) // F (−) // 0 .

And one notes (1) the representable functors are the projective objects in
modA, and (2) every object in modA has projective dimension ≤ 2. Let
K be the kernel of A −→ B above, and we have an exact sequence

0 // Hom(−,K ) // Hom(−,A) // Hom(−,B) // F (−) // 0 .
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Where Auslander’s formula comes in

Because every object in modA has finite projective dimension we have

K?(A) = K?(proj(modA)) = D?(modA)

And because every object in modA has projective dimension ≤ 2, Kelly’s
1965 theorem tells us that the projectives generate the category in three
steps: that is

K?(A) = ⟨V?(A)⟩3 .
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Sketch how to pass from the key lemmas to the theorem

Let C be a dg enhancement of D?(A), and let C̃ be the canonical
enhancement of K?(A). We would like to enhance the canonical Verdier
quotient map π : K?(A) −→ D?(A) to a dg functor π̃ : C̃ −→ C, which
would then have to factor as C̃ −→ C̃

Acy(C̃)
−→ C.

Let V ⊂ C̃ be the inverse image of V?(A) ⊂ K?(A), and let B ⊂ C be the
inverse image of B?(A) ⊂ D?(A).

By the second lemma, which says that ⟨V?(A)⟩3 = K?(A) and
⟨B?(A)⟩3 = D?(A), we have quasi-equivalences Perf(V) ∼= C̃ and
Perf(B) ∼= C.

It suffices to produce a quasi-functor V −→ B, as it would induce a
quasi-functor Perf(V) −→ Perf(B), that is π̃ : C̃ −→ C.
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The objects of V and B are the same, we need to come up with a map
HomV(A,B) −→ HomB(A,B). For the objects of V we have, in the dg
category V, isomorphisms

∞⊕
i=−∞

Ai [−i ] =
∞∐

i=−∞
Ai [−i ] =

∞∏
i=−∞

Ai [−i ] .

If the same were true for B then, for (−) ∈ {B,V}

Hom(−)

 ∞⊕
i=−∞

Ai [−i ] ,
∞⊕

j=−∞
B j [−j ]


would rewrite as

∞∏
i=−∞

∞∏
j=−∞

Hom(−)

(
Ai [−i ],B j [−j ]

)
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and in the derived category D(k) the map∏∞
i=−∞

∏∞
j=−∞HomV

(
Ai [−i ],B j [−j ]

)
��∏∞

i=−∞
∏∞

j=−∞HomB
(
Ai [−i ],B j [−j ]

)
would rewrite as∏∞

i=−∞
∏∞

j=−∞HomB
(
Ai [−i ],B j [−j ]

)≤j−i

��∏∞
i=−∞

∏∞
j=−∞HomB

(
Ai [−i ],B j [−j ]

)
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In the category B, write

A∗ =
∞⊕

i=−∞
Ai =

[−n−1⊕
i=−∞

Ai

]
⊕

n⊕
i=−n

Ai ⊕

[ ∞⊕
i=n+1

Ai

]
and

B∗ =
∞⊕

i=−∞
B i =

[−n−1⊕
i=−∞

B i

]
⊕

n⊕
i=−n

B i ⊕

[ ∞⊕
i=n+1

B i

]

Then HomB(A
∗,B∗) is a finite product, which we truncate as much as we

can. And then we take inverse limits as n −→ ∞.
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Grothendieck’s K0

Definition

An exact category is an additive category E , with a collection of admissible
short exact sequences

E ′ −→ E −→ E ′′,

satisfying some axioms.

Example

1 R–mod, the category of finite modules over a noetherian ring R.

2 R–proj, the category of finitely generated projective R-modules.

3 Vect(X ), the category of vector bundles over X .
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Example

Given any additive category E , we can turn it into an exact category by
declaring the sequences

E ′ −→ E ′ ⊕ E ′′ −→ E ′′

to be the admissible exact sequences. We will write E⊕ for this exact
category.

Remark

If E = R–proj, then E = E⊕. But for E = R–mod and E = Vect(X ), the
split exact structure doesn’t agree with the ordinary exact structure.
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Definition

Let E be an essentially small exact category. The abelian group K0(E) is
defined by the formula

K0(E) =
free abelian group generated by objects E ∈ E

(E − E ′ − E ′′) | there exists a an admissible E ′ −→ E −→ E ′′

Definition

When X is a reasonable scheme, we define K0(X ) = K0

[
Vect(X )

]
.
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Higher K–theory

Mayer-Vietoris sequence

Given a scheme X and two open sets U,V ⊂ X , there are obvious
restriction functors

Vect(X ) //

��

Vect(U)

��
Vect(V ) // Vect(U ∩ V )

giving maps

K0(X ) // K0(U)⊕ K0(V ) // K0(U ∩ V )

This turns out to be exact. We would like to extend to
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Mayer-Vietoris sequence, continued

rr
K1(X ) // K1(U)⊕ K1(V ) // K1(U ∩ V )

rr
K0(X ) // K0(U)⊕ K0(V ) // K0(U ∩ V )

rr
K−1(X ) // K−1(U)⊕ K−1(V ) // K−1(U ∩ V )

rr

This turns out to be possible. It is the culmination of the work of many
people.
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Vanishing observations

Two conjectures

1 Weibel’s conjecture: If X is a noetherian scheme of dimension n,
then Kr (X ) = 0 for all r < −n.

2 Schlichting’s conjecture: It is a theorem that, if X is a noetherian,
regular and finite dimensional scheme, then Kr (X ) = 0 for all r < 0.

Schlichting conjectured a major generalization.

Weibel’s conjecture is true, it was proved in

Moritz Kerz, Florian Strunk, and Georg Tamme, Algebraic K -theory
and descent for blow-ups, Invent. Math. 211 (2018), no. 2, 523–577.
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Focus on Schlichting’s conjecture

Schlichting conjecture isn’t only about schemes.

Remember: given any exact category E there is a recipe to produce a
K -theory out of it. And until now we have focused on the case
E = Vect(X ).

If a noetherian scheme X is regular and finite-dimensional then
there exists an abelian category A with K∗

[
Vect(X )

]
= K∗(A).

Explicitly: A = Coh(X ) works.

And Schlichting’s conjecture says: if A is an abelian category, then
Kn(A) = 0 for all n < 0. See Conjecture 1 of Section 10 in

(Conjecture A)

Marco Schlichting, Negative K -theory of derived categories, Math. Z.
253 (2006), no. 1, 97–134.
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Schlichting proved:

1 If the abelian category A is noetherian, then Kn(A) = 0 for n < 0.

2 For any abelian category A, we have K−1(A) = 0.

Amnon Neeman (ANU) In the footsteps of Krause 26 September 2022 69 / 124



Plausibility argument

Theorem (Quillen). Suppose B is an abelian category, assume A ⊂ B is a
Serre subcategory, and let C = B/A.

rr
K1(A) // K1(B) // K1(C)

rr
K0(A) // K0(B) // K0(C)

rr
K−1(A)0 // K−1(B) // K−1(C)

rr

Daniel Quillen, Higher algebraic K -theory. I, Algebraic K -theory, I:
Higher K -theories (Proc. Conf., Battelle Memorial Inst., Seattle,
Wash., 1972), Lecture Notes in Math., vol. 341, Springer verlag, 1973,
pp. 85–147.
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How difficult can it be?

Given A we want to construct

A �
� // B // B/A = C

with K∗(B) = 0. The plausible way to try to achieve this is via the
“Eilenberg swindle”; if the category B has countable coproducts then
K∗(B) = 0.

The reason is: we can form F : B −→ B by the formula

F (B) =
∞∐
i=1

B

We notice

F (B) ∼= B ⊕ F (B) hence Kn(F ) = Kn(id) + Kn(F )
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The problem with this:

Given A, we can let B be the smallest abelian category containing A and
closed under coproducts.

But A is not going to be a Serre subcategory.

Let A ∈ A be some chosen object, and let {fi : Ai −→ A} be a countable
collection of morphisms in A.

The image of a map

∞∐
i=1

Ai
// A

will not usually lie in A.
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Let T be a model category with a bounded t–structure. Antieau, Gepner
and Heller proved the following generalization of Schlichting’s results:

1 If the abelian category T ♡ is noetherian, then Kn(T ) = 0 for n < 0.

2 Unconditionally we have K−1(T ) = 0.

If A is an abelian category, Schlichting’s results come about by putting
T = Db(A) with the standard t–structure.

Benjamin Antieau, David Gepner, and Jeremiah Heller, K -theoretic
obstructions to bounded t-structures, Invent. Math. 216 (2019),
no. 1, 241–300.
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The generalized Schlichting conjecture (Conjecture B)

For any T with a bounded t–structure, Kn(T ) = 0 for all n < 0.

Yet another conjecture, in case the above are false (Conjecture C)

For any T with a bounded t–structure, the natural map
Kn(T ♡) −→ Kn(T ) is an isomorphism for n < 0.

Benjamin Antieau, David Gepner, and Jeremiah Heller, K -theoretic
obstructions to bounded t-structures, Invent. Math. 216 (2019),
no. 1, 241–300.
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Plausibility argument

Let R ⊂ S be model categories with T = S/R. Then

rr
K−1(R) // K−1(S) // K−1(T )

ss
K−2(R) // K−2(S) // K−2(T )

ss
K−3(R) // K−3(S) // K−3(T )

rr
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Punchline

Schlichting’s conjecture (Conjecture A)

and the generalized Schlichting conjecture (Conjecture B)

are both false.

The counterexample appeared in

Amnon Neeman, A counterexample to vanishing conjectures for
negative K -theory, Invent. Math. 225 (2021), no. 2, 427–452.
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Back to Auslander’s formula

Maurice Auslander, Representation theory of Artin algebras, Queen
Mary College, London (1971).

Henning Krause, Deriving Auslander’s formula, Doc. Math. 20 (2015),
669–688.
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Let A be an abelian category, and let modA be the category of finitely
presented functors A −→ AB. We learned

Kb(A) = Kb(proj(modA)) = Db(modA)

Auslander’s formula tells us that there is an exact functor
Λ : modA −→ A, expressing A as the Gabriel quotient of modA by some
Serre subcategory effA.

Krause’s article, which derives Auslander’s formula, gives

Acb (A) //

≀
��

Kb(A) //

≀
��

Db(A)

Db
effA(modA) // Db(modA) // Db(A)
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The categories Acb (E) ⊂ Kb(E) and Db(E) = Kb(E)/Acb (E)
Let E be any idempotent-complete exact category. Let Kb(E) be the
category whose objects are bounded cochain complexes in E , meaning

· · · ∂ i−2
// E i−1 ∂ i−1

// E i ∂ i
// E i+1 ∂ i+1

// · · ·

with E i = 0 for |i | ≫ 0.

The full subcategory Acb (E) of acyclics contains those cochain complexes
for which there exist admissible short exact sequences

0 // K i αi
// E i βi

// K i+1 // 0

such that ∂ i = αi+1 ◦ βi .

And Db(E) = Kb(E)/Acb (E).
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The t–structure on Acb (E)

Acb (E)≤0 = {E ∗ ∈ Acb (E) | E i = 0 for all i > 0}

Acb (E)≥0 = {E ∗ ∈ Acb (E) | E i = 0 for all i < −2}
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Proof that this is a t–structure

A morphism from an object E ∗ ∈ Acb (E)≤0 to an object F ∗ ∈ Acb (E)≥1

may be represented by a cochain map

· · · ∂−3
// E−2 ∂−2

//

��

E−1 ∂−1
//

f
��

E 0 //

g
��

θ

yy

0 //

��

· · ·

· · · // 0 // F−1

∂̃−1

// F 0

∂̃0

// F 1

∂̃1

// · · ·

that is:
g = ∂̃−1 ◦ θ .
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Proof that this is a t–structure, continued

Next choose any object E ∗ ∈ Acb (E), that is a complex

· · · ∂ i−2
// E i−1 ∂ i−1

// E i ∂ i
// E i+1 ∂ i+1

// · · ·

Write ∂−1 : E−1 −→ E 0 as a composite E−1 β−1

−→ K 0 α0

−→ E 0. Now
consider the cochain maps

· · · ∂−3
// E−2 ∂−2

//

id
��

E−1 β−1
//

id
��

K 0 //

α0

��

0 //

��

· · ·

· · · ∂−3
// E−2 ∂−2

//

��

E−1 ∂−1
//

β−1

��

E 0 ∂0
//

id
��

E 1 ∂1
//

id
��

· · ·

· · · // 0 //

��

K 0 α0
//

id
��

E 0 ∂0
//

��

E 1 ∂1
//

��

· · ·

· · · −∂−2
// E−1 −β−1

// K 0 // 0 // 0 // · · ·
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The heart

The heart of this t–structure, denoted Acb (E)♡, is by definition the full
subcategory

Acb (E)♡ = Acb (E)≤0 ∩ Acb (E)≥0 .

The objects are the acyclic cochain complexes

0 // E−2 // E−1 // E 0 // 0

and the morphisms are the homotopy equivalence classes of cochain maps.

Formal consequence of the general theory

The category Acb (E)♡ is abelian.
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Now we have Acb (E) ⊂ Kb(E) with quotient Db(E), giving

rr
K−1(Ac

b (E)) // K−1(Kb(E)) // K−1(Db(E))

rr
K−2(Ac

b (E)) // K−2(Kb(E)) // K−2(Db(E))

rr
K−3(Ac

b (E)) // K−3(Kb(E)) // K−3(Db(E))

rr
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which rewrites as

rr
K−1(Ac

b (E)) // K−1(E⊕) // K−1(E)

ss
K−2(Ac

b (E)) // K−2(E⊕) // K−2(E)

ss
K−3(Ac

b (E)) // K−3(E⊕) // K−3(E)

rr
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Thus the vanishing of Kn(Ac
b (E)) for all n < 0 would imply that the map

Kn(E⊕) −→ Kn(E)

would have to be an isomorphism for all n < 0. Hence, for a
counterexample to the generalized Schlichting conjecture, all we need to
do is find an E for which this fails.

If we want to disprove the (ungeneralized) Schlichting conjecture and/or
to study the yet another conjecture, then it might be helpful to look at the
natural map

Kn

(
Acb (E)♡

)
−→ Kn(Ac

b (E)) .
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Theorem

Let E be an idempotent-complete exact category. Then the natural functor

Db
(
Acb (E)♡

)
−→ Acb (E)

is an equivalence of triangulated categories if and only if E is hereditary,
meaning Exti (E ,E ′) = 0 for all i > 1 and E ,E ′ ∈ E .

Corollary

If E is hereditary then the map

Kn

(
Acb (E)♡

)
−→ Kn(Ac

b (E))

must be an isomorphism for all n ∈ Z.
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Example

If Y is any algebraic curve, then the category E = Vect(Y ) is hereditary.

After all: there is a spectral sequence

H i (Ext j(E ,E ′)) =⇒ Ext i+j(E ,E ′),

For vector bundles we know the vanishing of Ext j(E ,E ′) for j > 0, and for
curves we have the vanishing of H i for i > 1.

The corollary on the previous page informs us that, for any algebraic curve
Y and with E = Vect(Y ), the natural map

Kn

(
Acb (E)♡

)
−→ Kn(Ac

b (E))

is an isomorphism for all n ∈ Z.
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In the published article

Amnon Neeman, A counterexample to vanishing conjectures for
negative K -theory, Invent. Math. 225 (2021), no. 2, 427–452.

I specialize to the case of singular projective curves with only simple nodes
as singularities, directly prove that K−1(E⊕) = 0, and then cite the known
examples where K−1(E) ̸= 0.

LOUSY ARGUMENT!
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Recall the general exact sequence

rr
K−1(Ac

b (E)) // K−1(E⊕) // K−1(E)

ss
K−2(Ac

b (E)) // K−2(E⊕) // K−2(E)

ss
K−3(Ac

b (E)) // K−3(E⊕) // K−3(E)

rr
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The right approach would have been to prove the more general statement:

Theorem

Let k be a field and let E be an idempotent-complete, additive, k-linear
category. Assume that, for all objects E ,E ′ ∈ E , Hom(E ,E ′) is
finite-dimensional as a k-vector space.

Then Kn(E⊕) = 0 for all n < 0.
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Let T be a model category with a bounded t–structure. Antieau, Gepner
and Heller proved the following generalization of Schlichting’s results:

1 If the abelian category T ♡ is noetherian, then Kn(T ) = 0 for n < 0.

2 Unconditionally we have K−1(T ) = 0.

If A is an abelian category, Schlichting’s results come about by putting
T = Db(A) with the standard t–structure.

Benjamin Antieau, David Gepner, and Jeremiah Heller, K -theoretic
obstructions to bounded t-structures, Invent. Math. 216 (2019),
no. 1, 241–300.
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Thank you,

and HAPPY BIRTHDAY

TO HENNING!
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