Two results, both developments of a 2015 article by Krause

Amnon Neeman

Australian National University

amnon.neeman@anu.edu.au

26 September 2022

1 k-linear categories and dg categories

- Existence and uniqueness of enhancements of triangulated categories, and enhanceability of functors
- 3 Key new ideas
- 4 Grothendieck's K₀
- 5 Higher *K*–theory
- 6 The counterexample

Let k be a commutative ring; we fix it throughout.

Let k-Mod be the category of k-modules and k-linear maps.

Let C(k) be the category of cochain complexes of *k*-modules. The objects are cochain complexes A^* of *k*-modules, and the morphisms are the cochain maps. In pictures

Objects:

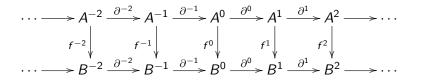
$$\cdots \longrightarrow A^{-2} \xrightarrow{\partial^{-2}} A^{-1} \xrightarrow{\partial^{-1}} A^0 \xrightarrow{\partial^0} A^1 \xrightarrow{\partial^1} A^2 \longrightarrow \cdots$$

Let k be a commutative ring; we fix it throughout.

Let k-Mod be the category of k-modules and k-linear maps.

Let C(k) be the category of cochain complexes of *k*-modules. The objects are cochain complexes A^* of *k*-modules, and the morphisms are the cochain maps. In pictures

Morphisms:



The categories k-Mod and C(k) are both closed monoidal categories. Both have tensor products and internal Homs. The categories k-Mod and C(k) are both closed monoidal categories. Both have tensor products and internal Homs.

In *k*-Mod: if *A* and *B* are *k*-modules, then so are $A \otimes_k B$ and $\operatorname{Hom}_k(A, B)$. The identity for the tensor product is the rank-one free module *k*.

The categories k-Mod and C(k) are both closed monoidal categories. Both have tensor products and internal Homs.

In *k*-Mod: if *A* and *B* are *k*-modules, then so are $A \otimes_k B$ and $\operatorname{Hom}_k(A, B)$. The identity for the tensor product is the rank-one free module *k*.

In C(k): if $A^*, B^* \in Ob(C(k))$ then $A^* \otimes B^*$ and $Hom(A^*, B^*)$ are objects of C(k) given by the formulas

$$\begin{bmatrix} A^* \otimes B^* \end{bmatrix}^n = \bigoplus_{i \in \mathbb{Z}} \begin{bmatrix} A^{-i} \otimes_k B^{n+i} \end{bmatrix}$$
$$\begin{bmatrix} \mathcal{H}om(A^*, B^*) \end{bmatrix}^n = \prod_{i \in \mathbb{Z}} \begin{bmatrix} \operatorname{Hom}_k(A^i, B^{n+i}) \end{bmatrix}$$

The unit $1 \in Ob(\mathbf{C}(k))$ is the complex with k in degree zero

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow k \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

Definition (k linear and dg categories)

A *k*-linear category is a category enriched over k-Mod, and a dg category is a category enriched over C(k).

- G. Maxwell Kelly, *Basic concepts of enriched category theory*, London Mathematical Society Lecture Note Series, vol. 64, Cambridge University Press, Cambridge-New York, 1982.
- G. Maxwell Kelly, *Basic concepts of enriched category theory*, Repr. Theory Appl. Categ. (2005), no. 10, vi+137, Reprint of the 1982 original [Cambridge Univ. Press].

Definition (k linear and dg categories)

A *k*-linear category is a category enriched over k-Mod, and a dg category is a category enriched over the closed monoidal category C(k).

Thus to specify the dg category $\mathcal C$ we must:

1

2

3

Definition (k linear and dg categories)

A *k*-linear category is a category enriched over k-Mod, and a dg category is a category enriched over the closed monoidal category C(k).

Thus to specify the dg category $\mathcal C$ we must:

1 Give a set of objects Ob(C).

2

3

10/124

Definition (k linear and dg categories)

A *k*-linear category is a category enriched over k-Mod, and a dg category is a category enriched over the closed monoidal category C(k).

Thus to specify the dg category \mathcal{C} we must:

- **1** Give a set of objects Ob(C).
- Por every pair of objects C₁, C₂ ∈ Ob(C) we must give a cochain complex Hom_C(C₁, C₂).

3

11/124

Definition (k linear and dg categories)

A *k*-linear category is a category enriched over k-Mod, and a dg category is a category enriched over the closed monoidal category C(k).

Thus to specify the dg category \mathcal{C} we must:

- **1** Give a set of objects Ob(C).
- Por every pair of objects C₁, C₂ ∈ Ob(C) we must give a cochain complex Hom_C(C₁, C₂).
- So There must be a composition law. Thus for every triple of objects $C_1, C_2, C_3 \in Ob(\mathcal{C})$ we must be given a cochain map

 $\operatorname{Hom}_{\mathcal{C}}(\mathcal{C}_2,\mathcal{C}_3)\otimes\operatorname{Hom}_{\mathcal{C}}(\mathcal{C}_1,\mathcal{C}_2) {\longrightarrow} \operatorname{Hom}_{\mathcal{C}}(\mathcal{C}_1,\mathcal{C}_3)$

< □ > < □ > < □ > < □ > < □ > < □ >

Definition (k linear and dg categories)

A *k*-linear category is a category enriched over k-Mod, and a dg category is a category enriched over the closed monoidal category C(k).

Thus to specify the dg category \mathcal{C} we must:

- **1** Give a set of objects Ob(C).
- Por every pair of objects C₁, C₂ ∈ Ob(C) we must give a cochain complex Hom_C(C₁, C₂).

Objects There must be a composition law. Thus for every triple of objects C₁, C₂, C₃ ∈ Ob(C) we must be given a ccohain map

 $\operatorname{Hom}_{\mathcal{C}}(\mathit{C}_2, \mathit{C}_3) \otimes \operatorname{Hom}_{\mathcal{C}}(\mathit{C}_1, \mathit{C}_2) {\longrightarrow} \operatorname{Hom}_{\mathcal{C}}(\mathit{C}_1, \mathit{C}_3)$

• For every object $C \in Ob(\mathcal{C})$ we must give a map $1 \longrightarrow Hom_{\mathcal{C}}(C, C)$.

Let \mathcal{C}, \mathcal{D} be dg categories. A dg functor $f : \mathcal{C} \longrightarrow \mathcal{D}$ is the following:

1 2

3

Amnon Neeman (ANU)

표 제 표

3

Let \mathcal{C}, \mathcal{D} be dg categories. A dg functor $f : \mathcal{C} \longrightarrow \mathcal{D}$ is the following:

1 A function $Ob(\mathcal{C}) \longrightarrow Ob(\mathcal{D})$. 2

Image: A matrix

æ

3

Let \mathcal{C}, \mathcal{D} be dg categories. A dg functor $f : \mathcal{C} \longrightarrow \mathcal{D}$ is the following:

- A function $Ob(\mathcal{C}) \longrightarrow Ob(\mathcal{D})$.
- ② For every pair of objects C, C' ∈ Ob(C), we must be given a cochain map

$$\operatorname{Hom}_{\mathcal{C}}(\mathcal{C},\mathcal{C}') \longrightarrow \operatorname{Hom}_{\mathcal{D}}(f(\mathcal{C}),f(\mathcal{C}'))$$

э

Let \mathcal{C}, \mathcal{D} be dg categories. A dg functor $f : \mathcal{C} \longrightarrow \mathcal{D}$ is the following:

- A function $Ob(\mathcal{C}) \longrightarrow Ob(\mathcal{D})$.
- ② For every pair of objects C, C' ∈ Ob(C), we must be given a cochain map

$$\operatorname{Hom}_{\mathcal{C}}(\mathcal{C},\mathcal{C}') \longrightarrow \operatorname{Hom}_{\mathcal{D}}(f(\mathcal{C}),f(\mathcal{C}'))$$

Omposition and identities are respected.

17 / 124

Let C be a dg category. The k-linear category $H^0(C)$ has $Ob(H^0(C)) = Ob(C)$ $Hom_{H^0(C)}(C_1, C_2) = H^0[Hom_C(C_1, C_2)]$

If $f : \mathcal{C} \longrightarrow \mathcal{D}$ is a dg functor between dg categories, then $H^0(f) : H^0(\mathcal{C}) \longrightarrow H^0(\mathcal{D})$ is the obvious k-linear functor between k-linear categories.

18/124

Pretriangulated dg categories

Every dg category $\ensuremath{\mathcal{C}}$ has a Yoneda functor

$$\mathcal{Y}: \mathcal{C} \longrightarrow \operatorname{Hom}_{\mathsf{dg}}(\mathcal{C}^{\operatorname{op}}, \mathbf{C}(k))$$

On objects $\mathcal{Y}(C) = \operatorname{Hom}_{\mathcal{C}}(-, C)$

The category C is pretriangulated if the essential image of the functor \mathcal{Y} is closed in $\operatorname{Hom}_{dg}(\mathcal{C}^{\operatorname{op}}, \mathbf{C}(k))$ under mapping cones.

The information relevant to us

If \mathcal{C} is pretriangulated then $H^0(\mathcal{C})$ is a k-linear triangulated category. If $f: \mathcal{C} \longrightarrow \mathcal{D}$ is a dg functor of pretriangulated dg categories, then $H^0(f): H^0(\mathcal{C}) \longrightarrow H^0(\mathcal{D})$ is a k-linear exact functor of k-linear triangulated categories.

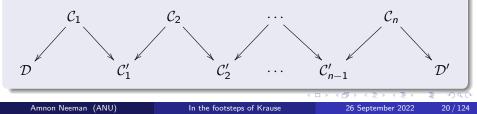
< □ > < /□ >

Definition

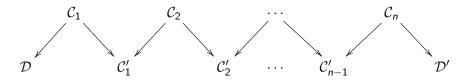
Let \mathcal{C}, \mathcal{D} be dg categories. A dg functor $f : \mathcal{C} \longrightarrow \mathcal{D}$ is a quasi-equivalence if $H^0(f) : H^0(\mathcal{C}) \longrightarrow H^0(\mathcal{D})$ is an equivalence of categories.

Definition

Let \mathcal{T} be a *k*-linear triangulated category. We say that \mathcal{T} has a unique enhancement if any two pretriangulated dg categories \mathcal{D} and \mathcal{D}' , with $H^0(\mathcal{D}) \cong \mathcal{T} \cong H^0(\mathcal{D}')$ as triangulated categories, admit a zigzag of dg functors, all quasi-equivalences



If $\mathcal{D}, \mathcal{D}'$ are pretriangulated dg categories and $F : H^0(\mathcal{D}) \longrightarrow H^0(\mathcal{D}')$ is a *k*-linear exact functor of *k*-linear triangulated categories, we say that *F* is enhanceable to $\mathcal{D}, \mathcal{D}'$ if there is a zigzag of dg functors



whose image under H^0 composes to F.

Does every k-linear triangulated category have a dg enhancement?

Can a k-linear triangulated category have two or more nonequivalent enhancements?

Does every k-linear triangulated functor $F : H^0(\mathcal{C}) \longrightarrow H^0(\mathcal{D})$ have a dg enhancement to \mathcal{C}, \mathcal{D} ?

Note

If $H^0(\mathcal{C})$ and/or $H^0(\mathcal{D})$ have more than one enhancement, saying that a functor $F : H^0(\mathcal{C}) \longrightarrow H^0(\mathcal{D})$ is enhanceable depends on the choice of enhancements.

Alexey I. Bondal and Mikhail M. Kapranov, *Enhanced triangulated categories*, Mat. Sb. **181** (1990), no. 5, 669–683.

This paper is the origin of dg enhancements—it sets up the theory.

Amnon Neeman, *Stable homotopy as a triangulated functor*, Inventiones Mathematicae **109** (1992), 17–40.

Gave the first example of a non-enhanceable exact functor of triangulated categories. More precisely: it produces a non-enhanceble exact functor $F: \mathbf{D}^{b}(\mathbb{Z}[\frac{1}{2}]) \longrightarrow \mathcal{T}^{b}[\frac{1}{2}].$

The category $\mathcal{T}^{b}[\frac{1}{2}]$ is topological; it is the category of finite spectra with 2 inverted. It doesn't have a dg enhancement—but it is topologically enhanceable.

Example (Triangulated category with two nonequivalent enhancements)

Let $k = \mathbb{Z}/p$, the field with p elements. For any integer n > 0 consider the (tensor) triangulated category T, defined by

$$\bullet \quad A[2p^n-2]=A.$$

3

② Every object A ∈ T is a direct sum of shifts of 1, the identity of the tensor product.

$$\operatorname{Hom}(\mathbb{1},\mathbb{1}[r]) = \begin{cases} k & \text{if } (2p^n-2)|r \\ 0 & \text{otherwise} \end{cases}$$

The exact triangles are all isomorphic to direct sums of rotations of 0 → 1 ¹→ 1 → 0.

Obvious dg enhancement

The category of graded vector spaces over the graded field $k[x, x^{-1}]$, where degree(x) = $2p^n - 2$.

Second enhancement, topological

The category of modules over the ring spectrum K(n), the *n*th Morava *K*-theory at the prime *p*.

I first learned about this, as a conjectured counterexample, from Jeff Smith in the mid 1990s. For a proof that the enhancements are different see Section 2.1 of

Stefan Schwede, *The stable homotopy category has a unique model at the prime 2*, Adv. Math. **164** (2001), no. 1, 24–40.

Uniqueness of enhancements of triangulated categories, second counterexample

Marco Schlichting, A note on K-theory and triangulated categories, Invent. Math. 150 (2002), no. 1, 111–116.

Provided the second example of a triangulated category with two nonequivalent enhancements.

Let k be a perfect field of characteristic p > 0. Then it's easy to see that there is an equivalence of k-linear triangulated categories

$$\mathbf{D}_{sg}(k[\varepsilon]/\varepsilon^2) \cong \mathbf{D}_{sg}(W_2(k))$$
,

where $W_2(k)$ is the length-2 Witt ring of k.

Thus the triangulated category comes with two natural dg enhancements, one k-linear and one $W_2(k)$ -linear.

If $k = \mathbb{Z}/p$ Schlichting proves that these aren't equivalent.

Enhanceability for functors $F : \mathbf{D}^{b}(\operatorname{coh}(X)) \longrightarrow \mathbf{D}^{b}(\operatorname{coh}(Y))$, with X, Y smooth and projective over a field k and with the standard enhancements for $\mathbf{D}^{b}(\operatorname{coh}(X))$ and $\mathbf{D}^{b}(\operatorname{coh}(Y))$

 Dmitri O. Orlov, Equivalences of derived categories and K3 surfaces, J. Math. Sci. (New York) 84 (1997), no. 5, 1361–1381, Algebraic geometry, 7.

Enhanceability for functors $F : \mathbf{D}^{b}(\operatorname{coh}(X)) \longrightarrow \mathbf{D}^{b}(\operatorname{coh}(Y))$, with X, Y smooth and projective over a field k and with the standard enhancements for $\mathbf{D}^{b}(\operatorname{coh}(X))$ and $\mathbf{D}^{b}(\operatorname{coh}(Y))$

- Dmitri O. Orlov, Equivalences of derived categories and K3 surfaces, J. Math. Sci. (New York) 84 (1997), no. 5, 1361–1381, Algebraic geometry, 7.
- Yujiro Kawamata, *Equivalences of derived categories of sheaves on smooth stacks*, Amer. J. Math. **126** (2004), no. 5, 1057–1083.
- Alberto Canonaco and Paolo Stellari, *Twisted Fourier-Mukai functors*, Adv. Math. **212** (2007), no. 2, 484–503.
- Alice Rizzardo, On the existence of Fourier-Mukai functors, Math. Z.
 287 (2017), no. 1-2, 155–179.

Image: A matrix

- Alice Rizzardo, Michel Van den Bergh, and Amnon Neeman, *An example of a non-Fourier-Mukai functor between derived categories of coherent sheaves*, Invent. Math. **216** (2019), no. 3, 927–1004.
- Vadim Vologodsky, *Triangulated endofunctors of the derived category of coherent sheaves which do not admit DG liftings*, Arnold Math. J. 5 (2019), no. 1, 139–143.

Alexey I. Bondal, Michael Larsen, and Valery A. Lunts, Grothendieck ring of pretriangulated categories, Int. Math. Res. Not. (2004), no. 29, 1461–1495.

Conjectured that (a) reasonable categories, such as $D^b(coh(X))$, have unique enhancements, and (b) exact functors between them are all enhanceable.

30 / 124

Fernando Muro, Stefan Schwede, and Neil Strickland, *Triangulated categories without models*, Invent. Math. **170** (2007), no. 2, 231–241.

Shows that there exist non-enhanceable categories. More precisely: the category of free $\mathbb{Z}/4\text{-modules}.$

The triangulated structure is given as follows.

1
$$A[1] = A.$$

The exact triangles are isomorphs of direct sums of rotations of two basic triangles:

$$0 \longrightarrow \mathbb{Z}/4 \xrightarrow{1} \mathbb{Z}/4 \longrightarrow 0$$
$$\mathbb{Z}/4 \xrightarrow{2} \mathbb{Z}/4 \xrightarrow{2} \mathbb{Z}/4 \xrightarrow{2} \mathbb{Z}/4$$

Alice Rizzardo and Michel Van den Bergh, A k-linear triangulated category without a model, Ann. of Math. (2) 191 (2020), no. 2, 393–437.

Shows that there exist non-enhanceable categories linear over a field k.

- Stefan Schwede, *The stable homotopy category has a unique model at the prime 2*, Adv. Math. **164** (2001), no. 1, 24–40.
- Stefan Schwede, *The stable homotopy category is rigid*, Ann. of Math.
 (2) 166 (2007), no. 3, 837–863.

- Valery A. Lunts and Dmitri O. Orlov, Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010), no. 3, 853–908.
- Alberto Canonaco and Paolo Stellari, Uniqueness of dg enhancements for the derived category of a Grothendieck category, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 11, 2607–2641.
- Benjamin Antieau, On the uniqueness of infinity-categorical enhancements of triangulated categories, arXiv:1812.01526.

Theorem (Canonaco, N- and Stellari)

Let \mathcal{A} be an abelian category. For $? \in \{b, +, -, \emptyset\}$ we have that the category $\mathbf{D}^{?}(\mathcal{A})$ has a unique enhancement.

- If A is a Grothendieck category with a small set of compact generators, the uniqueness of the enhancement of D(A) is due to Lunts and Orlov.
- If A is an arbitrary Grothendieck abelian category, the fact that D(A) has a unique enhancement is due to Canonaco and Stellari.
- The special case, showing D^b(coh(X)) has a unique enhancement, was shown by Lunts and Orlov if X is quasi-projective and by Canonaco and Stellari if X has the resolution property.
- Antieau proved that D^b(A), D⁻(A) and D⁺(A) have unique enhancements, for any abelian category A.

・ロト ・ 同ト ・ ヨト ・ ヨト

Henning Krause, Deriving Auslander's formula, Doc. Math. 20 (2015), 669-688.

æ

Maurice Auslander, *Representation theory of Artin algebras*, Queen Mary College, London (1971).

Henning Krause, *Deriving Auslander's formula*, Doc. Math. **20** (2015), 669–688.

- Maurice Auslander, *Representation theory of Artin algebras*, Queen Mary College, London (1971).
- G. Maxwell Kelly, *Chain maps inducing zero homology maps*, Proc. Cambridge Philos. Soc. **61** (1965), 847–854.
- Henning Krause, *Deriving Auslander's formula*, Doc. Math. **20** (2015), 669–688.

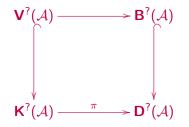
Let \mathcal{A} be an abelian category, and consider the Verdier quotient functor $\pi: \mathbf{K}^{?}(\mathcal{A}) \longrightarrow \mathbf{D}^{?}(\mathcal{A}).$

Image: Image:

э

Let \mathcal{A} be an abelian category, and consider the Verdier quotient functor $\pi: \mathbf{K}^{?}(\mathcal{A}) \longrightarrow \mathbf{D}^{?}(\mathcal{A}).$

We will study a diagram



where the vertical maps are inclusions of full subcategories.

The objects, of either ${\bf V}^?({\cal A})$ or ${\bf B}^?({\cal A}),$ are the complexes with zero differentials

 $\cdots \longrightarrow A^{-2} \xrightarrow{0} A^{-1} \xrightarrow{0} A^{0} \xrightarrow{0} A^{1} \xrightarrow{0} A^{2} \longrightarrow \cdots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

The objects, of either ${\bf V}^?({\cal A})$ or ${\bf B}^?({\cal A}),$ are the complexes with zero differentials

$$\cdots \longrightarrow A^{-2} \xrightarrow{0} A^{-1} \xrightarrow{0} A^{0} \xrightarrow{0} A^{1} \xrightarrow{0} A^{2} \longrightarrow \cdots$$

We will write such an object as

 $\bigoplus_{i=-\infty}^{\infty} A^i[-i]$

The objects, of either $\mathbf{V}^{?}(\mathcal{A})$ or $\mathbf{B}^{?}(\mathcal{A})$, are the complexes with zero differentials

$$\cdots \longrightarrow A^{-2} \xrightarrow{0} A^{-1} \xrightarrow{0} A^{0} \xrightarrow{0} A^{1} \xrightarrow{0} A^{2} \longrightarrow \cdots$$

We will write such an object as

$$\bigoplus_{i=-\infty}^{\infty} A^{i}[-i]$$

In the category $\mathbf{V}^?(\mathcal{A})$ we have

$$\bigoplus_{i=-\infty}^{\infty} A^{i}[-i] = \prod_{i=-\infty}^{\infty} A^{i}[-i] = \prod_{i=-\infty}^{\infty} A^{i}[-i] .$$

Lemma (1)

With the notation as above we have that, in the category $\mathbf{D}^{?}(\mathcal{A})$,

$$\bigoplus_{i=-\infty}^{0} A^{i}[-i] = \prod_{i=-\infty}^{0} A^{i}[-i] , \qquad \qquad \bigoplus_{i=0}^{\infty} A^{i}[-i] = \prod_{i=0}^{\infty} A^{i}[-i] .$$

Lemma (2)

i

With the notation as on the next slide, we have $\langle \mathbf{V}^{\ell}(\mathcal{A}) \rangle_{3} = \mathbf{K}^{\ell}(\mathcal{A})$ and therefore also $\langle \mathbf{B}^{2}(\mathcal{A}) \rangle_{3} = \mathbf{D}^{2}(\mathcal{A})$.

< □ > < 同 > < 回 > < 回 > < 回 >

э

Lemma (1)

With the notation as above we have that, in the category $\mathbf{D}^{?}(\mathcal{A})$,

$$\bigoplus_{i=-\infty}^{0} A^{i}[-i] = \prod_{i=-\infty}^{0} A^{i}[-i] , \qquad \qquad \bigoplus_{i=0}^{\infty} A^{i}[-i] = \prod_{i=0}^{\infty} A^{i}[-i] .$$

Lemma (2)

With the notation as on the next slide, we have $\langle \mathbf{V}^{?}(\mathcal{A}) \rangle_{3} = \mathbf{K}^{?}(\mathcal{A})$ and therefore also $\langle \mathbf{B}^{?}(\mathcal{A}) \rangle_{3} = \mathbf{D}^{?}(\mathcal{A})$.

3

Reminder of the terminology in the second lemma

Alexey I. Bondal and Michel Van den Bergh, *Generators and representability of functors in commutative and noncommutative geometry*, Mosc. Math. J. **3** (2003), no. 1, 1–36, 258.

Reminder

Let \mathcal{T} be a small triangulated category, and let $S \subset \mathcal{T}$ be a set of objects. We define

- \$\langle S\rangle_1\$ is the set of all direct summands of finite direct sums of shifts of objects in \$S\$.
- 2 An object y belongs to $\langle S \rangle_{n+1}$ if there exists a triangle

$$x \longrightarrow y \oplus y' \longrightarrow z \longrightarrow x[1]$$

with $x \in \langle S \rangle_n$ and $z \in \langle S \rangle_1$.

Given an abelian category \mathcal{A} , Auslander considered the embedding $\mathcal{A} \longrightarrow \text{mod } \mathcal{A}$. That is \mathcal{A} embeds in the category of finitely presented additive functors $F : \mathcal{A} \longrightarrow \mathcal{AB}$.

Given an abelian category \mathcal{A} , Auslander considered the embedding $\mathcal{A} \longrightarrow \text{mod } \mathcal{A}$. That is \mathcal{A} embeds in the category of finitely presented additive functors $F : \mathcal{A} \longrightarrow \mathcal{AB}$.

Recall: the functor $F : \mathcal{A} \longrightarrow \mathcal{AB}$ is finitely presented if there exists an exact sequence

 $\operatorname{Hom}(-,A) \longrightarrow \operatorname{Hom}(-,B) \longrightarrow F(-) \longrightarrow 0 \ .$

Given an abelian category \mathcal{A} , Auslander considered the embedding $\mathcal{A} \longrightarrow \text{mod } \mathcal{A}$. That is \mathcal{A} embeds in the category of finitely presented additive functors $F : \mathcal{A} \longrightarrow \mathcal{AB}$.

Recall: the functor $F : \mathcal{A} \longrightarrow \mathcal{AB}$ is finitely presented if there exists an exact sequence

$$\operatorname{Hom}(-,A) \longrightarrow \operatorname{Hom}(-,B) \longrightarrow F(-) \longrightarrow 0 \ .$$

And one notes (1) the representable functors are the projective objects in mod A, and (2) every object in mod A has projective dimension ≤ 2 .

Given an abelian category \mathcal{A} , Auslander considered the embedding $\mathcal{A} \longrightarrow \text{mod } \mathcal{A}$. That is \mathcal{A} embeds in the category of finitely presented additive functors $F : \mathcal{A} \longrightarrow \mathcal{AB}$.

Recall: the functor $F : \mathcal{A} \longrightarrow \mathcal{AB}$ is finitely presented if there exists an exact sequence

$$\operatorname{Hom}(-,A) \longrightarrow \operatorname{Hom}(-,B) \longrightarrow F(-) \longrightarrow 0 \ .$$

And one notes (1) the representable functors are the projective objects in mod A, and (2) every object in mod A has projective dimension ≤ 2 . Let K be the kernel of $A \longrightarrow B$ above, and we have an exact sequence

 $0 \longrightarrow \operatorname{Hom}(-, K) \longrightarrow \operatorname{Hom}(-, A) \longrightarrow \operatorname{Hom}(-, B) \longrightarrow F(-) \longrightarrow 0 \ .$

3

Because every object in mod ${\mathcal A}$ has finite projective dimension we have

$$\mathbf{K}^{?}(\mathcal{A}) = \mathbf{K}^{?}(\operatorname{proj}(\operatorname{mod} \mathcal{A})) = \mathbf{D}^{?}(\operatorname{mod} \mathcal{A})$$

Because every object in $\operatorname{mod} \mathcal A$ has finite projective dimension we have

$$\mathbf{K}^{?}(\mathcal{A}) = \mathbf{K}^{?}(\operatorname{proj}(\operatorname{mod} \mathcal{A})) = \mathbf{D}^{?}(\operatorname{mod} \mathcal{A})$$

And because every object in mod ${\cal A}$ has projective dimension \leq 2, Kelly's 1965 theorem tells us that the projectives generate the category in three steps: that is

$$\mathbf{K}^{?}(\mathcal{A}) = \langle \mathbf{V}^{?}(\mathcal{A}) \rangle_{3}$$
.

Let \mathcal{C} be a dg enhancement of $\mathbf{D}^{?}(\mathcal{A})$, and let $\widetilde{\mathcal{C}}$ be the canonical enhancement of $\mathbf{K}^{?}(\mathcal{A})$. We would like to enhance the canonical Verdier quotient map $\pi : \mathbf{K}^{?}(\mathcal{A}) \longrightarrow \mathbf{D}^{?}(\mathcal{A})$ to a dg functor $\widetilde{\pi} : \widetilde{\mathcal{C}} \longrightarrow \mathcal{C}$, which would then have to factor as $\widetilde{\mathcal{C}} \longrightarrow \frac{\widetilde{\mathcal{C}}}{\operatorname{Acy}(\widetilde{\mathcal{C}})} \longrightarrow \mathcal{C}$.

Let $\mathcal{V} \subset \widetilde{\mathcal{C}}$ be the inverse image of $\mathbf{V}^{?}(\mathcal{A}) \subset \mathbf{K}^{?}(\mathcal{A})$, and let $\mathcal{B} \subset \mathcal{C}$ be the inverse image of $\mathbf{B}^{?}(\mathcal{A}) \subset \mathbf{D}^{?}(\mathcal{A})$.

By the second lemma, which says that $\langle \mathbf{V}^{?}(\mathcal{A}) \rangle_{3} = \mathbf{K}^{?}(\mathcal{A})$ and $\langle \mathbf{B}^{?}(\mathcal{A}) \rangle_{3} = \mathbf{D}^{?}(\mathcal{A})$, we have quasi-equivalences $\mathcal{P}erf(\mathcal{V}) \cong \widetilde{\mathcal{C}}$ and $\mathcal{P}erf(\mathcal{B}) \cong \mathcal{C}$.

It suffices to produce a quasi-functor $\mathcal{V} \longrightarrow \mathcal{B}$, as it would induce a quasi-functor $\mathcal{P}erf(\mathcal{V}) \longrightarrow \mathcal{P}erf(\mathcal{B})$, that is $\tilde{\pi} : \widetilde{\mathcal{C}} \longrightarrow \mathcal{C}$.

The objects of \mathcal{V} and \mathcal{B} are the same, we need to come up with a map $\operatorname{Hom}_{\mathcal{V}}(A, B) \longrightarrow \operatorname{Hom}_{\mathcal{B}}(A, B)$. For the objects of \mathcal{V} we have, in the dg category \mathcal{V} , isomorphisms

$$\bigoplus_{i=-\infty}^{\infty} A^{i}[-i] = \prod_{i=-\infty}^{\infty} A^{i}[-i] = \prod_{i=-\infty}^{\infty} A^{i}[-i] .$$

If the same were true for $\mathcal B$ then, for $(-)\in\{\mathcal B,\mathcal V\}$

$$\operatorname{Hom}_{(-)}\left(\bigoplus_{i=-\infty}^{\infty}A^{i}[-i], \bigoplus_{j=-\infty}^{\infty}B^{j}[-j]\right)$$

would rewrite as

$$\prod_{i=-\infty}^{\infty}\prod_{j=-\infty}^{\infty}\operatorname{Hom}_{(-)}(A^{i}[-i],B^{j}[-j])$$

26 September 2022

and in the derived category D(k) the map

$$\prod_{i=-\infty}^{\infty} \prod_{j=-\infty}^{\infty} \operatorname{Hom}_{\mathcal{V}} (A^{i}[-i], B^{j}[-j])$$

$$\downarrow$$

$$\prod_{i=-\infty}^{\infty} \prod_{j=-\infty}^{\infty} \operatorname{Hom}_{\mathcal{B}} (A^{i}[-i], B^{j}[-j])$$

would rewrite as

Amnon Neeman (ANU)

→ ∃ →

æ

In the category \mathcal{B} , write

$$A^* = \bigoplus_{i=-\infty}^{\infty} A^i = \left[\bigoplus_{i=-\infty}^{-n-1} A^i\right] \oplus \bigoplus_{i=-n}^n A^i \oplus \left[\bigoplus_{i=n+1}^{\infty} A^i\right]$$

and

$$B^* = \bigoplus_{i=-\infty}^{\infty} B^i = \left[\bigoplus_{i=-\infty}^{-n-1} B^i \right] \oplus \bigoplus_{i=-n}^n B^i \oplus \left[\bigoplus_{i=n+1}^{\infty} B^i \right]$$

Then $\operatorname{Hom}_{\mathcal{B}}(A^*, B^*)$ is a finite product, which we truncate as much as we can. And then we take inverse limits as $n \to \infty$.

Definition

An exact category is an additive category \mathcal{E} , with a collection of admissible short exact sequences

$$E' \longrightarrow E \longrightarrow E'',$$

satisfying some axioms.

Example

- **Q** R-mod, the category of finite modules over a noetherian ring R.
- **2** R-proj, the category of finitely generated projective R-modules.
- Vect(X), the category of vector bundles over X.

Example

Given any additive category $\mathcal{E},$ we can turn it into an exact category by declaring the sequences

$$E' \longrightarrow E' \oplus E'' \longrightarrow E''$$

to be the admissible exact sequences. We will write \mathcal{E}^\oplus for this exact category.

Remark

If $\mathcal{E} = R$ -proj, then $\mathcal{E} = \mathcal{E}^{\oplus}$. But for $\mathcal{E} = R$ -mod and $\mathcal{E} = \operatorname{Vect}(X)$, the split exact structure doesn't agree with the ordinary exact structure.

Definition

Let $\mathcal E$ be an essentially small exact category. The abelian group $K_0(\mathcal E)$ is defined by the formula

$$\mathcal{K}_0(\mathcal{E}) = \frac{\text{free abelian group generated by objects } E \in \mathcal{E}}{(E - E' - E'') \mid \text{ there exists a an admissible } E' \longrightarrow E \longrightarrow E''}$$

Definition

When X is a reasonable scheme, we define $K_0(X) = K_0[\operatorname{Vect}(X)]$.

æ

A B F A B F

Higher K-theory

Mayer-Vietoris sequence

Given a scheme X and two open sets $U, V \subset X$, there are obvious restriction functors

$$Vect(X) \longrightarrow Vect(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$Vect(V) \longrightarrow Vect(U \cap V)$$

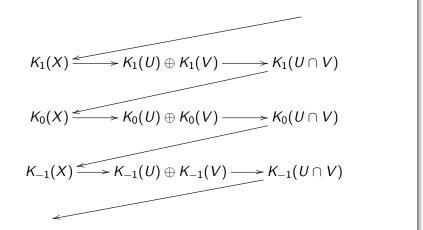
giving maps

$$K_0(X) \longrightarrow K_0(U) \oplus K_0(V) \longrightarrow K_0(U \cap V)$$

This turns out to be exact. We would like to extend to

Amnon Neeman (ANU)

Mayer-Vietoris sequence, continued



This turns out to be possible. It is the culmination of the work of many people.

Amnon Neeman (ANU)

In the footsteps of Krause

26 September 2022

A D N A B N A B N A B N

э

Vanishing observations

Two conjectures

- Weibel's conjecture: If X is a noetherian scheme of dimension n, then $K_r(X) = 0$ for all r < -n.
- **Schlichting's conjecture:** It is a theorem that, if X is a noetherian, regular and finite dimensional scheme, then $K_r(X) = 0$ for all r < 0.

Schlichting conjectured a major generalization.

Weibel's conjecture is true, it was proved in

Moritz Kerz, Florian Strunk, and Georg Tamme, *Algebraic K-theory* and descent for blow-ups, Invent. Math. **211** (2018), no. 2, 523–577.

Schlichting conjecture isn't only about schemes.

Remember: given any exact category \mathcal{E} there is a recipe to produce a K-theory out of it. And until now we have focused on the case $\mathcal{E} = \operatorname{Vect}(X)$.

If a noetherian scheme X is regular and finite-dimensional then

Schlichting conjecture isn't only about schemes.

Remember: given any exact category \mathcal{E} there is a recipe to produce a K-theory out of it. And until now we have focused on the case $\mathcal{E} = \operatorname{Vect}(X)$.

If a noetherian scheme X is regular and finite-dimensional then there exists an abelian category \mathcal{A} with $\mathcal{K}_*[\operatorname{Vect}(X)] = \mathcal{K}_*(\mathcal{A})$.

Schlichting conjecture isn't only about schemes.

Remember: given any exact category \mathcal{E} there is a recipe to produce a K-theory out of it. And until now we have focused on the case $\mathcal{E} = \operatorname{Vect}(X)$.

If a noetherian scheme X is regular and finite-dimensional then there exists an abelian category \mathcal{A} with $\mathcal{K}_*[\operatorname{Vect}(X)] = \mathcal{K}_*(\mathcal{A})$. Explicitly: $\mathcal{A} = \operatorname{Coh}(X)$ works.

Schlichting conjecture isn't only about schemes.

Remember: given any exact category \mathcal{E} there is a recipe to produce a K-theory out of it. And until now we have focused on the case $\mathcal{E} = \operatorname{Vect}(X)$.

If a noetherian scheme X is regular and finite-dimensional then there exists an abelian category \mathcal{A} with $\mathcal{K}_*[\operatorname{Vect}(X)] = \mathcal{K}_*(\mathcal{A})$. Explicitly: $\mathcal{A} = \operatorname{Coh}(X)$ works.

And Schlichting's conjecture says: if A is an abelian category, then $K_n(A) = 0$ for all n < 0.

Schlichting conjecture isn't only about schemes.

Remember: given any exact category \mathcal{E} there is a recipe to produce a K-theory out of it. And until now we have focused on the case $\mathcal{E} = \operatorname{Vect}(X)$.

If a noetherian scheme X is regular and finite-dimensional then there exists an abelian category \mathcal{A} with $\mathcal{K}_*[\operatorname{Vect}(X)] = \mathcal{K}_*(\mathcal{A})$. Explicitly: $\mathcal{A} = \operatorname{Coh}(X)$ works.

And Schlichting's conjecture says: if A is an abelian category, then $K_n(A) = 0$ for all n < 0. See Conjecture 1 of Section 10 in

Marco Schlichting, *Negative K-theory of derived categories*, Math. Z. **253** (2006), no. 1, 97–134.

Schlichting conjecture isn't only about schemes.

Remember: given any exact category \mathcal{E} there is a recipe to produce a K-theory out of it. And until now we have focused on the case $\mathcal{E} = \operatorname{Vect}(X)$.

If a noetherian scheme X is regular and finite-dimensional then there exists an abelian category \mathcal{A} with $\mathcal{K}_*[\operatorname{Vect}(X)] = \mathcal{K}_*(\mathcal{A})$. Explicitly: $\mathcal{A} = \operatorname{Coh}(X)$ works.

And Schlichting's conjecture says: if A is an abelian category, then $K_n(A) = 0$ for all n < 0. See Conjecture 1 of Section 10 in

(Conjecture A)

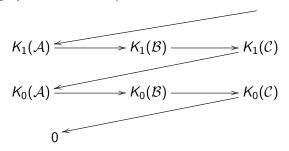
Marco Schlichting, *Negative K-theory of derived categories*, Math. Z. **253** (2006), no. 1, 97–134.

Schlichting proved:

- **(**) If the abelian category A is noetherian, then $K_n(A) = 0$ for n < 0.
- **②** For any abelian category \mathcal{A} , we have $\mathcal{K}_{-1}(\mathcal{A}) = 0$.

Plausibility argument

Theorem (Quillen). Suppose \mathcal{B} is an abelian category, assume $\mathcal{A} \subset \mathcal{B}$ is a Serre subcategory, and let $\mathcal{C} = \mathcal{B}/\mathcal{A}$.

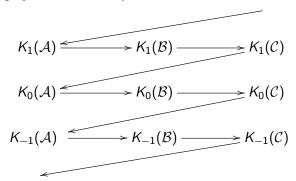


Daniel Quillen, Higher algebraic K-theory. I, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., vol. 341, Springer verlag, 1973, pp. 85–147.

Amnon Neeman (ANU)

Plausibility argument

Theorem (Quillen). Suppose \mathcal{B} is an abelian category, assume $\mathcal{A} \subset \mathcal{B}$ is a Serre subcategory, and let $\mathcal{C} = \mathcal{B}/\mathcal{A}$.



How difficult can it be?

Given ${\mathcal A}$ we want to construct

$$\mathcal{A} \xrightarrow{} \mathcal{B} \xrightarrow{} \mathcal{B} / \mathcal{A} = \mathcal{C}$$

with $K_*(\mathcal{B}) = 0$.

Image: A matrix

∃ ⇒

3

How difficult can it be?

Given ${\mathcal A}$ we want to construct

$$\mathcal{A} \xrightarrow{\frown} \mathcal{B} \xrightarrow{\longrightarrow} \mathcal{B} / \mathcal{A} = \mathcal{C}$$

with $K_*(\mathcal{B}) = 0$. The plausible way to try to achieve this is via the "Eilenberg swindle"; if the category \mathcal{B} has countable coproducts then $K_*(\mathcal{B}) = 0$.

How difficult can it be?

Given ${\mathcal A}$ we want to construct

$$\mathcal{A} \xrightarrow{\frown} \mathcal{B} \xrightarrow{\longrightarrow} \mathcal{B} / \mathcal{A} = \mathcal{C}$$

with $K_*(\mathcal{B}) = 0$. The plausible way to try to achieve this is via the "Eilenberg swindle"; if the category \mathcal{B} has countable coproducts then $K_*(\mathcal{B}) = 0$.

The reason is: we can form $F : \mathcal{B} \longrightarrow \mathcal{B}$ by the formula

$$F(B) = \coprod_{i=1}^{\infty} B$$

We notice

$$F(B) \cong B \oplus F(B)$$

How difficult can it be?

Given ${\mathcal A}$ we want to construct

$$\mathcal{A} \xrightarrow{\frown} \mathcal{B} \xrightarrow{\longrightarrow} \mathcal{B} / \mathcal{A} = \mathcal{C}$$

with $K_*(\mathcal{B}) = 0$. The plausible way to try to achieve this is via the "Eilenberg swindle"; if the category \mathcal{B} has countable coproducts then $K_*(\mathcal{B}) = 0$.

The reason is: we can form $F : \mathcal{B} \longrightarrow \mathcal{B}$ by the formula

$$F(B) = \prod_{i=1}^{\infty} B$$

We notice

 $F(B) \cong B \oplus F(B)$ hence $K_n(F) = K_n(id) + K_n(F)$

Given \mathcal{A} , we can let \mathcal{B} be the smallest abelian category containing \mathcal{A} and closed under coproducts.

Given \mathcal{A} , we can let \mathcal{B} be the smallest abelian category containing \mathcal{A} and closed under coproducts.

But $\ensuremath{\mathcal{A}}$ is not going to be a Serre subcategory.

Given A, we can let B be the smallest abelian category containing A and closed under coproducts.

But $\ensuremath{\mathcal{A}}$ is not going to be a Serre subcategory.

Let $A \in \mathcal{A}$ be some chosen object, and let $\{f_i : A_i \longrightarrow A\}$ be a countable collection of morphisms in \mathcal{A} .

Given A, we can let B be the smallest abelian category containing A and closed under coproducts.

But \mathcal{A} is not going to be a Serre subcategory.

Let $A \in \mathcal{A}$ be some chosen object, and let $\{f_i : A_i \longrightarrow A\}$ be a countable collection of morphisms in \mathcal{A} .

The image of a map

will not usually lie in \mathcal{A} .

Amnon Neeman	(ANU))
--------------	-------	---

Let \mathcal{T} be a model category with a bounded *t*-structure. Antieau, Gepner and Heller proved the following generalization of Schlichting's results:

1

2

Let \mathcal{T} be a model category with a bounded *t*-structure. Antieau, Gepner and Heller proved the following generalization of Schlichting's results:

- **(**) If the abelian category \mathcal{T}^{\heartsuit} is noetherian, then $K_n(\mathcal{T}) = 0$ for n < 0.
- **②** Unconditionally we have $K_{-1}(\mathcal{T}) = 0$.

Benjamin Antieau, David Gepner, and Jeremiah Heller, *K-theoretic obstructions to bounded t-structures*, Invent. Math. **216** (2019), no. 1, 241–300.

Let \mathcal{T} be a model category with a bounded *t*-structure. Antieau, Gepner and Heller proved the following generalization of Schlichting's results:

- If the abelian category \mathcal{T}^{\heartsuit} is noetherian, then $K_n(\mathcal{T}) = 0$ for n < 0.
- **②** Unconditionally we have $K_{-1}(\mathcal{T}) = 0$.

If \mathcal{A} is an abelian category, Schlichting's results come about by putting $\mathcal{T} = \mathbf{D}^{b}(\mathcal{A})$ with the standard *t*-structure.

Benjamin Antieau, David Gepner, and Jeremiah Heller, *K-theoretic* obstructions to bounded t-structures, Invent. Math. **216** (2019), no. 1, 241–300.

The generalized Schlichting conjecture (Conjecture B)

For any \mathcal{T} with a bounded *t*-structure, $K_n(\mathcal{T}) = 0$ for all n < 0.

Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic obstructions to bounded t-structures, Invent. Math. 216 (2019), no. 1, 241–300.

The generalized Schlichting conjecture (Conjecture B)

For any \mathcal{T} with a bounded *t*-structure, $K_n(\mathcal{T}) = 0$ for all n < 0.

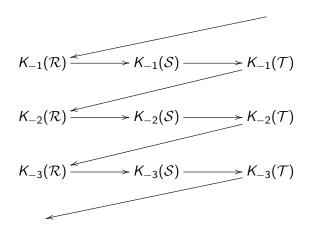
Yet another conjecture, in case the above are false (Conjecture C)

For any \mathcal{T} with a bounded *t*-structure, the natural map $K_n(\mathcal{T}^{\heartsuit}) \longrightarrow K_n(\mathcal{T})$ is an isomorphism for n < 0.

Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic obstructions to bounded t-structures, Invent. Math. 216 (2019), no. 1, 241–300.

Plausibility argument

Let $\mathcal{R} \subset \mathcal{S}$ be model categories with $\mathcal{T} = \mathcal{S}/\mathcal{R}$. Then



< □ > < □ > < □ > < □ > < □ > < □ >

э

Punchline

Schlichting's conjecture (Conjecture A)

and the generalized Schlichting conjecture (Conjecture B) are both false.

Punchline

Schlichting's conjecture (Conjecture A) and the generalized Schlichting conjecture (Conjecture B) are both false.

The counterexample appeared in

Amnon Neeman, A counterexample to vanishing conjectures for negative K-theory, Invent. Math. **225** (2021), no. 2, 427–452.

Maurice Auslander, *Representation theory of Artin algebras*, Queen Mary College, London (1971).

Henning Krause, *Deriving Auslander's formula*, Doc. Math. **20** (2015), 669–688.

Let \mathcal{A} be an abelian category, and let mod \mathcal{A} be the category of finitely presented functors $\mathcal{A} \longrightarrow \mathcal{AB}$. We learned

$$\mathbf{K}^{b}(\mathcal{A}) = \mathbf{K}^{b}(\operatorname{proj}(\operatorname{mod} \mathcal{A})) = \mathbf{D}^{b}(\operatorname{mod} \mathcal{A})$$

Image: Image:

э

Let \mathcal{A} be an abelian category, and let $\operatorname{mod} \mathcal{A}$ be the category of finitely presented functors $\mathcal{A} \longrightarrow \mathcal{AB}$. We learned

$$\mathbf{K}^{b}(\mathcal{A}) = \mathbf{K}^{b}(\operatorname{proj}(\operatorname{mod} \mathcal{A})) = \mathbf{D}^{b}(\operatorname{mod} \mathcal{A})$$

Auslander's formula tells us that there is an exact functor $\Lambda : \operatorname{mod} \mathcal{A} \longrightarrow \mathcal{A}$, expressing \mathcal{A} as the Gabriel quotient of $\operatorname{mod} \mathcal{A}$ by some Serre subcategory eff \mathcal{A} .

Let \mathcal{A} be an abelian category, and let $\operatorname{mod} \mathcal{A}$ be the category of finitely presented functors $\mathcal{A} \longrightarrow \mathcal{AB}$. We learned

$$\mathbf{K}^{b}(\mathcal{A}) = \mathbf{K}^{b}(\operatorname{proj}(\operatorname{mod} \mathcal{A})) = \mathbf{D}^{b}(\operatorname{mod} \mathcal{A})$$

Auslander's formula tells us that there is an exact functor $\Lambda : \operatorname{mod} \mathcal{A} \longrightarrow \mathcal{A}$, expressing \mathcal{A} as the Gabriel quotient of $\operatorname{mod} \mathcal{A}$ by some Serre subcategory eff \mathcal{A} .

Krause's article, which derives Auslander's formula, gives

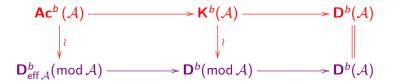
$$\mathbf{D}^{b}_{\mathsf{eff}\,\mathcal{A}}(\mathsf{mod}\,\mathcal{A}) \longrightarrow \mathbf{D}^{b}(\mathsf{mod}\,\mathcal{A}) \longrightarrow \mathbf{D}^{b}(\mathcal{A})$$

Let \mathcal{A} be an abelian category, and let $\operatorname{mod} \mathcal{A}$ be the category of finitely presented functors $\mathcal{A} \longrightarrow \mathcal{AB}$. We learned

$$\mathbf{K}^{b}(\mathcal{A}) = \mathbf{K}^{b}(\operatorname{proj}(\operatorname{mod} \mathcal{A})) = \mathbf{D}^{b}(\operatorname{mod} \mathcal{A})$$

Auslander's formula tells us that there is an exact functor $\Lambda : \operatorname{mod} \mathcal{A} \longrightarrow \mathcal{A}$, expressing \mathcal{A} as the Gabriel quotient of $\operatorname{mod} \mathcal{A}$ by some Serre subcategory eff \mathcal{A} .

Krause's article, which derives Auslander's formula, gives



The categories $\mathbf{Ac}^{b}(\mathcal{E}) \subset \mathbf{K}^{b}(\mathcal{E})$ and $\mathbf{D}^{b}(\mathcal{E}) = \mathbf{K}^{b}(\mathcal{E})/\mathbf{Ac}^{b}(\mathcal{E})$

Let \mathcal{E} be any idempotent-complete exact category. Let $\mathbf{K}^{b}(\mathcal{E})$ be the category whose objects are bounded cochain complexes in \mathcal{E} , meaning

$$\cdots \xrightarrow{\partial^{i-2}} E^{i-1} \xrightarrow{\partial^{i-1}} E^i \xrightarrow{\partial^i} E^{i+1} \xrightarrow{\partial^{i+1}} \cdots$$

with $E^i = 0$ for $|i| \gg 0$.

The full subcategory $Ac^{b}(\mathcal{E})$ of acyclics contains those cochain complexes for which there exist admissible short exact sequences

$$0 \longrightarrow K^{i} \xrightarrow{\alpha^{i}} E^{i} \xrightarrow{\beta^{i}} K^{i+1} \longrightarrow 0$$

such that $\partial^i = \alpha^{i+1} \circ \beta^i$.

And $\mathbf{D}^{b}(\mathcal{E}) = \mathbf{K}^{b}(\mathcal{E})/\mathbf{Ac}^{b}(\mathcal{E}).$

The *t*-structure on $Ac^{b}(\mathcal{E})$

$$\mathbf{Ac}^{b}(\mathcal{E})^{\leq 0} = \{ E^{*} \in \mathbf{Ac}^{b}(\mathcal{E}) \mid E^{i} = 0 \text{ for all } i > 0 \}$$

æ

イロト イヨト イヨト イヨト

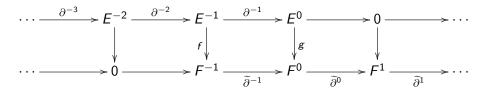
The *t*-structure on $Ac^{b}(\mathcal{E})$

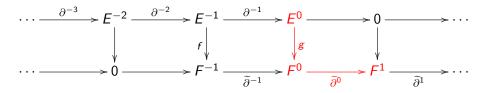
$$\mathbf{Ac}^{b}(\mathcal{E})^{\leq 0} = \{ E^{*} \in \mathbf{Ac}^{b}(\mathcal{E}) \mid E^{i} = 0 \text{ for all } i > 0 \}$$

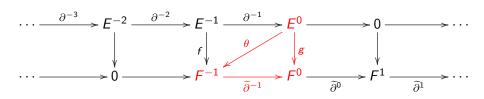
$$\mathbf{Ac}^{b}(\mathcal{E})^{\geq 0} = \{E^{*} \in \mathbf{Ac}^{b}(\mathcal{E}) \mid E^{i} = 0 \text{ for all } i < -2\}$$

3

< □ > < □ > < □ > < □ > < □ >

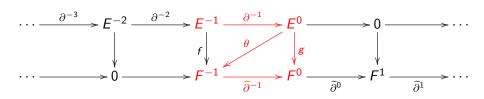






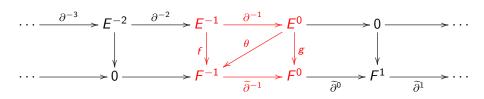
that is:

$$g = \widetilde{\partial}^{-1} \circ \theta$$
 .



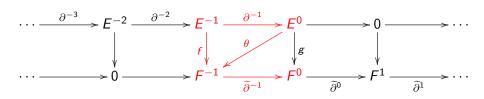
that is:

$$g = \widetilde{\partial}^{-1} \circ \theta$$
 .



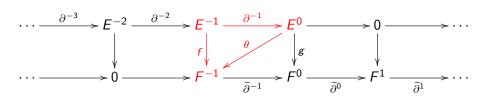
that is:

$$g = \widetilde{\partial}^{-1} \circ \theta$$
 .



that is:

$$g = \widetilde{\partial}^{-1} \circ \theta$$
 .



that is:

$$g = \widetilde{\partial}^{-1} \circ \theta$$
 .

Proof that this is a *t*-structure, continued

Next choose any object $E^* \in \mathbf{Ac}^b(\mathcal{E})$, that is a complex

$$\cdots \xrightarrow{\partial^{i-2}} E^{i-1} \xrightarrow{\partial^{i-1}} E^i \xrightarrow{\partial^i} E^{i+1} \xrightarrow{\partial^{i+1}} \cdots$$

э

Proof that this is a *t*-structure, continued

Next choose any object $E^* \in \mathbf{Ac}^b(\mathcal{E})$, that is a complex

$$\cdots \xrightarrow{\partial^{i-2}} E^{i-1} \xrightarrow{\partial^{i-1}} E^i \xrightarrow{\partial^i} E^{i+1} \xrightarrow{\partial^{i+1}} \cdots$$

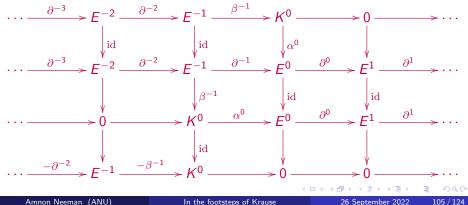
Write $\partial^{-1}: E^{-1} \longrightarrow E^0$ as a composite $E^{-1} \xrightarrow{\beta} K^0 \xrightarrow{\alpha^0} E^0$.

Proof that this is a *t*-structure, continued

Next choose any object $E^* \in \mathbf{Ac}^b(\mathcal{E})$, that is a complex

$$\cdots \xrightarrow{\partial^{i-2}} E^{i-1} \xrightarrow{\partial^{i-1}} E^i \xrightarrow{\partial^i} E^{i+1} \xrightarrow{\partial^{i+1}} \cdots$$

Write $\partial^{-1}: E^{-1} \longrightarrow E^0$ as a composite $E^{-1} \xrightarrow{\beta^{-1}} \mathcal{K}^0 \xrightarrow{\alpha^0} E^0$. Now consider the cochain maps



The heart

The heart of this *t*-structure, denoted $\mathbf{Ac}^{b}(\mathcal{E})^{\heartsuit}$, is by definition the full subcategory

$$\mathsf{Ac}^{b}\left(\mathcal{E}
ight)^{\heartsuit} \quad = \quad \mathsf{Ac}^{b}\left(\mathcal{E}
ight)^{\leq 0} \cap \mathsf{Ac}^{b}\left(\mathcal{E}
ight)^{\geq 0}$$

The objects are the acyclic cochain complexes

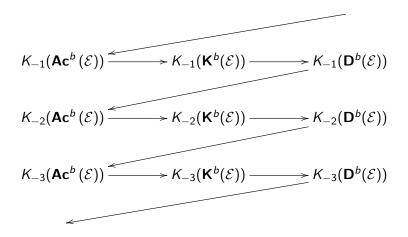
$$0 \longrightarrow E^{-2} \longrightarrow E^{-1} \longrightarrow E^{0} \longrightarrow 0$$

and the morphisms are the homotopy equivalence classes of cochain maps.

Formal consequence of the general theory

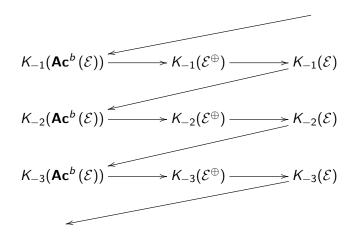
The category $\mathbf{Ac}^{b}(\mathcal{E})^{\heartsuit}$ is abelian.

Now we have $\mathbf{Ac}^{b}(\mathcal{E}) \subset \mathbf{K}^{b}(\mathcal{E})$ with quotient $\mathbf{D}^{b}(\mathcal{E})$, giving



3

which rewrites as



26 September 2022

イロト イヨト イヨト ・

э.

Thus the vanishing of $K_n(\mathbf{Ac}^b(\mathcal{E}))$ for all n < 0 would imply that the map

$$K_n(\mathcal{E}^{\oplus}) \longrightarrow K_n(\mathcal{E})$$

would have to be an isomorphism for all n < 0. Hence, for a counterexample to the generalized Schlichting conjecture, all we need to do is find an \mathcal{E} for which this fails.

Thus the vanishing of $K_n(\mathbf{Ac}^b(\mathcal{E}))$ for all n < 0 would imply that the map

$$K_n(\mathcal{E}^{\oplus}) \longrightarrow K_n(\mathcal{E})$$

would have to be an isomorphism for all n < 0. Hence, for a counterexample to the generalized Schlichting conjecture, all we need to do is find an \mathcal{E} for which this fails.

If we want to disprove the (ungeneralized) Schlichting conjecture and/or to study the yet another conjecture, then it might be helpful to look at the natural map

$$\mathcal{K}_n\left(\mathbf{Ac}^b\left(\mathcal{E}\right)^{\heartsuit}\right)\longrightarrow \mathcal{K}_n\left(\mathbf{Ac}^b\left(\mathcal{E}\right)\right)$$
.

Theorem

Let \mathcal{E} be an idempotent-complete exact category. Then the natural functor

$$D^{b}\left(\operatorname{Ac}^{b}\left(\mathcal{E}\right)^{\heartsuit}\right)\longrightarrow\operatorname{Ac}^{b}\left(\mathcal{E}\right)$$

is an equivalence of triangulated categories if and only if \mathcal{E} is hereditary, meaning $\operatorname{Ext}^{i}(E, E') = 0$ for all i > 1 and $E, E' \in \mathcal{E}$.

Corollary

If ${\mathcal E}$ is hereditary then the map

$$K_n\left(\operatorname{\mathsf{Ac}}^b(\mathcal{E})^\heartsuit\right)\longrightarrow K_n(\operatorname{\mathsf{Ac}}^b(\mathcal{E}))$$

must be an isomorphism for all $n \in \mathbb{Z}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let \mathcal{E} be an idempotent-complete exact category. Then the natural functor

$$D^{b}\left(\operatorname{Ac}^{b}\left(\mathcal{E}\right)^{\heartsuit}\right)\longrightarrow\operatorname{Ac}^{b}\left(\mathcal{E}\right)$$

is an equivalence of triangulated categories if and only if \mathcal{E} is hereditary, meaning $\operatorname{Ext}^{i}(E, E') = 0$ for all i > 1 and $E, E' \in \mathcal{E}$.

Corollary

If $\mathcal E$ is hereditary then the map

$$K_n\left(\operatorname{Ac}^b(\mathcal{E})^{\heartsuit}\right) \longrightarrow K_n(\operatorname{Ac}^b(\mathcal{E}))$$

must be an isomorphism for all $n \in \mathbb{Z}$.

Example

If Y is any algebraic curve, then the category $\mathcal{E} = \operatorname{Vect}(Y)$ is hereditary.

After all: there is a spectral sequence

 $H^{i}(\mathcal{E}xt^{j}(E,E')) \Longrightarrow Ext^{i+j}(E,E'),$

For vector bundles we know the vanishing of $\mathcal{E}xt^{j}(E, E')$ for j > 0, and for curves we have the vanishing of H^{i} for i > 1.

Example

If Y is any algebraic curve, then the category $\mathcal{E} = \operatorname{Vect}(Y)$ is hereditary.

After all: there is a spectral sequence

$$H^{i}(\mathcal{E}xt^{j}(E,E')) \Longrightarrow Ext^{i+j}(E,E'),$$

For vector bundles we know the vanishing of $\mathcal{E} \times t^{j}(E, E')$ for j > 0, and for curves we have the vanishing of H^{i} for i > 1.

Example

If Y is any algebraic curve, then the category $\mathcal{E} = \operatorname{Vect}(Y)$ is hereditary.

After all: there is a spectral sequence

$$H^{i}(\mathcal{E}xt^{j}(E,E')) \Longrightarrow Ext^{i+j}(E,E'),$$

For vector bundles we know the vanishing of $\mathcal{E} \times t^{j}(E, E')$ for j > 0, and for curves we have the vanishing of H^{i} for i > 1.

The corollary on the previous page informs us that, for any algebraic curve Y and with $\mathcal{E} = \operatorname{Vect}(Y)$, the natural map

$$\mathcal{K}_n\left(\mathbf{Ac}^b\left(\mathcal{E}\right)^{\heartsuit}\right)\longrightarrow \mathcal{K}_n\left(\mathbf{Ac}^b\left(\mathcal{E}\right)\right)$$

is an isomorphism for all $n \in \mathbb{Z}$.

Amnon Neeman, A counterexample to vanishing conjectures for negative K-theory, Invent. Math. **225** (2021), no. 2, 427–452.

I specialize to the case of singular projective curves with only simple nodes as singularities,

Amnon Neeman, A counterexample to vanishing conjectures for negative K-theory, Invent. Math. **225** (2021), no. 2, 427–452.

I specialize to the case of singular projective curves with only simple nodes as singularities, directly prove that $K_{-1}(\mathcal{E}^{\oplus}) = 0$,

Amnon Neeman, A counterexample to vanishing conjectures for negative K-theory, Invent. Math. **225** (2021), no. 2, 427–452.

I specialize to the case of singular projective curves with only simple nodes as singularities, directly prove that $K_{-1}(\mathcal{E}^{\oplus}) = 0$, and then cite the known examples where $K_{-1}(\mathcal{E}) \neq 0$.

Recall the general exact sequence

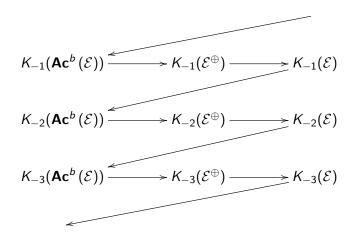


Image: Image

3

Amnon Neeman, A counterexample to vanishing conjectures for negative K-theory, Invent. Math. **225** (2021), no. 2, 427–452.

I specialize to the case of singular projective curves with only simple nodes as singularities, directly prove that $K_{-1}(\mathcal{E}^{\oplus}) = 0$, and then cite the known examples where $K_{-1}(\mathcal{E}) \neq 0$.

LOUSY ARGUMENT!

The right approach would have been to prove the more general statement:

Theorem

Let k be a field and let \mathcal{E} be an idempotent-complete, additive, k-linear category. Assume that, for all objects $E, E' \in \mathcal{E}$, $\operatorname{Hom}(E, E')$ is finite-dimensional as a k-vector space.

Then $K_n(\mathcal{E}^{\oplus}) = 0$ for all n < 0.

Let \mathcal{T} be a model category with a bounded *t*-structure. Antieau, Gepner and Heller proved the following generalization of Schlichting's results:

- If the abelian category \mathcal{T}^{\heartsuit} is noetherian, then $K_n(\mathcal{T}) = 0$ for n < 0.
- **②** Unconditionally we have $K_{-1}(\mathcal{T}) = 0$.

If \mathcal{A} is an abelian category, Schlichting's results come about by putting $\mathcal{T} = \mathbf{D}^{b}(\mathcal{A})$ with the standard *t*-structure.

Benjamin Antieau, David Gepner, and Jeremiah Heller, *K-theoretic* obstructions to bounded t-structures, Invent. Math. **216** (2019), no. 1, 241–300.

Thank you,

< □ > < 同 >

æ

Thank you,

and HAPPY BIRTHDAY TO HENNING!

Amnon Neeman (ANU)

In the footsteps of Krause

26 September 2022