Higher torsion classes and τ_n -tilting theory

Jenny August

MPIM/Aarhus University

September 2021

joint with Johanne Haugland, Karin Jacobsen, Sondre Kvamme, Yann Palu and Hipolito Treffinger GOAL: Generalise results about torsion classes and τ -tilting theory to a "higher setting".

- Recall the classical definitions and results.
- Introduce the "higher" setting = n-abelian categories. 2
- Characterise *n*-torsion classes within an *n*-abelian category. 3
- **4** Relate *n*-torsion classes with τ_n -rigid pairs.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Throughout, let A be a basic finite-dimensional algebra, so $\operatorname{mod} A$ is an abelian length category.

Definition (Dickson)

A pair of full subcategories $(\mathcal{T}, \mathcal{F})$ in $\operatorname{mod} A$ is called a torsion pair if:

• Hom_A $(\mathcal{T}, \mathcal{F}) = 0$

2 For all $M \in \text{mod } A$, there is a short exact sequence

$$0 \rightarrow tM \rightarrow M \rightarrow fM \rightarrow 0$$

where $tM \in \mathcal{T}$ and $fM \in \mathcal{F}$.

In this case, we call $\mathcal T$ a torsion class and $\mathcal F$ a torsion-free class.

Theorem (Dickson)

A full additive subcategory $\mathcal{T} \subset \mod A$ is a torsion class if and only if it is closed under quotients and extensions.

Theorem (Dickson)

A full additive subcategory $\mathcal{T} \subset \mod A$ is a torsion class if and only if it is closed under quotients and extensions.

Example

Theorem (Dickson)

A full additive subcategory $\mathcal{T} \subset \mod A$ is a torsion class if and only if it is closed under quotients and extensions.

Example

Theorem (Dickson)

A full additive subcategory $\mathcal{T} \subset \mod A$ is a torsion class if and only if it is closed under quotients and extensions.

Example

Theorem (Dickson)

A full additive subcategory $\mathcal{T} \subset \mod A$ is a torsion class if and only if it is closed under quotients and extensions.

Example

Theorem (Dickson)

A full additive subcategory $\mathcal{T} \subset \mod A$ is a torsion class if and only if it is closed under quotients and extensions.

Example

With A the path algebra of $1 \rightarrow 2 \rightarrow 3$, any torsion class containing $\frac{2}{3}$ and 1 must also contain:

Very easy to describe all torsion classes - there are 14!

Classical story - $\tau\text{-tilting theory}$

Let τ denote the Auslander–Reiten translation.

Definition (Adachi–Iyama–Reiten)

A pair (M, P) with $M \in \text{mod } A$, $P \in \text{proj } A$ is called:

•
$$\tau$$
-rigid if $\operatorname{Hom}_A(M, \tau M) = 0$ and $\operatorname{Hom}_A(P, M) = 0$.

2 support
$$\tau$$
-tilting if it is τ -rigid and $|M| + |P| = |A|$.

In this case, AIR showed that being support τ -tilting is equivalent to being maximal with respect to the τ -rigid property.

Classical story - relationship between torsion classes and $\tau\text{-tilting theory}$

Theorem (Adachi-Iyama-Reiten)

In mod A, there is a bijection

{ functorially finite torsion classes } \longleftrightarrow { support τ -tilting pairs }.

- $\mathcal{T} \subset \mod A$ is functorially finite if every $M \in \mod A$ has both a left and right approximation by \mathcal{T} .
- 2 $f: M \to T$ is a left \mathcal{T} -approximation if $T \in \mathcal{T}$ and

September 2021

6 / 25

If A is representation finite (or even τ-tilting finite) then the functorial finiteness is automatic.

Classical story - relationship between torsion classes and $\tau\text{-tilting theory}$

How does the bijection work?

Definition

An object $X \in \mathcal{T} \subset \text{mod } A$ is called Ext^1 -projective in \mathcal{T} if $\text{Ext}^1_A(X, T) = 0$ for all $T \in \mathcal{T}$.

Given a functorially finite torsion class $\mathcal{T} \subset \operatorname{mod} A$,

- **(**) set T to be a basic additive generator of the Ext¹-projectives in T;
- **2** set *P* to be the maximal basic projective module such that $\text{Hom}_A(P, \mathcal{T}) = 0$. Then (\mathcal{T}, P) is a support τ -tilting pair.

Classical story - relationship between torsion classes and $\tau\text{-tilting theory}$

How does the bijection work?

Definition

An object $X \in \mathcal{T} \subset \text{mod } A$ is called Ext^1 -projective in \mathcal{T} if $\text{Ext}^1_A(X, T) = 0$ for all $T \in \mathcal{T}$.

Given a functorially finite torsion class $\mathcal{T} \subset \operatorname{mod} A$,

- **(**) set T to be a basic additive generator of the Ext¹-projectives in T;
- 2 set P to be the maximal basic projective module such that $\text{Hom}_A(P, \mathcal{T}) = 0$. Then (\mathcal{T}, P) is a support τ -tilting pair.

Given (T, P) support τ -tilting pair, Fac(T) is a torsion class.

Goal: study *n*-torsion classes and τ_n -rigid pairs in *n*-abelian categories.

Jenny August (MPIM/Aarhus University) Higher torsion classes and τ_n -tilting theory

< □ > < 同 > < 回 > < 回 > < 回 >

What is *n*-abelian?

Motivated by generalising the Auslander Correspondence, Iyama found the notion of *n*-cluster-tilting subcategories appearing naturally in representation theory.

Definition

A subcategory $\mathcal{M} \subset \operatorname{mod} A$ is called n-cluster-tilting if it is functorially finite and

$$\mathcal{M} = \{ X \in \text{mod} A \mid \text{Ext}_A^{1 \le i \le n-1}(X, \mathcal{M}) = 0 \}$$
$$= \{ Y \in \text{mod} A \mid \text{Ext}_A^{1 \le i \le n-1}(\mathcal{M}, Y) = 0 \}.$$

- n = 1; mod A is the only 1-cluster-tilting subcategory.
- n = 2; the "usual" notion of cluster-tilting.

Introduced by Jasso, *n*-abelian categories were designed to axiomatise the structure of *n*-cluster-tilting subcategories.

What is *n*-abelian?

Very loosely, the idea is to replace the importance of short exact sequences (and the kernels/cokernels that they consist of) with exact sequences of longer length.

Definition (Jasso)

Given a morphism f : X₀ → X₁, an n-cokernel of f is a sequence of morphisms

$$X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_{n+1}$$

such that the sequence

$$0 \rightarrow (X_{n+1}, Y) \rightarrow (X_n, Y) \rightarrow \cdots \rightarrow (X_1, Y) \rightarrow (X_0, Y)$$

is exact for all Y. (n-kernel is defined dually)

2 A sequence of morphisms $X_0 \to X_1 \to X_2 \to \cdots \to X_{n+1}$ is called n-exact if

•
$$X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_{n+1}$$
 is an n-cokernel of $X_0 \rightarrow X_1$;

•
$$X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_n$$
 is an n-kernel of $X_n \rightarrow X_{n+1}$.

What is *n*-abelian?

- Then $\mathcal{M} \subset \operatorname{mod} A$ is *n*-abelian if
 - every morphism has both an *n*-kernel and *n*-cokernel;
 - every monomorphism and its *n*-cokernel forms an *n*-exact sequence (plus dual requirement);
 - plus other technical things.
- Jasso showed *n*-cluster tilting subcategories of mod *A* are *n*-abelian. And the converse is also true (Kvamme, Ebrahimi–Nasr-Isfahani).
- In an *n*-cluster-tilting subcategory, *n*-exact sequences are exact! And vice versa!

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0.

• This has a 2-cluster-tilting subcategory shown in yellow.

$$0
ightarrow 3
ightarrow rac{2}{3}
ightarrow rac{1}{2}
ightarrow 1
ightarrow 0.$$

• The 2-cokernel of
$${}^2_3 \rightarrow {}^1_2$$
 is

 $\frac{1}{2} \rightarrow 1 \rightarrow 0 \rightarrow 0.$

n-torsion classes

Recall that for a torsion pair $(\mathcal{T}, \mathcal{F})$, any $M \in \text{mod} A$ must have a short exact sequence

$$0 \to tM \to M \to fM \to 0$$

where $tM \in \mathcal{T}$, and $fM \in \mathcal{F}$.

イロト イポト イヨト イヨト

- 3

n-torsion classes

Recall that for a torsion pair $(\mathcal{T}, \mathcal{F})$, any $M \in \text{mod} A$ must have a short exact sequence

$$0 \to tM \to M \to fM \to 0$$

where $tM \in \mathcal{T}$, and $fM \in \mathcal{F}$.

Notice that, since $\text{Hom}_A(\mathcal{T}, X) = 0 \iff X \in \mathcal{F}$, this is the same as asking for a short exact sequence

$$0 \rightarrow tM \rightarrow M \rightarrow fM \rightarrow 0$$

where $tM \in \mathcal{T}$ and $0 \to \text{Hom}_A(T, fM) \to 0$ is exact for all $T \in \mathcal{T}$.

イロト 不得下 イヨト イヨト 二日

Definition (Jørgensen)

Let $\mathcal{M} \subset \mod A$ be an n-cluster-tilting subcategory. A full subcategory $\mathcal{U} \subset \mathcal{M}$ is called an n-torsion class if, for each $M \in \mathcal{M}$, there exists an n-exact sequence

$$0 \rightarrow U_M \rightarrow M \rightarrow V_1 \rightarrow \cdots \rightarrow V_n \rightarrow 0$$

where $U_M \in \mathcal{U}$ and

$$0 \to \operatorname{Hom}_{A}(U, V_{1}) \to \cdots \to \operatorname{Hom}_{A}(U, V_{n}) \to 0$$

is exact for each $U \in \mathcal{U}$.

Theorem (Asadollahi–Jørgensen–Schroll–Treffinger)

Let $\mathcal{M} \subset \mod A$ be an n-cluster-tilting subcategory. Any n-torsion class $\mathcal{U} \subset \mathcal{M}$ can be obtained as $\mathcal{T} \cap \mathcal{M}$ for a torsion class $\mathcal{T} \subset \mod A$.

Moreover, given \mathcal{U} , we can always choose \mathcal{T} in such a way that:

• $tM \in \mathcal{U}$ for all $M \in \mathcal{M}$;

2
$$\operatorname{Ext}_{A}^{n-1}(tM, fM') = 0$$
 for all $M, M' \in \mathcal{M}$.

③ For any $M \in \mathcal{M}$, the corresponding n-exact sequence is

$$0 \to tM \to M \to V_1 \to \cdots \to V_n \to 0.$$

n-torsion - characterisation

Recall:

Theorem (Dickson)

A full additive subcategory $\mathcal{T} \subset \mod A$ is a torsion class if and only if it is closed under extensions and quotients.

n-torsion - characterisation

Recall:

Theorem (Dickson)

A full additive subcategory $\mathcal{T} \subset \mod A$ is a torsion class if and only if it is closed under extensions and quotients.

Our result:

Theorem (A.–Haugland–Jacobsen–Kvamme–Palu–Treffinger) Let $\mathcal{M} \subset \operatorname{mod} A$ be an n-cluster-tilting subcategory. Then a full additive subcategory $\mathcal{U} \subset \mathcal{M}$ is an n-torsion class if and only if it is contravariantly finite, closed under n-extensions and n-quotients.

Let $\mathcal{M} \subset \operatorname{mod} A$ be an *n*-cluster-tilting subcategory and let $\mathcal{C} \subset \mathcal{M}$. Suppose that

$$X \xrightarrow{f} Y \to Z_1 \to Z_2 \to \cdots \to Z_n \to 0$$

is an exact sequence in \mathcal{M} , so $Z_1 \to Z_2 \to \cdots \to Z_n$ is an *n*-cokernel of *f*.

< □ > < 同 > < 三 > < 三 >

Let $\mathcal{M} \subset \operatorname{mod} A$ be an *n*-cluster-tilting subcategory and let $\mathcal{C} \subset \mathcal{M}$. Suppose that

$$X \xrightarrow{f} Y \to Z_1 \to Z_2 \to \cdots \to Z_n \to 0$$

is an exact sequence in \mathcal{M} , so $Z_1 \to Z_2 \to \cdots \to Z_n$ is an *n*-cokernel of *f*.

By Herschend–Jørgensen, such an *n*-cokernel can always be chosen to be "minimal" - essentially getting rid of null-homotopic summands.

Let $\mathcal{M} \subset \operatorname{mod} A$ be an *n*-cluster-tilting subcategory and let $\mathcal{C} \subset \mathcal{M}$. Suppose that

$$X \xrightarrow{f} Y \to Z_1 \to Z_2 \to \cdots \to Z_n \to 0$$

is an exact sequence in \mathcal{M} , so $Z_1 \to Z_2 \to \cdots \to Z_n$ is an *n*-cokernel of *f*.

By Herschend–Jørgensen, such an *n*-cokernel can always be chosen to be "minimal" - essentially getting rid of null-homotopic summands.

C is closed under *n*-cokernels if, for any "minimal" exact sequence as above with $X, Y \in C$, we must have $Z_1, \ldots, Z_n \in C$.

イロン 不得 とくほ とくほ とうほう

Let $\mathcal{M} \subset \operatorname{mod} A$ be an *n*-cluster-tilting subcategory and let $\mathcal{C} \subset \mathcal{M}$. Suppose that

$$X \xrightarrow{f} Y \to Z_1 \to Z_2 \to \cdots \to Z_n \to 0$$

is an exact sequence in \mathcal{M} , so $Z_1 \rightarrow Z_2 \rightarrow \cdots \rightarrow Z_n$ is an *n*-cokernel of *f*.

By Herschend–Jørgensen, such an *n*-cokernel can always be chosen to be "minimal" - essentially getting rid of null-homotopic summands.

C is closed under *n*-cokernels if, for any "minimal" exact sequence as above with $X, Y \in C$, we must have $Z_1, \ldots, Z_n \in C$.

C is closed under *n*-quotients if, for any "minimal" exact sequence as above with $Y \in C$, we must have $Z_1, \ldots, Z_n \in C$.

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0. For an *n*-torsion class $\mathcal{U} \subset \mathcal{M}$:

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0. For an *n*-torsion class $\mathcal{U} \subset \mathcal{M}$:

The 2-extension

$$0 \rightarrow 3 \rightarrow \frac{2}{3} \rightarrow \frac{1}{2} \rightarrow 1 \rightarrow 0$$

shows
$$1\oplus 3\in \mathcal{U} \implies \mathcal{U}=\mathcal{M}.$$

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0. For an *n*-torsion class $\mathcal{U} \subset \mathcal{M}$:

The 2-extension

$$0 \rightarrow 3 \rightarrow \frac{2}{3} \rightarrow \frac{1}{2} \rightarrow 1 \rightarrow 0$$

shows
$$1 \oplus 3 \in \mathcal{U} \implies \mathcal{U} = \mathcal{M}.$$

2-cluster-tilting subcategory \mathcal{M} shown in yellow.

< 3 >

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0. For an *n*-torsion class $\mathcal{U} \subset \mathcal{M}$:

2-cluster-tilting subcategory \mathcal{M} shown in yellow.

$$0 \rightarrow 3 \rightarrow \frac{2}{3} \rightarrow \frac{1}{2} \rightarrow 1 \rightarrow 0$$

shows
$$1 \oplus 3 \in \mathcal{U} \implies \mathcal{U} = \mathcal{M}$$
.

• The same sequence and closure under 2-quotients shows ${}^2_3 \in \mathcal{U} \implies {}^1_2, 1 \in \mathcal{U}.$

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0. For an *n*-torsion class $\mathcal{U} \subset \mathcal{M}$:

2-cluster-tilting subcategory \mathcal{M} shown in yellow.

$$0
ightarrow 3
ightarrow rac{2}{3}
ightarrow rac{1}{2}
ightarrow 1
ightarrow 0$$

shows
$$1 \oplus 3 \in \mathcal{U} \implies \mathcal{U} = \mathcal{M}$$
.

• The same sequence and closure under 2-quotients shows ${}^2_3 \in \mathcal{U} \implies {}^1_2, 1 \in \mathcal{U}.$

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0. For an *n*-torsion class $\mathcal{U} \subset \mathcal{M}$:

2-cluster-tilting subcategory \mathcal{M} shown in yellow.

The 2-extension

$$0 \rightarrow 3 \rightarrow \frac{2}{3} \rightarrow \frac{1}{2} \rightarrow 1 \rightarrow 0$$

shows
$$1 \oplus 3 \in \mathcal{U} \implies \mathcal{U} = \mathcal{M}$$
.

- The same sequence and closure under 2-quotients shows ²₃ ∈ U ⇒ ¹₂, 1 ∈ U.
- The 2-cokernel $\frac{1}{2} \rightarrow 1 \rightarrow 0 \rightarrow 0$ of $\frac{2}{3} \rightarrow \frac{1}{2}$ shows $\frac{1}{2} \in \mathcal{U} \implies 1 \in \mathcal{U}$.

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0. For an *n*-torsion class $\mathcal{U} \subset \mathcal{M}$:

The 2-extension

$$0 \rightarrow 3 \rightarrow \frac{2}{3} \rightarrow \frac{1}{2} \rightarrow 1 \rightarrow 0$$

shows
$$1 \oplus 3 \in \mathcal{U} \implies \mathcal{U} = \mathcal{M}$$
.

- The same sequence and closure under 2-quotients shows ²₃ ∈ U ⇒ ¹₂, 1 ∈ U.
- The 2-cokernel $\frac{1}{2} \rightarrow 1 \rightarrow 0 \rightarrow 0$ of $\frac{2}{3} \rightarrow \frac{1}{2}$ shows $\frac{1}{2} \in \mathcal{U} \implies 1 \in \mathcal{U}$.

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0. For an *n*-torsion class $\mathcal{U} \subset \mathcal{M}$:

The 2-extension

$$0 \rightarrow 3 \rightarrow \frac{2}{3} \rightarrow \frac{1}{2} \rightarrow 1 \rightarrow 0$$

shows
$$1 \oplus 3 \in \mathcal{U} \implies \mathcal{U} = \mathcal{M}.$$

- The same sequence and closure under 2-quotients shows ²₃ ∈ U ⇒ ¹₂, 1 ∈ U.
- The 2-cokernel $\frac{1}{2} \rightarrow 1 \rightarrow 0 \rightarrow 0$ of $\frac{2}{3} \rightarrow \frac{1}{2}$ shows $\frac{1}{2} \in \mathcal{U} \implies 1 \in \mathcal{U}$.

So there are 6 2-torsion classes: $0, 3, 1, 1 \oplus \frac{1}{2}, 1 \oplus \frac{1}{2} \oplus \frac{2}{3}, \mathcal{M}$.

The n^{th} - Auslander–Reiten translation is defined as $\tau_n := \tau \circ \Omega^{n-1}$, where Ω denotes the syzygy functor.

Definition

Let $\mathcal{M} \subset \text{mod } A$ be an n-cluster-tilting category. A pair (M, P), where $M \in \mathcal{M}$, $P \in \text{proj } A$ is called τ_n -rigid if

 $\operatorname{Hom}_A(M, \tau_n M) = 0$ and $\operatorname{Hom}(P, M) = 0$.

Warning: there are definitions for support τ_n -tilting pairs, and maximal τ_n -rigid pairs but they are subtly different for n > 1.

τ_n -tilting theory

Definition

An object $X \in C \subset \text{mod } A$ is called Ext^n -projective in C if $\text{Ext}^n_A(X, C) = 0$ for all $C \in C$.

τ_n -tilting theory

Definition

An object $X \in \mathcal{C} \subset \text{mod } A$ is called Ext^n -projective in \mathcal{C} if $\text{Ext}^n_A(X, \mathcal{C}) = 0$ for all $C \in C$

Proposition (AHJKPT, McMahon)

Let \mathcal{M} be an n-cluster tilting subcategory of mod A. Consider an object U in an n-torsion class $\mathcal{U} = \mathcal{T} \cap \mathcal{M}$ of \mathcal{M} (where \mathcal{T} is as in AJST Theorem). The following statements are equivalent:

- **1** U is Ext^n -projective in \mathcal{U} .
- 2 $\tau_n U \in \mathcal{F}$ (where \mathcal{F} is the torsion-free class associated to \mathcal{T}).

3 Hom $(U', \tau_n U) = 0$ for all U' in U.

In particular, Ext^n -projective objects in an *n*-torsion class are τ_n -rigid.

(4 何) トイヨト イヨト

Relationship between *n*-torsion and τ_n -tilting theory

Theorem (AHJKPT)

Let $\mathcal M$ be an n-cluster tilting subcategory of $\operatorname{mod} A.$ In $\mathcal M$ there is an injective map

{ ff n-torsion classes } \longrightarrow { τ_n -rigid pairs with |A| summands },

which maps a ff n-torsion class to the pair (M, P) where

- **(**) *M* is a basic additive generator of the Ext^n -projectives in U;
- **2** *P* is the maximal basic projective module such that $Hom_A(P, U) = 0$.

Moreover, a partial inverse is given by $(M, P) \mapsto \operatorname{Fac}(M) \cap \mathcal{M}$.

▲ □ ▶ ▲ □ ▶ ▲ □

How to find Ext^{*n*}-projectives?

Take inspiration from the classical case!

< □ > < 同 > < 回 > < 回 > < 回 >

How to find Ext^{*n*}-projectives?

Take inspiration from the classical case!

Suppose $\mathcal{T} \subset \operatorname{mod} A$ is a functorially finite torsion class:

- **1** Let $A \rightarrow T_0$ be the minimal left \mathcal{T} -approximation;
- 2 Take the cokernel to get $A \rightarrow T_0 \rightarrow T_1 \rightarrow 0$.
- 3 Auslander–Smalø showed that $T_1 \oplus T_0$ is an additive generator of the Ext¹-projectives in \mathcal{T} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

How to find Extⁿ-projectives?

Take inspiration from the classical case!

Suppose $\mathcal{T} \subset \operatorname{mod} A$ is a functorially finite torsion class:

- **1** Let $A \rightarrow T_0$ be the minimal left \mathcal{T} -approximation;
- 2 Take the cokernel to get $A \rightarrow T_0 \rightarrow T_1 \rightarrow 0$.
- Solution Auslander–Smalø showed that $T_1 \oplus T_0$ is an additive generator of the Ext¹-projectives in \mathcal{T} .

Suppose $\mathcal{M} \subset \operatorname{mod} A$ is an *n*-cluster-tilting subcategory and $\mathcal{U} \subset \mathcal{M}$ is a functorially finite *n*-torsion class:

- Let $A \rightarrow U_0$ be the minimal left \mathcal{U} -approximation;
- ② Take the minimal *n*-cokernel to get A → U₀ → U₁ → ··· → U_n → 0. Note that the construction ensures U₁,..., U_n ∈ U.

We show U_A := ⊕ⁿ_{i=0} U_i is an additive generator of the Extⁿ-projectives in U.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The "easy" part is to show U_A is Ext^n -projective in \mathcal{U} with an inductive argument.

イロト イポト イヨト イヨト

The "easy" part is to show U_A is Ext^n -projective in \mathcal{U} with an inductive argument. For the other direction, we consider $B = A/\text{Ann}(\mathcal{U})$ and the sequence

$$0 \rightarrow B \rightarrow U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_n \rightarrow 0$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

23 / 25

in mod *B*. We can show Ext's and τ_n -rigidity are preserved moving from \mathcal{U} to mod *B* and we get the following:

The "easy" part is to show U_A is Ext^n -projective in \mathcal{U} with an inductive argument. For the other direction, we consider $B = A/\text{Ann}(\mathcal{U})$ and the sequence

$$0 \rightarrow B \rightarrow U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_n \rightarrow 0$$

in mod *B*. We can show Ext's and τ_n -rigidity are preserved moving from \mathcal{U} to mod *B* and we get the following:

Theorem (AHJKPT)

With setup as above, suppose M is Ext^n -projective in U and $add(U_A) \subset add(M)$. Then M is an n-tilting B-module.

< 同 > < 三 > < 三 >

The "easy" part is to show U_A is Ext^n -projective in \mathcal{U} with an inductive argument. For the other direction, we consider $B = A/\operatorname{Ann}(\mathcal{U})$ and the sequence

$$0 \rightarrow B \rightarrow U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_n \rightarrow 0$$

in mod *B*. We can show Ext's and τ_n -rigidity are preserved moving from \mathcal{U} to mod *B* and we get the following:

Theorem (AHJKPT)

With setup as above, suppose M is Ext^n -projective in \mathcal{U} and $add(U_A) \subset add(M)$. Then M is an n-tilting B-module.

Since tilting modules have a fixed number of summands, this proves U_A generates all Ext^{*n*}-projectives!

- 4 回 ト 4 ヨ ト 4 ヨ ト

The "easy" part is to show U_A is Ext^n -projective in \mathcal{U} with an inductive argument. For the other direction, we consider $B = A/\text{Ann}(\mathcal{U})$ and the sequence

$$0 \rightarrow B \rightarrow U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_n \rightarrow 0$$

in mod *B*. We can show Ext's and τ_n -rigidity are preserved moving from \mathcal{U} to mod *B* and we get the following:

Theorem (AHJKPT)

With setup as above, suppose M is Ext^n -projective in U and $add(U_A) \subset add(M)$. Then M is an n-tilting B-module.

Since tilting modules have a fixed number of summands, this proves U_A generates all Ext^{*n*}-projectives! Note, Martinez–Mendoza have similar results without considering the *n*-torsion class.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

You may have noticed, our map was only injective, but there is a bijection in the classical setting.

э

< □ > < 同 > < 回 > < 回 > < 回 >

You may have noticed, our map was only injective, but there is a bijection in the classical setting.

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0.

2-cluster-tilting subcategory \mathcal{M} shown in yellow.

• It is easy to check that $(3 \oplus \frac{2}{3}, \frac{1}{2})$ is a τ_2 -rigid pair.

You may have noticed, our map was only injective, but there is a bijection in the classical setting.

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0.

2-cluster-tilting subcategory \mathcal{M} shown in yellow.

- It is easy to check that $(3 \oplus {}^2_{3}, {}^1_2)$ is a τ_2 -rigid pair.
- $\operatorname{Fac}(3\oplus {}^2_3)\cap \mathcal{M}$ is shown on the left.

You may have noticed, our map was only injective, but there is a bijection in the classical setting.

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0.

2-cluster-tilting subcategory \mathcal{M} shown in yellow.

- It is easy to check that $(3 \oplus {}^2_{3}, {}^1_2)$ is a τ_2 -rigid pair.
- $\operatorname{Fac}(3\oplus {}^2_3)\cap \mathcal{M}$ is shown on the left.
- But this is NOT a 2-torsion class!

You may have noticed, our map was only injective, but there is a bijection in the classical setting.

Let A be the algebra with quiver $1 \xrightarrow{a} 2 \xrightarrow{b} 3$, with relation ab = 0.

2-cluster-tilting subcategory \mathcal{M} shown in yellow.

- It is easy to check that $(3 \oplus \frac{2}{3}, \frac{1}{2})$ is a τ_2 -rigid pair.
- $\operatorname{Fac}(3\oplus {}^2_3)\cap \mathcal{M}$ is shown on the left.
- But this is NOT a 2-torsion class!

So in the higher setting, the injective map is the best we could hope for!

• • = • •

Thank you! And Happy Birthday to Bill!

Jenny August (MPIM/Aarhus University) Higher torsion classes and τ_n -tilting theory

▲ 同 ▶ → 三 ▶