Persistence in functional topology and data analysis

Ulrich Bauer

TUM

Sep 7,2021

Conference in celebration of the work of Bill Crawley-Boevey

Northern Regional Meeting of the London Mathematical Society



Holes in data



Geometry and topology of biomolecules
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Homology inference



Inferring homology from samples

Given: finite sample P c X of unknown shape X c R?

Problem (Homology inference)
Determine the homology H.. (X).
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Inferring homology from samples

Given: finite sample P c X of unknown shape X c R?

Problem (Homology inference)
Determine the homology H.. (X).

Problem (Homological reconstruction)
Construct a shape Rwith H,(R) ~ H.(X).
Approach:

* approximate the shape by a thickening Ps = |_J B5(p) covering X
peP

This works, but requires strong assumptions:
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Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of R Let P c X and § > 0 be such that

® Pscovers X, and

* § <+/3/20reach(X).

Then H,(X) = H.(Pys).
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Let X c RY. Let P c X and & > 0 be such that

e Pscovers X,

® theinclusions X - X5 — X,s induce isomorphisms in homology.
Then H, (X) = im H, (Ps = Py3).

Proof.

H (X) ——— H.(X5) ——— H.(Xy5)
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Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let X c RY. Let P c X and & > 0 be such that

e Pscovers X,
® theinclusions X - X5 — X,s induce isomorphisms in homology.
Then H, (X) = im H, (Ps = Py3).

Proof.

H.(X) —=2—» H.(X5) — H,.(Xs)

N PN S

H*(P(s) H*(P28)

NS

imH*(P(g'—>P25) L]
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* Afiltration is a certain diagram K : R — Top of topological spaces,
indexed over the poset of real numbers R := (R, <)

""""" >y K — K -

® atopological space K, foreach t € R
® aninclusion map K; — K; foreachs<teR

e Apply homology H. : Top — Vect

¢ Persistent homology is a diagram M = H, o K : R — Vect
(persistence module):

---------- > My —— My >
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Barcodes: the structure of persistence modules

Theorem (Crawley-Boevey 2015)
Any persistence module M : R — vect (of finite dim. vector spaces over some
field F) decomposes as a direct sum of interval modules

(in an essentially unique way).
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Barcodes: the structure of persistence modules

Theorem (Crawley-Boevey 2015)
Any persistence module M : R — vect (of finite dim. vector spaces over some
field F) decomposes as a direct sum of interval modules

(in an essentially unique way).

¢ The supporting intervals form the persistence barcode.

* We rarely have such a simple structure for other diagrams, like
R? - vect (2-parameter persistence modules)
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Two-parameter persistence

Consider grid-shaped commutative diagrams of vector spaces:

Voo —> Vi —— Voo > Vino

| L]
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Two-parameter persistence
Consider grid-shaped commutative diagrams of vector spaces:

Voo —> Vi —— Voo > Vino

| L]

Classification of indecomposables [Drozd 77; Leszczyniski 94]:

{0,1,2,3} finite type (finite classification)
m-ne€q{4} tame type (1-parameter families)
{5,6,...} wildtype (undecidable theory)
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Two-parameter persistence with surjections
Common setup for 2-parameter persistence in degree 0:
* Merging components yields surjective horizontal maps

Voo —» Vi —» Voo » Vino

| 1]
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Two-parameter persistence with surjections
Common setup for 2-parameter persistence in degree 0:
* Merging components yields surjective horizontal maps

Voo —» Vi —» Voo » Vino

| 1]

Vo — Vig — Vo, % Vo
Does the special structure simplify the picture?
Theorem (B., Botnan, Oppermann, Steen 2020)

The representation type of m x n grids in which all horizontal maps are
surjective is the same as that of general m x (n —1) grids.

17/ 47
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Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

Letf,g: X - Rwith |f — g|e = & (and some regularity assumptions).
Consider the persistence barcodes of (sublevel set filtrations of) f and g.
Then there exists a §-matching between their intervals, meaning that:
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Letf,g: X - Rwith |f — g|e = & (and some regularity assumptions).
Consider the persistence barcodes of (sublevel set filtrations of) f and g.
Then there exists a §-matching between their intervals, meaning that:

® matched intervals have endpoints within distance < 8, and

® unmatched intervals have length < 24.

18/ 47



Persistence and stability: the big picture
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Interleavings

Let 8 = |[f — g] oo Write F; = f71(~o0, t] for the t-sublevel set of f.
Then the sublevel set filtrations F, G : R — Top are §-interleaved:

Fi_s — Fy —> Fpy

>< >< VteR.

Gt—& — Gt — Gt+5

Applying homology (a functor) preserves commutativity

* persistent homology of f, g: 6-interleaved persistence modules

21/47



Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012; B, Lesnick 2015)
If two persistence modules are §-interleaved,

then there exists a 5-matching of their barcodes. <
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Structure of persistence sub-/quotient modules

Proposition (B, Lesnick 2015)

Let M — |/ be an epimorphism of persistence modules.
Then there is an injection of barcodes — B(M) with the following

property:
if | is mapped to I, then

® [and | are aligned below, and
® [bounds | above. R

This construction is functorial.
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Proposition (B, Lesnick 2015)

Let M — |/ be an epimorphism of persistence modules.
Then there is an injection of barcodes — B(M) with the following

property:
if | is mapped to I, then

® [and | are aligned below, and

® [bounds | above. el
This construction is functorial.

* Sort intervals with same left end by length, in both B(M) and B(N)

® Match up intervals in sorted order

Dually, there is an injection B(M) = B(N) for monomorphisms M < N.
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Induced matchings

For f : M — N a morphism of pfd persistence modules, the epi-mono

factorization
M - imf <> N

gives an induced matching x(f) between their barcodes:
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Induced matchings

For f : M — N a morphism of pfd persistence modules, the epi-mono

factorization
M - imf <> N

gives an induced matching x(f) between their barcodes:

* compose the functorial injections B(M) « B(imf) < B(N) from
before to a matching

x(f) : B(M) + B(N).

I — B(M)

] —— B(N)

24/47



Algebraic stability via induced matchings
Consider an interleaving f; : My - Niys, &t : Ne > My s (t € R):
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Consider an interleaving f; : My - Niys, &t : Ne > My s (t € R):
M,
X

A S
Ni_s —» ImN;_ 5.6 —> Nps

Construct an induced §-matching of barcodes:
* Match every interval in B(N) of length > 24 to a similar interval
in B(M)

B(M)
B(im N(-4, 8))

B(N(9))
B(N)
—
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Simplification


















Topological simplification of functions

Consider the following problem:

Problem (Topological simplification)

Given a function f and a real number § > 0, find a function fs with the
minimal number of critical points subject to ||fs — f||co < 0.

27/47



Persistence and Morse theory
Morse theory (smooth or discrete):

® Relates critical points to homology of sublevel sets
¢ Provides a method for canceling pairs of critical points

)
o o

(from Milnor: Lectures on the h-cobordism theorem, 1965)
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Persistence and Morse theory
Morse theory (smooth or discrete):

® Relates critical points to homology of sublevel sets
¢ Provides a method for canceling pairs of critical points

)
o o

(from Milnor: Lectures on the h-cobordism theorem, 1965)

Persistent homology:
¢ Relates homology of different sublevel set
e |dentifies pairs of critical points (birth and death of homology) and

quantifies their persistence 28/ a7



Persistence and discrete Morse theory
For a Morse fuction:

e critical points correspond to endpoints of barcode intervals
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Theorem (B, Lange, Wardetzky, 2011)

Let f be a function on a surface and let § > 0.
Canceling all pairs with persistence < 28 yields a function fs

* satisfying |fs — f| o < 8 and

® achieving the lower bound on the number of critical points.
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Persistence and discrete Morse theory
For a Morse fuction:
e critical points correspond to endpoints of barcode intervals
By stability of persistence barcodes:
Proposition
The critical points of f with persistence > 28 provide a lower bound on the
number of critical points of any function g with |g — f| e < 6.

Theorem (B, Lange, Wardetzky, 2011)

Let f be a function on a surface and let § > 0.
Canceling all pairs with persistence < 28 yields a function fs

* satisfying |fs — f| o < 8 and

® achieving the lower bound on the number of critical points.

Does not generalize to higher-dimensional manifolds!
29/47
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Sublevel set simplification

Let F; = f~!(-o0, t] denote the t-sublevel set of f.

Problem (Sublevel set simplification)

Givenafunctionf : X cR® - RandteR, § > 0,
find a function g with ||g — f||ee < 8 minimizing dim H..(G;).
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Sublevel set simplification

Let F; = f~!(-o0, t] denote the t-sublevel set of f.

Problem (Sublevel set simplification)

Givenafunctionf : X cR® - RandteR, § > 0,
find a function g with || g — f||ec < 8 minimizing dim H..(G;).

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)
Sublevel set simplification in R? is NP-hard.
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When was persistent homology invented?
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Topological persistence and simplification
Foundations of Computer Science, 2000

[@ V.Robbins

Computational Topology at Multiple Resolutions.
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@ P. Frosini

A distance for similarity classes of submanifolds of a Euclidean space
Bulletin of the Australian Mathematical Society, 1990.
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When was persistent homology invented first?

ANNALS OF MATHEMATICS
Vol. 41, No. 2, April, 1840

RANK AND SPAN IN FUNCTIONAL TOPOLOGY

BY MARSTON MORSE
(Received August 9, 1939)

1. Introduction.

The analysis of functions F on metric spaces M of the type which appear in
variational theories is made difficult by the fact that the critical limits, such as
absolute minima, relative minima, minimax values etc., are in general infinite in
number. These limits are associated with relative k-cycles of various dimen-
sions and are classified as O-limits, 1-limits etc. The number of k-limits suitably
counted is called the k* type number m; of F. The theory seeks to establish
relations between the numbers my, and the connectivities p, of M. The numbers
pr are finite in the most important applications. It is otherwise with the
numbers my .

The theory has been able to proceed provided one of the following hypotheses

LY . | ™ *z:* 1T 1 *: 1 a2 a4 a4 41 e
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BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 3, Number 3, November 1980

MARSTON MORSE AND HIS MATHEMATICAL WORKS

BY RAOUL BOTT!

1. Introduction. Marston Morse was born in 1892, so that he was 33 years
old when in 1925 his paper Relations between the critical points of a real-val-
ued function of n independent variables appeared in the Transactions of the
American Mathematical Society. Thus Morse grew to maturity just at the
time when the subject of Analysis Situs was being shaped by such masters? as
Poincaré, Veblen, L. E. J. Brouwer, G. D. Birkhoff, Lefschetz and Alexander,
and it was Morse’s genius and destiny to discover one of the most beautiful
and far-reaching relations between this fledgling and Analysis; a relation
which is now known as Morse Theory.

In retrospect all great ideas take on a certain simplicity and inevitability,
partly because they shape the whole subsequent development of the subject.
And so to us, today, Morse Theory seems natural and inevitable. However
one only has to glance at these early papers to see what a tour de force it was ,,,,,



When was persistent homology invented first?

inequalities pertain between the dimensions of the A; and those of H(A;). Thus
the Morse inequalities already reflect a certain part of the “Spectral Sequence
magic”, and a modern and tremendously general account of Morse’s work on
rank and span in the framework of Leray’s theory was developed by De-
heuvels [D] in the 50’s.

Unfortunately both Morse’s and Deheuvel’s papers are not easy reading.
On the other hand there is no question in my mind that the papers [36] and
[44] constitute another tour de force by Morse. Let me therefore illustrate
rather than explain some of the ideas of the rank and span theory in a very
simple and tame example.

In the figure which follows I have drawn a homeomorph of M = S! in the
plane, and I will be studying the height function F = y on M.

w

o
~t~—t—t
=
4+

—
< D>>
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Motivation and application: minimal surfaces

Problem (Plateau’s problem)

Find a surface of least area spanned by a given closed Jordan curve.

4

(a) (b) (©)
(from Dierkes et al.: Minimal Surfaces, 2010)
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01

(from Dierkes et al.: Minimal Surfaces, 2010)
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Motivation and application: minimal surfaces

Problem (Plateau’s problem)
Find a surface of least area spanned by a given closed Jordan curve.

C= 6= &= -
n L Iy

(from Dierkes et al.: Minimal Surfaces, 2010)
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The Douglas functional

Theorem (Douglas 1930)

Given aJordan curveT : S' — R3, there is a functional on the space of
reparametrizations S' — S' fixing three arbitrary points qi, q2, g3 € S', whose
critical points are in bijection with the minimal disks bounded by T.
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Existence of unstable minimal surfaces

Theorem (Morse, Tompkins 1939; Shiffman 1939)

If there are two separate stable minimal surfaces with a given boundary
curve, then there exists an unstable minimal surface (a critical point that is
not a local minimum).

7
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Morse inequalities

Theorem (Morse 1925)
Letf : M — R be a Morse function on a compact manifold M. The Betti
numbers f3; of M and the numbers m; of index j critical points of f satisfy:

m02ﬁo

my—mg > 1 - Po

mg—mgy+--xmg>fg—Pa1+-+Po
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Morse inequalities

Theorem (Morse 1925)
Letf : M — R be a Morse function on a compact manifold M. The Betti
numbers f3; of M and the numbers m; of index j critical points of f satisfy:

m02ﬁo

my —mg 2 1 - o
Mg—mgqg+--x£mp>Pg—Pa1+%Po

Corollary (“Mountain pass lemma”)
If M is connected (B = 1) and has two minima (m = 2), then it also has a
critical point of index1 (my > 31 — o + mo = 1 + 1).
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Q-tame persistence modules

Definition
A persistence module M : R — vect is g-tame (ephemeral) if for every s < ¢
the structure map M; — M; has finite (zero) rank.
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Q-tame persistence modules

Definition
A persistence module M : R — vect is g-tame (ephemeral) if for every s < ¢
the structure map M; — M; has finite (zero) rank.

e Example: the Vietoris—Rips filtration of a compact metric space has
g-tame persistent homology.

® Morse's goal, in modern language: sufficient conditions for g-tame
persistent homology of sublevel sets of a function.
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Structure of g-tame persistence modules

Theorem (Chazal, Crawley-Boevey, de Silva 2016)

The radical of a g-tame persistence module M, defined by
(rad M), = ¥, im M, admits a barcode decomposition.
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Structure of g-tame persistence modules

Theorem (Chazal, Crawley-Boevey, de Silva 2016)

The radical of a g-tame persistence module M, defined by
(rad M), = ¥, im M, admits a barcode decomposition.

Theorem (Chazal, Crawley-Boevey, de Silva 2016)

Every g-tame persistence module has a unique persistence diagram that
completely describes its isomorphism type in the observable category.

* Apersistence diagram describes the intervals in a barcode, modulo the
endpoints.

® The observable category is the category of persistence modules,
localized at the ephemerals.
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Generalized Morse inequalities

Assume that the sublevel sets of a bounded function f : X — R are
® compactand

* have g-tame persistent homology.
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Generalized Morse inequalities

Assume that the sublevel sets of a bounded function f : X — R are
® compactand
* have g-tame persistent homology.

Then the persistence diagram of f has finitely many bars of length > ¢,
for every e.
This gives generalized Morse inequalities ¥4 (~1)%(m¢ - B;) > 0.

* m; counts endpoints in intervals with length > ¢

Morse and Tompkins use this idea to show the existence of a minimal
surface.
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Weakly 7LC filtrations

Definition (paraphrased from Morse)

The sublevel set filtration of a function f: X — R is said to be weakly
homotopically locally connected, or weakly nLC, if for any

® any pointx € X,
® any neighborhood V of x, and
* anyvalue t > f(x),
there is
* avalue swith f(x) <s<tand
® aneighborhood U of x with U ¢ V

such that the inclusion U n fo; = V n f; induces trivial maps on
homotopy groups.
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An example

Claim (Morse)
Iff: X — R is bounded below and the sublevel sets are compact, weakly nLC,
and regular at infinity, then it has q-tame persistent homology.
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Locally homologically small filtrations

Definition (B, Medina-Mardones, Schmahl)
The sublevel set filtration of a function f: X — R is called locally
homologically small or HLC if for

® anypointx € X,

¢ any neighborhood V of x, and

* any pair of values s, t with f(x) <s <t
there is

¢ aneighborhood U of x with U ¢ V

such that the inclusion U n fo; = V n f; induces maps of finite rank on
homology.
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A sufficient condition for g-tame persistence

Theorem (B, Medina-Mardones, Schmahl 2021)
If the sublevel set filtration of a (not necessarily continuous) function
f:X = Riscompact and HLS, then its persistent homology is g-tame.
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Topology of viral evolution

Joint work with:
A. Ott, M. Bleher, L. Hahn (Heidelberg), R. Rabadan, J. Patifio-Galindo (Columbia), M. Carriere (INRIA)
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