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Equivariant coherent sheaves on an elliptic curve

Let Eλ := V
(
y2 − x(x− 1)(x− λ)

)
⊂ P2 be a family of plane cubics.

Consider the involution Eλ
ı−→ Eλ, (x, y) 7→ (x,−y).

Theorem (Geigle & Lenzing, 1985)

If λ 6= 0, 1 then there exists an equivalence of triangulated categories

Db
(
CohZ2(Eλ)

)
−→ Db(Tλ −mod)

where Tλ is the tubular algebra of Ringel of type (2, 2, 2, 2;λ)
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b1a1 − b2a2 = b3a3
b1a1 − λb2a2 = b4a4
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Degenerate tubular algebra I

Question: What happens, when λ = 0?

E := E0 = V
(
y2 − x2(x− 1)

)
is singular: gl.dim

(
CohZ2(E)

)
=∞.

For the degenerate tubular algebra T := T0
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we have: gl.dim(T −mod) = 2.

Hence, Db
(
CohZ2(E)

)
and Db(T −mod) are not equivalent.

Question: What is a relation between Db
(
CohZ2(E)

)
and Db(T −mod)?
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Degenerate tubular algebra II

Proposition (Burban & Drozd, 2018)

There exists a commutative diagram of categories and functors

Db(T −mod)
P // // Db

(
CohZ2(E)

)

PerfZ2(E)
4 TJ

gg

* 
 I

77

PerfZ2(E) is the triangulated category of perfect objects of
Db
(
CohZ2(E)

)
and I is the canonical inclusion.

J is fully faithful and P is a certain Verdier localization functor.

First step of the proof. As E/Z2
∼= P1, we have: CohZ2(E) ' Coh(E),

where E := (P1,A) and A ⊂ Mat2(OP1) is a certain sheaf of orders.
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Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R)

(=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A)

(=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order.

Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Nodal orders

Definition (Drozd, 1990)

A ring A is a nodal order if

Its center R := Z(A) is reduced noetherian and semi-local.

R ⊂ A is finite, A is torsion free over R and K ⊗R A is semi-simple,
where K = Quot(R) (=⇒ A is an order).

H := EndA(J) is hereditary, where J = rad(A) (=⇒ kr.dim(R) = 1).

We have: rad(H) = J and for any finitely generated simple left
A–module S holds: lA(H ⊗A S) ≤ 2.

Example

The classical nodal ring D := kJx, yK/(xy) is a nodal order. Indeed,

K := Quot(D) ∼= k((x))× k((y)) and J := rad(D) = (x, y).

D̃ := EndD(J) ∼= kJxK× kJyK is hereditary and rad(D) = rad(D̃).

D̃ ⊗ (D/J) ∼= D̃/J ∼= k× k.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 5 / 31



Examples of nodal orders I

Example

Let R = kJtK ⊃ m = (t). Then A :=

(
R m
m R

)
is nodal. Indeed,

J := rad(A) =

(
m m
m m

)
= rad(H) ⊂ H =

(
R R
R R

)

We have:

A/J
∼= //

_�

��

k× k� _

��
H/J

∼= //Mat2(k)

In particular, H ⊗A Si ∼=
(
k

k

)
is two-dimensional for i = 1, 2.

Remark

In fact, A ∼= D ∗Z2, where D = kJx, yK/(xy) and Z2 acts on D by x↔ y.
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Examples of nodal orders II

For any 0 < c < n such that gcd(n, c) = 1, consider the action of the
cyclic group G =

〈
ρ
∣∣ ρn = e

〉
on D = kJu, vK/(uv), given by the rule{
ρ ◦ u = ζ u
ρ ◦ v = ζcv.

Then A := D ∗G is nodal. For example, for c = n− 1 we have:

A ∼=

2◦
a1

��

b2

44 ◦
a2

tt

%%1◦

an
%%

b1

II

... ◦

ee

		n◦ 44

bn

ee

◦

II

tt

modulo the relations akbk = 0 = bkak for all 1 ≤ k ≤ n.
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Examples of nodal orders III

Example (Gelfand order, Gelfand 1970)

A :=

 R m m
R R m
R m R

 ⊂ H =

 R m m
R R R
R R R

 M∼
(
R m
R R

)
.

A is isomorphic to the arrow ideal completion of the path algebra

−
a−

** ?
b−

kk
b+

33 +
a+

tt a+b+ = a−b−

Example (Zhelobenko order, Zhelobenko 1958)

H := R×
(
R m
R R

)
⊃ A :=

{(
a,

(
b11 b12
b21 b22

))∣∣∣∣ a(0) = b11(0)

}
A is the completion of •a ::

b
** •

c

jj ba = 0, ac = 0.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 8 / 31



Examples of nodal orders III

Example (Gelfand order, Gelfand 1970)

A :=

 R m m
R R m
R m R



⊂ H =

 R m m
R R R
R R R

 M∼
(
R m
R R

)
.

A is isomorphic to the arrow ideal completion of the path algebra

−
a−

** ?
b−

kk
b+

33 +
a+

tt a+b+ = a−b−

Example (Zhelobenko order, Zhelobenko 1958)

H := R×
(
R m
R R

)
⊃ A :=

{(
a,

(
b11 b12
b21 b22

))∣∣∣∣ a(0) = b11(0)

}
A is the completion of •a ::

b
** •

c

jj ba = 0, ac = 0.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 8 / 31



Examples of nodal orders III

Example (Gelfand order, Gelfand 1970)

A :=

 R m m
R R m
R m R

 ⊂ H =

 R m m
R R R
R R R



M∼
(
R m
R R

)
.

A is isomorphic to the arrow ideal completion of the path algebra

−
a−

** ?
b−

kk
b+

33 +
a+

tt a+b+ = a−b−

Example (Zhelobenko order, Zhelobenko 1958)

H := R×
(
R m
R R

)
⊃ A :=

{(
a,

(
b11 b12
b21 b22

))∣∣∣∣ a(0) = b11(0)

}
A is the completion of •a ::

b
** •

c

jj ba = 0, ac = 0.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 8 / 31



Examples of nodal orders III

Example (Gelfand order, Gelfand 1970)

A :=

 R m m
R R m
R m R

 ⊂ H =

 R m m
R R R
R R R

 M∼
(
R m
R R

)
.

A is isomorphic to the arrow ideal completion of the path algebra

−
a−

** ?
b−

kk
b+

33 +
a+

tt a+b+ = a−b−

Example (Zhelobenko order, Zhelobenko 1958)

H := R×
(
R m
R R

)
⊃ A :=

{(
a,

(
b11 b12
b21 b22

))∣∣∣∣ a(0) = b11(0)

}
A is the completion of •a ::

b
** •

c

jj ba = 0, ac = 0.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 8 / 31



Examples of nodal orders III

Example (Gelfand order, Gelfand 1970)

A :=

 R m m
R R m
R m R

 ⊂ H =

 R m m
R R R
R R R

 M∼
(
R m
R R

)
.

A is isomorphic to the arrow ideal completion of the path algebra

−
a−

** ?
b−

kk
b+

33 +
a+

tt a+b+ = a−b−

Example (Zhelobenko order, Zhelobenko 1958)

H := R×
(
R m
R R

)
⊃ A :=

{(
a,

(
b11 b12
b21 b22

))∣∣∣∣ a(0) = b11(0)

}
A is the completion of •a ::

b
** •

c

jj ba = 0, ac = 0.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 8 / 31



Examples of nodal orders III

Example (Gelfand order, Gelfand 1970)

A :=

 R m m
R R m
R m R

 ⊂ H =

 R m m
R R R
R R R

 M∼
(
R m
R R

)
.

A is isomorphic to the arrow ideal completion of the path algebra

−
a−

** ?
b−

kk
b+

33 +
a+

tt a+b+ = a−b−

Example (Zhelobenko order, Zhelobenko 1958)

H := R×
(
R m
R R

)
⊃ A :=

{(
a,

(
b11 b12
b21 b22

))∣∣∣∣ a(0) = b11(0)

}

A is the completion of •a ::
b

** •
c

jj ba = 0, ac = 0.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 8 / 31



Examples of nodal orders III

Example (Gelfand order, Gelfand 1970)

A :=

 R m m
R R m
R m R

 ⊂ H =

 R m m
R R R
R R R

 M∼
(
R m
R R

)
.

A is isomorphic to the arrow ideal completion of the path algebra

−
a−

** ?
b−

kk
b+

33 +
a+

tt a+b+ = a−b−

Example (Zhelobenko order, Zhelobenko 1958)

H := R×
(
R m
R R

)
⊃ A :=

{(
a,

(
b11 b12
b21 b22

))∣∣∣∣ a(0) = b11(0)

}
A is the completion of •a ::

b
** •

c

jj ba = 0, ac = 0.

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 8 / 31



Examples of nodal orders III

Example (Gelfand 1970, representations of SL2(R))

A :=

 R m m
R R m
R m R

 ⊂ H =

 R m m
R R R
R R R

 M∼
(
R m
R R

)
.

A is isomorphic to the arrow ideal completion of the path algebra

−
a−

** ?
b−

kk
b+

33 +
a+

tt a+b+ = a−b−

Example (Zhelobenko 1958, Gelfand & Ponomarev 1968, on SL2(C))

H := R×
(
R m
R R

)
⊃ A :=

{(
a,

(
b11 b12
b21 b22

))∣∣∣∣ a(0) = b11(0)

}
A is the completion of •a ::

b
** •
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Nodal orders and tameness

Theorem (Drozd, 1990)

Let A be a non-hereditary order with a semi-local center. Then

A− flmod is tame ⇐⇒ A is nodal

Theorem (Burban & Drozd, 2002)

If A is a nodal order then Db(A− flmod) is tame.

Remark

(Skew-)gentle algebras are finite dimensional versions of nodal orders.

Nodal orders over k = k are completely classified (Drozd-Zembyk).

For k 6= k, the picture becomes more involved as Br
(
k((t))

)
6= 0.
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The Auslander order of a nodal order

Definition

Let A be a nodal order and H = EndA(J) be its hereditary cover. Then

B ∼=
(
EndA(A⊕H))◦

is called Auslander order of A.

Theorem

We have: Latt(A) = add(A⊕H).

The conductor ideal C :=
{
h ∈ H

∣∣H · h ⊂ A} ∼=−→ HomA(H,A) is a
two-sided ideal, both in H and A, containing their common radical J .

The order B =

(
A H
C H

)
is again nodal and gl.dim(B) = 2.
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Auslander order as a non-commutative resolution

Notation. A is a nodal order, H is its hereditary cover, B =

(
A H
C H

)
.

Let e :=

(
1 0
0 0

)
∈ B and P := Be =

(
A
C

)
. Then we have:

Perf(A) � w
P
L

⊗A−

**

_�

��

Db(B −mod)

HomB(P,− )tttt
Db(A−mod)
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Auslander order and recollement

Let f :=

(
0 0
0 1

)
∈ B =

(
A H
C H

)
and Q := Bf =

(
H
H

)
.

(
EndB(Q)

)◦ ∼= H, BfB =

(
C H
C H

)
, B/BfB ∼= A/C =: Ā.

Then we have a recollement diagram (after Parshall, Cline and Scott):

Db(Ā−mod) J // Db(B −mod)

J!
mm

J∗qq
DG // Db(H −mod)

RH

mm

LFqq
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0 −→
(
C
C

)
−→
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A
C
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−→ J(Ā) −→ 0.
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Nodal orders: Summary

Nodal orders are non-commutative generalizations of kJx, yK/(xy).

They are derived-tame.

To any nodal order A, one can canonically attach

its hereditary cover H = EndA

(
rad(A)

)
,

a semi-simple quotient Ā = A/C, where C = HomA(H,A),

its Auslander order B =

(
A H
C H

)
.

Perf(A) �
� E //
v�

I ((

Db(B −mod)

P
����

〈
Db(Ā−mod), Db(H −mod)

〉
=oo

Db(A−mod)

Global version of nodal orders: non-commutative nodal projective
curves.
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a semi-simple quotient Ā = A/C, where C = HomA(H,A),

its Auslander order B =

(
A H
C H

)
.

Perf(A) �
� E //
v�

I ((

Db(B −mod)

P
����

〈
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Non-commutative nodal projective curves I

Definition

A non-commutative curve is a ringed space X = (X,A), where

X is a reduced quasi-projective curve over a field k.

A is a sheaf of orders on X.

X is nodal if Ap is hereditary/nodal for all p ∈ X.

We usually assume that Z(Ap) = Op for all p ∈ X.

X is projective if X is projective and rational if X is rational.

Remark

Let X be an irreducible projective curve over k = k. Since Br
(
k(X)

)
= 0,

we have:
Γ
(
X,K ⊗O A

) ∼= Matn
(
k(X)

)
for some n ∈ N.
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Non-commutative nodal projective curves II

To any sheaf of nodal orders A on a reduced curve X one can attach:
its hereditary cover H := EndA(I), where I ⊂ A is such that

Ip = Ap if p is a hereditary point.
Ip = rad(Ap) if p is not hereditary.

The Auslander order B =

(
A H
C H

)
, where C = HomA(H,A).

A semi-simple algebra Ā := Γ(X, Ā), where Ā = A/C.

Let X = (X,A) be a non-commutative nodal curve, X̃ = (X̃,H) −→ X be
its hereditary cover and Y = (X,A) be its Auslander curve. Then we have:

Perf(X) �
� E //
u�

I
((

Db
(
Coh(Y)

)
P
����

〈
Db(Ā−mod), Db

(
Coh(X̃)

)〉=oo

Db
(
Coh(X)

)
Observation. If X is projective and rational then Db

(
Coh(X̃)

)
and

Db
(
Coh(Y)

)
have tilting objects!
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Db(Ā−mod), Db

(
Coh(X̃)

)〉=oo

Db
(
Coh(X)

)
Observation. If X is projective and rational then Db

(
Coh(X̃)

)
and

Db
(
Coh(Y)

)
have tilting objects!

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 16 / 31



Non-commutative nodal projective curves II

To any sheaf of nodal orders A on a reduced curve X one can attach:
its hereditary cover H := EndA(I), where I ⊂ A is such that

Ip = Ap if p is a hereditary point.
Ip = rad(Ap) if p is not hereditary.

The Auslander order B =

(
A H
C H

)
, where C = HomA(H,A).
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Geigle-Lenzing tilting for weighted projective lines

Fact: A rational hereditary curve X̃ = (P1,H) (a weighted projective line)
is specified by its ramification points (λ1 : µ1), . . . , (λr : µr) ∈ P1 and the
corresponding weights l1, . . . , lr ∈ N.

Theorem (Geigle & Lenzing, 1985)

Db
(
Coh(X̃)

)
' Db(Γ−mod), where Γ is the path algebra of

◦ u12 // ◦ // . . . // ◦
u1l1

$$

◦ u22 // ◦ // . . . // ◦ u2l2

**◦

u11

::

u21 44

ur1

""

z
..

w

11 ◦

... ... ...

◦ ur2 // ◦ // . . . // ◦

urlr

<<

modulo the relations uili . . . ui1 = λiw − µiz for 1 ≤ i ≤ r.
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Tilting on the Auslander nodal curve

Let X = (X,A) be a rational projective nodal curve and Y = (X,B) be its

Auslander curve, where B =

(
A H
C H

)
.

Theorem (Burban & Drozd, 2018)

Let E be the GL tilting bundle on X̃ = (X̃,H) and S ∈ Tor(X) be given by

0 −→
(
C
C

)
−→

(
A
C

)
−→ S −→ 0.

Then X := S[−1]⊕
(
E
E

)
is a tilting object in Db

(
Coh(Y)

)
. Hence,

Db
(
Coh(Y)

)
' Db(Λ−mod),

where Λ =
(
EndDb(Y)(X )

)◦
. Moreover, gl.dim(Λ) = 2.
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Summary.

Let X be a rational projective non-commutative nodal curve,
X̃ be its hereditary cover and Y be its Auslander curve. Then we have:

Db
(
Coh(X̃)

)
ν∗

ww

� _

Ẽ
��

Db
(
Coh(X)

)
Db
(
Coh(Y)

)Poooo T // Db(Λ−mod)

Perf(X)
� ?

E

OO

5 UI

gg

I, E, Ẽ are fully faithful.

P is a Verdier localization and T is an exact equivalence.

gl.dim
(
Coh(Y)

)
= 2 = gl.dim(Λ).

Fact. Let Γ be a finite dimensional k-algebra for which there exists a
non-commutative projective curve T such that

Db(Γ−mod) ' Db
(
Coh(T)

)
.

If Γ is derived tame then T is a tame projective rational nodal curve.
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Combinatorics of tame non-commutative nodal curves

Let r, s ∈ N0 and

~p =
(
(p+1 , p

−
1 ), . . . , (p+r , p

−
r )
)
∈
(
N2
)r

and ~q = (q1, . . . , qs) ∈ Ns.

For any 1 ≤ i ≤ r and 1 ≤ j ≤ s, consider the following sets:

Ξ±i :=
{
x±i,1, . . . , x

±
i,p±i

}
and Ξ◦j :=

{
wj,1, . . . , wj,qj

}
.

Let ≈ be a relation (i.e. ≈ is symmetric, transitive, but not necessarily
reflexive) on the set Ξ :=

(
(Ξ+

1 ∪Ξ−1 )∪ · · · ∪ (Ξ+
r ∪Ξ−r )

)
∪
(
Ξ◦1 ∪ · · · ∪Ξ◦s

)
such that for any ξ ∈ Ξ, there exists at most one ξ′ ∈ Ξ such that ξ ≈ ξ′.

Theorem (Drozd-Voloshyn 2013, Burban-Drozd 2021)

Up to a Morita equivalence, tame non-commutative nodal curves are
parameterized by the data

(
Ξ(~p, ~q),≈

)
.

Remark

Stacky chains/cycles of projective lines of are special classes of
non-commutative tame nodal curves.
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Ξ±i :=
{
x±i,1, . . . , x

±
i,p±i

}
and Ξ◦j :=

{
wj,1, . . . , wj,qj

}
.

Let ≈ be a relation (i.e. ≈ is symmetric, transitive, but not necessarily
reflexive) on the set Ξ :=

(
(Ξ+

1 ∪Ξ−1 )∪ · · · ∪ (Ξ+
r ∪Ξ−r )

)
∪
(
Ξ◦1 ∪ · · · ∪Ξ◦s

)
such that for any ξ ∈ Ξ, there exists at most one ξ′ ∈ Ξ such that ξ ≈ ξ′.

Theorem (Drozd-Voloshyn 2013, Burban-Drozd 2021)

Up to a Morita equivalence, tame non-commutative nodal curves are
parameterized by the data

(
Ξ(~p, ~q),≈

)
.

Remark

Stacky chains/cycles of projective lines of are special classes of
non-commutative tame nodal curves.
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Tame nodal curves and derived-tame algebras

Let (~p, ~q,≈) be a datum defining a tame non-commutative nodal curve.

Db
(
Coh(X)

)
Db
(
Coh(Y)

)Poooo T // Db(Λ−mod)

Perf(X)
� ?

E

OO

5 UI

gg

Coming next: explicit description of derived-tame algebras Λ(~p, ~q,≈).
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Let ~p =
(
(p+1 , p

−
1 ), . . . , (p+r , p

−
r )
)
∈
(
N2
)r

and ~q = (q1, . . . , qs) ∈ Ns.

Γ
(
p+i , p

−
i

)
=

◦
x+i,2 // ◦ . . . ◦ // ◦ x+

i,p+
i

��
◦

x+i,1
??

x−i,1
��

◦

◦
x−i,2

// ◦ // ◦ . . . ◦ // ◦ // ◦

x−
i,p−

i

OO

Γ
(
2, 2, qj) =

◦ v+j

""
◦

u+j ..

u−j
00

wj,1 // ◦
wj,2 // . . . ◦ // ◦

wj,qj // ◦

◦ v−j

<<

modulo the relation v+j u
+
j + v−j u

−
j + wj,qj . . . wj,1 = 0.
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Derived tame algebras Λ(~p, ~q,≈)

≈ is a symmetric (but not necessarily reflexive) relation on the set

Ξ :=
{
x±i,k

∣∣∣ 1 ≤ i ≤ r, 1 ≤ k ≤ p±i
}
∪
{
w±j,l

∣∣∣ 1 ≤ j ≤ s, 1 ≤ l ≤ qj
}
.

The algebra Λ(~p, ~q,≈) is obtained from(
Γ
(
p+1 , p

−
1

)
× · · · × Γ

(
p+r , p

−
r

))
×
(
Γ
(
2, 2, q1)× · · · × Γ

(
2, 2, qs)

)
by the following procedure of adding new vertices and arrows.
Case 1. Let %′ 6= %′′ ∈ Ξ be such that %′ ≈ %′′

◦ %′ // ◦

◦ %′′ // ◦

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 23 / 31



Derived tame algebras Λ(~p, ~q,≈)

≈ is a symmetric (but not necessarily reflexive) relation on the set

Ξ :=
{
x±i,k

∣∣∣ 1 ≤ i ≤ r, 1 ≤ k ≤ p±i
}
∪
{
w±j,l

∣∣∣ 1 ≤ j ≤ s, 1 ≤ l ≤ qj
}
.

The algebra Λ(~p, ~q,≈) is obtained from(
Γ
(
p+1 , p

−
1

)
× · · · × Γ

(
p+r , p

−
r

))
×
(
Γ
(
2, 2, q1)× · · · × Γ

(
2, 2, qs)

)
by the following procedure of adding new vertices and arrows.
Case 1. Let %′ 6= %′′ ∈ Ξ be such that %′ ≈ %′′

◦ %′ // ◦

◦ %′′ // ◦

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 23 / 31



Derived tame algebras Λ(~p, ~q,≈)

≈ is a symmetric (but not necessarily reflexive) relation on the set

Ξ :=
{
x±i,k

∣∣∣ 1 ≤ i ≤ r, 1 ≤ k ≤ p±i
}
∪
{
w±j,l

∣∣∣ 1 ≤ j ≤ s, 1 ≤ l ≤ qj
}
.

The algebra Λ(~p, ~q,≈) is obtained from(
Γ
(
p+1 , p

−
1

)
× · · · × Γ

(
p+r , p

−
r

))
×
(
Γ
(
2, 2, q1)× · · · × Γ

(
2, 2, qs)

)
by the following procedure of adding new vertices and arrows.

Case 1. Let %′ 6= %′′ ∈ Ξ be such that %′ ≈ %′′

◦ %′ // ◦

◦ %′′ // ◦

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 23 / 31



Derived tame algebras Λ(~p, ~q,≈)

≈ is a symmetric (but not necessarily reflexive) relation on the set

Ξ :=
{
x±i,k

∣∣∣ 1 ≤ i ≤ r, 1 ≤ k ≤ p±i
}
∪
{
w±j,l

∣∣∣ 1 ≤ j ≤ s, 1 ≤ l ≤ qj
}
.

The algebra Λ(~p, ~q,≈) is obtained from(
Γ
(
p+1 , p

−
1

)
× · · · × Γ

(
p+r , p

−
r

))
×
(
Γ
(
2, 2, q1)× · · · × Γ

(
2, 2, qs)

)
by the following procedure of adding new vertices and arrows.
Case 1. Let %′ 6= %′′ ∈ Ξ be such that %′ ≈ %′′

◦ %′ // ◦

◦ %′′ // ◦

Igor Burban (Paderborn) Tame non-commutative nodal curves CB60 conference 23 / 31



Derived tame algebras Λ(~p, ~q,≈)

≈ is a symmetric (but not necessarily reflexive) relation on the set

Ξ :=
{
x±i,j

∣∣∣ 1 ≤ i ≤ r, 1 ≤ j ≤ p±i
}
∪
{
w±i,j

∣∣∣ 1 ≤ i ≤ s, 1 ≤ j ≤ qj
}
.

The algebra Λ(~p, ~q,≈) is obtained from(
Γ
(
p+1 , p

−
1

)
× · · · × Γ

(
p+r , p

−
r

))
×
(
Γ
(
2, 2, q1)× · · · × Γ

(
2, 2, qs)

)
by the following procedure of adding new vertices and arrows.
Case 1. Let %′ 6= %′′ ∈ Ξ be such that %′ ≈ %′′

◦ %′ // ◦
ϑ′

��
•

◦ %′′ // ◦
ϑ′′

??
ϑ′%′ = 0 = ϑ′′%′′
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Derived tame algebras Λ(~p, ~q,≈)

≈ is a symmetric (but not necessarily reflexive) relation on the set

Ξ :=
{
x±i,j

∣∣∣ 1 ≤ i ≤ r, 1 ≤ j ≤ p±i
}
∪
{
w±i,j

∣∣∣ 1 ≤ i ≤ s, 1 ≤ j ≤ qj
}
.

The algebra Λ(~p, ~q,≈) is obtained from(
Γ
(
p+1 , p

−
1

)
× · · · × Γ

(
p+r , p

−
r

))
×
(
Γ
(
2, 2, q1)× · · · × Γ

(
2, 2, qs)

)
by the following procedure of adding new vertices and arrows.
Case 2. For any % ∈ Ξ such that % ≈ %:

◦ % // ◦
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Derived tame algebras Λ(~p, ~q,≈)

≈ is a symmetric (but not necessarily reflexive) relation on the set

Ξ :=
{
x±i,j

∣∣∣ 1 ≤ i ≤ r, 1 ≤ j ≤ p±i
}
∪
{
w±i,j

∣∣∣ 1 ≤ i ≤ s, 1 ≤ j ≤ qj
}
.

The algebra Λ(~p, ~q,≈) is obtained from(
Γ
(
p+1 , p

−
1

)
× · · · × Γ

(
p+r , p

−
r

))
×
(
Γ
(
2, 2, q1)× · · · × Γ

(
2, 2, qs)

)
by the procedure of adding new vertices and arrows.
Case 2. For any % ∈ Ξ such that % ≈ %:

•

◦ % // ◦

ϑ+
??

ϑ− ��
•

ϑ±% = 0
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Derived tame algebras Λ(~p, ~q,≈)

Example. Let ~p = (3, 2), ~q be void (i.e. r = 1 and s = 0) and ≈ be given
by the rule x+1,1 ≈ x

−
1,1 and x+1,3 ≈ x

−
1,2. Then the corresponding gentle

algebra Λ(~p,≈) is the path algebra of the following quiver

◦
u1

��

x+1,2 // ◦
x+1,3

��
◦

x+1,1
??

x−1,1 ''

• ◦
u2

**

v2

44 •

◦

v1

OO

x−1,2

77

subject to the relations: u1x
+
1,1 = 0 = v1x

−
1,1 and u2x

+
1,3 = 0 = v2x

−
1,2.
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Example. Let ~p =
(
(1, 1), (1, 1)

)
, ~q = (2) and ≈ be given by: x+1,1 ≈ w1,1,

x−1,1 ≈ x
+
2,1 and w1,2 ≈ w1,2. Then Λ(~p, ~q,≈) is the path algebra

•

◦
x−1,1
��

x+1,1
��

◦
w1,1

��

t1,1

��

z1,1

��

◦
x+2,1
��

x−2,1
��

◦
u2

��

u1

77

◦

z1,2 ((

◦
w1,2

��

v2

uu

◦

t1,2vv

◦

v1

gg

• ◦
v+3

vv

v−3

((• •
z1,2z1,1 + w1,2w1,1 + t1,2t1,1 = 0
v±3 w1,2 = 0
u1x

−
1,1 = 0 = v1x

+
2,1

u2x
+
1,1 = 0 = v2w1,1
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For any n ∈ N, let Υn be the path algebra of the following quiver

•

a+1
��

a−1
��

•

a+2
��

a−2
��

•

a+n
��

a−n
��

•

b+1
��

b−1

''

•

b+2
��

b−2

''

. . . •

b+n
��

b−n
oo•

c+1
��

c−1
��

•

c+2
��

c−2
��

. . . •

c+n
��

c−n
��

• • . . . •

modulo the relations

b±i a
∓
i = 0, c−i b

+
i = 0 and c+i+1b

−
i = 0 for 1 ≤ i ≤ n.

Since HH3(Υn) 6= 0, the algebra Υn can not be derived equivalent to any
algebra of the form Λ(~p, ~q,≈).
On the other hand, Db(Υn −mod) is equivalent to the derived category of
coherent sheaves an an appropriate non-commutative projective tame
nodal curve, whose central curve is a cycle of 2n projective lines.
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Derived tame algebras and non-commutative nodal curves

A datum (~p, ~q,≈) defines a finite dimensional algebra Λ, a tame
non-commutative nodal curve X and its Auslander nodal curve Y.

Db
(
Coh(X)

)
Db
(
Coh(Y)

)Poooo T // Db(Λ−mod)

Perf(X)
� ?

E

OO

5 UI

gg

All categories in the above diagram are representation tame.

If ~q is void then Λ is skew-gentle.

Moreover, if there are no reflexive points wrt. ≈ then Λ is gentle.

The obtained results were used by Polishchuk and Lekili to establish
the homological mirror symmetry for compact Riemann surfaces with
non-empty marked boundary.

Tame non-commutative nodal curves recently appeared in a work of
Polishchuk on trigonometric solutions of the associative Yang–Baxter
equation.
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Happy Birthday, Bill!
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