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Abstract

Semiorthogonal decompositions are a well-established tool for the study of derived
categories in algebraic geometry and in the representation theory of Artin alge-
bras. The goal of this meeting is to discuss semiorthogonal decompositions that
arise in the representation theory of algebraic groups, going over the main proofs
of the recent work [17] of Samokhin and van der Kallen, and exploring emerging
connections to geometric representation theory.
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1 Introduction

The goal of the meeting is to go through the proofs of the main theorems of [17] and

to discuss emerging connections to geometric representation theory, some of which are

described in Section 1 below. We first recall the main theorems of loc.cit. Let G → Z
be a split simply connected semisimple Chevalley group scheme (a smooth split affine

group scheme over Spec(Z) whose geometric fibers are connected simply connected

semisimple algebraic groups), B ⊂ G a Borel subgroup scheme, and G/B → Z be the

corresponding Chevalley flag scheme (resp., the corresponding generalized flag scheme

G/P → Z for a standard parabolic subgroup scheme P ⊂ G over Z). Let B (resp.,

G) denote the group schemes over k obtained by base change from B (resp., from G)

along Spec(k) → Spec(Z), where k is a field. Let rep(G) (resp., rep(B)) denote the

category of rational modules over the group scheme G (resp., over the group scheme

B) that are finite-dimensional over k. Then

Theorem 1.1. The category D = Db(rep(B)) has a G-linear semiorthogonal

decomposition

D = ⟨Xv⟩v∈W (1)

with respect to a total order ≺ on the Weyl group W that refines the Bruhat order.

Each subcategory Xv is equivalent to Db(rep(G)).

There is an integral version of Theorem 1.1 with B (resp., G) replaced by B (resp.,

by G). One needs a little bit of work to introduce the corresponding derived category

Db(rep(B)) (resp., Db(rep(G))) in order to state the integral counterpart of Theorem

1.1, see [17, Sections 8.1 and 11].

Next, let P be a parabolic subgroup containing B. Let WP be the parabolic Weyl

group corresponding to P, and WP be the set of minimal coset representatives of

W/WP. Let ≺P denote the restriction to WP of the chosen total order ≺ on W from

Theorem 1.1 above. Then:
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Theorem 1.2. The category D = Db(rep(P)) has a G-linear semiorthogonal

decomposition

D = ⟨X̂v⟩v∈WP (2)

with respect to the order ≺P on WP. Each subcategory X̂v is equivalent to Db(rep(G)).

Similarly, there is an integral version of Theorem 1.2 with P (resp., G) replaced

by P (resp., by G)., see [17, Sections 8.1 and 11].

Theorems 1.1 and 1.2 imply the following:

Theorem 1.3. Let ≺ be the same total order on W as in Theorem 1.1, and let

D = Db(Coh(G/B)). Let v, w denote elements of W . Then there are objects Xv ∈ D
such that

1. HomD(Xv,Xv[i]) =

{
k if i = 0

0 else.
.

2. If w ≻ v then HomD(Xv,Xw[i]) = 0 for all i.

3. The triangulated hull of {Xv | v ∈ W} is D.

In other words, the collection of objects (Xv)v∈W is a full exceptional collection in D.

Once again, there is an integral version of Theorem 1.3, see [17, Sections 12].

Similarly as in the case of Theorem 1.2 there is

Theorem 1.4. Let ≺P be the same total order on WP as in Theorem 1.2, and let

D = Db(Coh(G/P)). Let v, w ∈ WP. Then there are objects X̂v ∈ D such that

1. HomD(X̂v, X̂v[i]) =

{
k if i = 0,

0 else.

2. If w ≻P v then HomD(X̂v, X̂w[i]) = 0 for all i.

3. The triangulated hull of {X̂v | v ∈ WP} is D.

In other words, the collection of objects (X̂v)v∈WP is a full exceptional collection in D.

See [17, Sections 13] for the integral counterpart of Theorem 1.4.

As it turns out, Theorem 1.3 (resp., Theorem 1.4) is an almost immediate con-

sequence of Theorem 1.1 (resp., Theorem 1.2). Further, all the essential ingredients

for proving Theorem 1.2 are worked out in the course of the proof of Theorem 1.1.

Therefore, the main focus of the meeting is going to be on the proof of Theorem 1.1.
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Connections to geometric and modular representation theory

We expect Theorems 1.1 and 1.2 to have further connections to geometric representa-

tion theory. Some of these connections are going to be discussed in the research session

(see Section 5 below), once details of the proof of Theorem 1.1 have been worked out.

In some more detail, one of the crucial inputs for proving Theorem 1.1 is the Stein-

berg basis, [18], which can be thought of a basis of T-equivariant K-theory of the

flag variety G/B as a K0(rep(T))-module. The group K0
T(G/B) is equipped with a

natural K0(rep(T))-valued non-degenerate pairing, [12, Proposition 1.6]. The basis of

K0(G/B) that is dual to the Steinberg basis appears in the context of Lusztig’s asymp-

totic Hecke algebra, [7]. Theorem 1.1 furnishes another basis of K0(G/B) through the

classes of objects [Xv], v ∈ W which make it possible to compute the dual Steinberg

basis. The problem is to relate the classes [Xv] ∈ K0
T(G/B), v ∈ W of the present

paper to Lusztig’s canonical basis, [13].

The category ofB-equivariant D-modules onG/B (the finite Hecke category) plays

a fundamental role in geometric representation theory. Its quasi-coherent counterpart,

the category of B-equivariant (quasi)-coherent sheaves on G/B is called the coherent

Hecke category, [2, Section 4.2]. Theorem 1.1 can be formulated as a statement about

semiorthogonal decompositions of the coherent Hecke category as a Db(rep(B))-linear

category. In this regard, the arising question is about relations to coherent Springer

theory, [3], and to semiorthogonal decompositions in that context (See Section 2.3 of

loc.cit.).

Associated to an almost simple simply connected linear algebraic group G over F̄p

is the finite reductive group G(Fp). A recent paper [4] proves a number of Lusztig’s

conjectures from [14] about reductions modulo p of complex representations of G(Fp).

In its own turn, it puts forward a conjecture (Conjecture 7.5 of loc.cit.) relating lifts

of unipotent principal series representations of G(Fp) to virtual representations of G

constructed with the help of objects Xv, v ∈ W from Theorems 1.1 and 1.2. This

leads to questions about origins of the objects Xv, v ∈ W stemming from the Deligne-

Lusztig’s theory.

2 Background

Summary

The goal of this section is to introduce the necessary background from representation

theory and rational cohomology of reductive groups culminating in Corollary 2.21

of [17]. That corollary will serve as one of the key inputs for proving the main B-

cohomology vanishing statements in Section 6 of [17].

Talk 1 (Juan Omar Gomez). Affine (reductive) groups schemes

This is a very basic talk that serves to introduce/to recall the main notions from the

theory of linear algebraic groups and their representations that are used throughout

the paper; essentially, these are listed in [17, Section 1.5.1]. The speaker will recall

representations of group schemes and will mention the relationship between G-modules
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and k[G]-comodules for a flat group scheme G over a base ring k. Recall the definition
of a split Chevalley group scheme over Z. Given a closed subgroup scheme H ⊂ G,

recall the induction functor indGH, its right derived functor RindGH, and the adjoint

pair (resGH, RindGH). Recall the definition of the functor L : Rep(B) → QCohG(G/B)
following [11, I, Chapter V] (”associated sheaf”). Cohomology of (quasi)-coherent

sheaves on G/B that are associated to rational representations of B are computed via

RindGB , [11, I, Proposition 5.12] (recall here that our Borel subgroup B corresponds to

negative roots).

The speaker will then recall the dominance order on the weight lattice X(T),
the definitions of Weyl and dual Weyl modules. Finally, recall Universal coefficient

Theorem, [17, Theorem 1.8], following [11, Proposition I 4.18] and its sheafy version,

which is [17, Theorem 1.8, (2)]. These will be instrumental for transferring the main

statements over a field k to Z.

Talk 2 (Antoine Touzé). Rational cohomology of algebraic groups

Let G (resp., B) denote the split semisimple simply connected algebraic group

obtained from a split simply connected Chevalley group scheme G (resp., from a Borel

subgroup scheme B) by base change along Spec(k) → Spec(Z). The speaker will recall
the basics of rational cohomology of algebraic groups following [11, I, Chapter 4].

Relation between B-cohomology and G-cohomology via the spectral sequence involv-

ing RindGB (cf. also [17, Section 8.2]). The beginning of [17, Section 6.1] also fits here

(”Cohomological descent from G/B to B”).

Talk 3 (Kostiantyn Tolmachov). Highest weight category structure
on Rep(G)

The speaker will recall the definition of a highest weight category structure on a finite

length abelian category, [6], then will give the definition of standard and costandard

objects. Recall the parametrization of simple modules in Rep(G) by dominant weighs

X+(T) ⊂ X(T). State the theorem saying that Rep(G) has the structure of a highest

weight category with respect to the dominance order on X(T), [8]. The speaker will

then describe standard modules as Weyl modules and costandard objects as dual Weyl

modules, and recall the definition of a good filtration on a G-module. Explain briefly

cohomological criteria for detecting modules with good filtrations, [17, Section 2.10].

Talk 4 (Dmitry Kubrak). Highest weight category structure on
Rep(B)

Rep(B) has two highest weight category structures, [19]. Recall the definition of excel-

lent order on X(T), [Section 1.2 of loc.cit.] and [17, Section 2.5]. Recall the definition

of Joseph-Demazure modules P (λ), λ ∈ X(T) (costandard modules with respect to

the highest weight structure given by the excellent order), [20, Section 2.2] and [17,
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Section 2.2] (note that [20], despite being the main source forB-module theory, doesn’t

use the framework of highest weight categories). Recall the definition of antipodal

excellent order on X(T), [19, Section 1.2] and [17, Section 2.5]. Recall the definition of

relative Schubert modules Q(λ), λ ∈ X(T) (costandard modules with respect to the

highest weight structure given by the antipodal excellent order).

Having set up the framework of highest weight category structure on Rep(B),

state the two main B-cohomology statements of this section: one is [17, Theorem 2.9]

(originally in [19, Theorem 2.20(i)] and [20, Theorem 3.2.6]): Hp(B, P (λ)⊗Q(µ)) = 0

for p > 0 and λ, µ ∈ X(T). Then state and comment on proof of [17, Theorem

2.20] (originally [20, Corollary 5.1.7]): for λ ∈ X(T) and µ ∈ X(T)+, the tensor

product P (λ)⊗∇µ has excellent filtration. Finally, explain how combining these two

statements one arrives at [17, Corollary 2.21]: for λ, µ ∈ X(T) and ν ∈ X(T)+ one

has Hp(B, P (λ)⊗Q(µ)⊗∇ν) = 0 for p > 0. The latter cohomology vanishing will be

a crucial ingredient for proving in [17, Section 6] the main B-cohomology vanishings

of the paper.

3 T-equivariant K-theory of G/B and B-cohomology
vanishing theorems

Summary

The goal of this section is to prove the main vanishing theorems which are Theorem

6.6 and Corollary 6.7. The background part of this section consists of introducing the

Steinberg basis ev, v ∈ W of K0(rep(B)) as a K0(rep(G))-module, the T-equivariant

K-theory of G/B and its two bases, which are the Schubert basis and the opposite

Schubert cell basis, and an orthogonality result by Graham-Kumar (attributed to

Knutson) from [10] recalled in [17, Section 4.3]. It is at this point when starts the fusion

of costandard modules in rep(B) (for both highest weight category structures) with

the Steinberg basis, and the modules P (−ev), v ∈ W and Q(ev), v ∈ W are introduced

in [17, Section 4.3]. The modules P (−ev), v ∈ W (resp., Q(ev), v ∈ W ) give rise to

G-equivariant coherent sheaves on G/B denoted Pv, v ∈ W (resp., Q(ev), v ∈ W ).

Graham-Kumar’s orthogonality result is an intermediary between the “P”-basis

{Pv, v ∈ W} and the “Q”-basis {Q(ev), v ∈ W} of KT(G/B): the transition matrix

between the two bases is computed in two steps, by first computing the transition
matrix between the opposite Schubert cell basis and the “P”-basis in Section 5.1 (the

matrix (βvw)v,w∈W and then computing the transition matrix between the “Q”-basis

and the Schubert basis and in Section 5.2 (the matrix (αvw)v,w∈W . Theorem 4.1 states

that both matrices (βvw)v,w∈W and (αvw)v,w∈W are upper-triangular after a suitable

reordering of rows and columns and invertible; their diagonal entries can be read off

the Steinberg basis (Theorem 4.1, (3)).

Combining all these statements together, orthogonality property of the Schu-

bert and the opposite Schubert cell bases and upper-triangularity of the matrices

(βvw)v,w∈W and (αvw)v,w∈W then lead to semiorthogonality at the K-theory level of
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the “P”-basis against the “Q”-basis with respect to the Bruhat order. Now, combined

with the higherB-cohomology vanishing from Corollary 2.21 and the basic results from

the beginning of Section 6 (which have been both covered on the previous day), this

leads to genuine semiorthogonality at the categorical level of the “P”-basis against the

“Q”-basis with respect to the Bruhat order, [17, Theorem 6.2, Corollary 6.3, Theorems

6.5 and 6.6].

This section culminates in [17, Corollary 6.7] that ties Theorems 6.2 and 6.6 of [17]

together. It will be crucial for showing in the subsequent Section 4 that semiorthogonal

decompositions of the k-linear category Db(rep(B)) are in fact G-linear.

Talk 5 (Alexey Ananyevskiy). Steinberg basis. Schubert basis and
dual Schubert cell basis. Pairing. Orthogonality of two bases with
respect to the pairing

Give the definition and state main properties of the Steinberg basis, [18], [1]. Introduce

the bases in the title, the pairing on KT(G/B), and state [10, Proposition 2.1].

Talk 6 (Wilberd van der Kallen). Triangularity theorem [17,
Theorem 4.1]

The proof of triangularity of the transition matrices is broken up into a series of

lemmas; their proofs draw on [20, Section 2] concerning Frobenius splitting and on

combinatorics of the Weyl group.

Talk 7 (Dmitry Kubrak). B-cohomology vanishing statements [17,
Theorems 6.2, 6.5, and 6.6]

The goal of this section is to derive higher ind-vanishig statements for B-modules of

interest. These vanishing statements will be crucial for the construction of semiorthog-

onal decompositions of Db(rep(B)) in Section 9 of [17]. One can relate coherent

cohomology of G-equivariant vector bundles on G/B (the derived functor of indGB ) to

B-cohomology (“cohomological descent from G/B to B”). This will be applied first to

showing the higher ind-vanishing for the tensor product P (λ)⊗Q(µ) for λ, µ ∈ X(T)

in Theorem 6.2. After having recalled [17, Lemma 6.1], the speaker should first explain

how [17, Theorem 6.2] follows from [17, Corollary 2.21]. This leads to [17, Corol-

lary 6.3] that reduces the output of pairing of two K-theoretic classes [L(P (λ))] and

[L(Q(µ))] to a single term which is a genuineG-representation. Finally, for the modules

P (−ev), v ∈ W and Q(ev), v ∈ W Theorem 6.5 of [17] computes the resulting repre-

sentation to be either 0 or the trivial representation k. That theorem is the cornerstone

for [17, Section 9] in which both semiorthogonal decompositions of Db(rep(B)) and the

(k-linear) exceptional objects Xv ∈ Db(rep(B)), v ∈ W are going to be constructed.

Discuss the integral versions of vanishing statements in this section (Theorems 6.4

and 6.6 of [17]).
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Talk 8 (Kostiantyn Tolmachov). G-linear categories and G-linear
semiorthogonal decompositions

This covers Section 8.3 of [17]. The speaker will briefly recall main definitions concern-

ing triangulated categories, admissible subcategories, semiorthogonal decompositions,

and exceptional collections [17, Section 7]. The speaker will then introduce the notion

of a G-linear triangulated category and that of a G-linear semiorthogonal decomposi-

tion of such a category. One can draw an analogy with the classical geometric situation

when the base is a (classical) scheme: one can also consult the subsequent [17, Remark

12.2, Section 12]. The speaker will then discuss the main example of a a G-linear tri-

angulated category which is that of Db(rep(B)), [17, Section 8.2]. The speaker might

want to emphasize on the relation connecting B-cohomology to G-cohomology via

RindGB , [17, Proposition 8.6]. Propositions 8.9 and 8.11 of [17], being short and easy,

can be given with complete proofs.

4 Semiorthogonal decompositions of Db(rep(B)) as
a G-linear category

Summary

Assembling together all the previous coohomology statements, we can now proceed to

constructing semiorthogonal decompositions of the category Db(rep(B)). The eventual

goal is in having G-linear semiorthogonal decompositions of Db(rep(B)); this will be

achieved in two steps. The first step is the generation property for Db(rep(B)) as a

G-linear category by the objects of interest. The second step produces a collection of

objects Xp ∈ Db(rep(B)), p ∈ W which are first shown to be exceptional in Db(rep(B))

as a k-linear category. Finally, by virtue of the vanishing theorems for B-cohomology

from [17, Section 6], the objects Xp ∈ Db(rep(B)), p ∈ W turn out to be exceptional

in Db(rep(B)) as a G-linear category.

Talk 9 (Alexey Ananyevskiy). Generating the categories rep(B)
and Db(rep(B))

This talk aims at proving Theorem 8.19 asserting that for any element p ∈ W , the

triangulated hull in D(Rep(B)) of the two categories

hull({∇λ ⊗Q(ev)}v≻p,λ∈X(T)+), (3)

hull({∇λ ⊗ P (−ev)
∗}v⪯p,λ∈X(T)+) (4)

is Db(rep(B)).

The proof is essentially a categorical upgrade of the K-theoretic statement proven

in [1, Theorem 2]. Various notions of generation can also be discussed, noting that

direct summands in the triangulated hull of the above two categories will appear

automatically, so that the triangulated hull thus obtained will be idempotent-complete.
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Talk 10 (Andreas Krug). Cut at p ∈ W . The construction of
objects Xp, p ∈ W

Using the first step in the previous talk concerning generation property, one concludes

that the two subcategories from (3) form a G-linear semiorthogonal decomposition

of Db(rep(B)). For that, using Corollary 6.7 (and Corollary 8.3 when working over

Z), one first checks that the two G-linear triangulated subcategories of Db(rep(B))

are semiorthogonal to each other. As those subcategories split generate Db(rep(B)),

they will give rise to a G-linear semiorthogonal decomposition of Db(rep(B)). This

decomposition and its variants ([17, Section 9.1]) will allow to produce the sought-

for objects Xv ∈ Db(rep(B)), v ∈ W that will give rise to G-linear semiorthogonal

decompositions of Db(rep(B)) the pieces of which will be labelled by elements of the

Weyl group.

The speaker will first define the objects Xp and Yp for a given p ∈ W , following [17,

Section 9.2]. The next step is in computing the Hom-groups in Db(rep(B)) between

Xp and Yp. This is [17, Lemma 9.5], the proof of which can be sketched. The final

step is in establishing the isomorphism between Xp and Yp. The speaker will state

[17, Theorem 10.1], which is a variant of Theorem 8.20 of [17] from the previous

talk, indicating the relation of the former theorem to the latter (“induction along the

antipodal excellent order <a”). Then state Corollary 10.4 and sketch the proof of the

isomorphism Xp = Yp (the rest of [17, Section 10]). That isomorphism, combined with

[17, Lemma 9.5], implies that the objects Xp, p ∈ W are exceptional in Db(rep(B))

considered as a k-linear category (“B-exceptional” for short).

Talk 11 (Marco Rampazzo). Cohomological properties of the
objects Xp, p ∈ W . Full exceptional collections on G/B

Summary

Theorems 11.1 of [17] (resp., Theorem 11.3 over Z) proves that the B-exceptional

objects Xp, p ∈ W constructed in the previous Talk 10 are in fact G-exceptional, that

is those objects are exceptional in Db(rep(B)) considered as a G-linear category. In

turn, full exceptional collections on G/B will appear as sheafifications of the objects

Xv ∈ Db(rep(B)), v ∈ W . Keeping in mind the construction of Xv, v ∈ W and using

[17, Corollary 6.7], the speaker will sketch the proofs of Theorem 11.1 and of Corollary
11.4 of [17]. These two statements lead to Theorem 11.6, the proof of which can be

given a full account.

Theorem 12.1 of [17] now follows formally from what has been achieved by now.

Relation to base change for semiorthogonal decompositions can also be discussed,

following [17, Remark 12.2].
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Talk 12 (Stefan Dawydiak). Parabolic Steinberg basis and full
exceptional collections on G/P

Summary

This section cover the parabolic case. Its main statements, which are Theorems 1.3

and 1.4, follow essentially the same path that has been set out in Theorems 1.1

and 1.2. Given a standard parabolic subgroup P ⊃ B, there is a rational mor-

phism πP : G/B → G/P; thus, there is a fully faithful pullback functor π∗
P :

Db(G/P) → Db(G/B). It is natural to expect that the objects X̂v, v ∈ WP that

give rise to semiorthogonal decompositions of Db(rep(P)) as a G-linear category

(resp., the objects X̂v ∈ Db(Coh(G/P), v ∈ WP giving full exceptional collections

in Db(Coh(G/P)) are contained among the objects Xv, v ∈ W of Theorem 1.1 (resp.,

among the objects Xv, v ∈ W of Db(Coh(G/B) of Theorem 1.2). One has therefore to

recognize those objects among Xv, v ∈ W (resp., among Xv, v ∈ W ) that are obtained

by the restriction functor resPG : Db(rep(P)) → Db(rep(B)) (resp., by the pullback

π∗
P : Db(Coh(G/P) → Db(Coh(G/B) along the projection πP : G/B → G/P). The

fundamental fact that both functors resPG and π∗
P are t-exact and fully faithful on

the respective derived categories makes it possible to recognize the sought-for excep-

tional objects on G/P by applying the induction functor RindPB to appropriate objects

Xv, v ∈ W (resp., the pushforward RπP∗ to Xv, v ∈ W ).

It turns out the Steinberg weights ev, v ∈ WP for a given parabolic P behave

nicely with respect to the induction functor RindPB suggesting a natural parabolic

analogue of the key B-modules from [17, Section 2] covered in Talk 4. As the objects

Xv, v ∈ W are built out of P (−ev)
∗, v ∈ W and Q(ew), w ∈ W , one first detects

which B-modules P (−ev)
∗, v ∈ W are restricted from P. The key statement about

the behavior of modules P (−ev), v ∈ W under the induction functor RindPB is Lemma

13.9. A parabolic analogue of [17, Theorem 6.6] is Theorem 13.16.

That allows to further apply the arguments of [17, Sections 8-9] covered in Talks

8 and 9 in the parabolic case obtaining Theorems 1.3 and 1.4.

5 Research talks. Emerging connections to
geometric representation theory

Below is a tentative list of research talks on the 4th of September

• On the semiorthogonal decompositions for twisted flag varieties (A.Ananyevskiy)

• Coherent categorification of Lusztig’s asymptotic affine Hecke algebra (S.Dawydiak)

• Singular cohomology of BG via representation theory (D.Kubrak)
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