Tame non-commutative nodal curves and related finite dimensional algebras

Igor Burban

University of Paderborn, Germany

A conference in celebration of the work of Bill Crawley-Boevey September 9, 2021

Let $E_{\lambda} := \overline{V(y^2 - x(x-1)(x-\lambda))} \subset \mathbb{P}^2$ be a family of plane cubics.

Let $E_{\lambda} := \overline{V(y^2 - x(x-1)(x-\lambda))} \subset \mathbb{P}^2$ be a family of plane cubics. Consider the involution $E_{\lambda} \xrightarrow{i} E_{\lambda}, (x, y) \mapsto (x, -y)$.

Let $E_{\lambda} := \overline{V(y^2 - x(x-1)(x-\lambda))} \subset \mathbb{P}^2$ be a family of plane cubics. Consider the involution $E_{\lambda} \xrightarrow{\imath} E_{\lambda}, (x, y) \mapsto (x, -y)$.

Theorem (Geigle & Lenzing, 1985)

If $\lambda \neq 0, 1$ then there exists an equivalence of triangulated categories

$$D^b(\operatorname{\mathsf{Coh}}^{\mathbb{Z}_2}(E_\lambda)) \longrightarrow D^b(T_\lambda - \operatorname{\mathsf{mod}})$$

Let $E_{\lambda} := \overline{V(y^2 - x(x-1)(x-\lambda))} \subset \mathbb{P}^2$ be a family of plane cubics. Consider the involution $E_{\lambda} \xrightarrow{i} E_{\lambda}, (x, y) \mapsto (x, -y)$.

Theorem (Geigle & Lenzing, 1985)

If $\lambda \neq 0, 1$ then there exists an equivalence of triangulated categories

$$D^b(\operatorname{Coh}^{\mathbb{Z}_2}(E_{\lambda})) \longrightarrow D^b(T_{\lambda} - \operatorname{mod})$$

where T_{λ} is the tubular algebra of Ringel of type $(2, 2, 2, 2; \lambda)$

•
$$E := E_0 = V(y^2 - x^2(x - 1))$$
 is singular:

• $E := E_0 = \overline{V(y^2 - x^2(x-1))}$ is singular: $\operatorname{gl.dim}(\operatorname{Coh}^{\mathbb{Z}_2}(E)) = \infty$.

- $E := E_0 = \overline{V(y^2 x^2(x-1))}$ is singular: $\operatorname{gl.dim}(\operatorname{Coh}^{\mathbb{Z}_2}(E)) = \infty$.
- For the degenerate tubular algebra $T := T_0$

 $\begin{array}{rcl} b_1 a_1 - b_2 a_2 &=& b_3 a_3 \\ b_1 a_1 &=& b_4 a_4 \end{array}$

we have: gl.dim(T - mod) = 2.

• $E := E_0 = \overline{V(y^2 - x^2(x-1))}$ is singular: $\operatorname{gl.dim}(\operatorname{Coh}^{\mathbb{Z}_2}(E)) = \infty$.

• For the degenerate tubular algebra $T := T_0$

we have: gl.dim(T - mod) = 2. • Hence, $D^b(Coh^{\mathbb{Z}_2}(E))$ and $D^b(T - mod)$ are not equivalent.

• $E := E_0 = \overline{V(y^2 - x^2(x-1))}$ is singular: $\operatorname{gl.dim}(\operatorname{Coh}^{\mathbb{Z}_2}(E)) = \infty$.

• For the degenerate tubular algebra $T := T_0$

we have: gl.dim(T - mod) = 2.

• Hence, $D^b(\operatorname{Coh}^{\mathbb{Z}_2}(E))$ and $D^b(T - \operatorname{mod})$ are not equivalent.

Question: What is a relation between $D^b(\operatorname{Coh}^{\mathbb{Z}_2}(E))$ and $D^b(T - \operatorname{mod})$?

There exists a commutative diagram of categories and functors

There exists a commutative diagram of categories and functors

• Perf^{\mathbb{Z}_2}(*E*) is the triangulated category of perfect objects of $D^b(\operatorname{Coh}^{\mathbb{Z}_2}(E))$ and I is the canonical inclusion.

There exists a commutative diagram of categories and functors

- Perf^{\mathbb{Z}_2}(*E*) is the triangulated category of perfect objects of $D^b(\operatorname{Coh}^{\mathbb{Z}_2}(E))$ and I is the canonical inclusion.
- J is fully faithful and P is a certain Verdier localization functor.

There exists a commutative diagram of categories and functors

- Perf^{\mathbb{Z}_2}(*E*) is the triangulated category of perfect objects of $D^b(\operatorname{Coh}^{\mathbb{Z}_2}(E))$ and I is the canonical inclusion.
- J is fully faithful and P is a certain Verdier localization functor.

First step of the proof. As $E/\mathbb{Z}_2 \cong \mathbb{P}^1$, we have: $\operatorname{Coh}^{\mathbb{Z}_2}(E) \simeq \operatorname{Coh}(\mathbb{E})$, where $\mathbb{E} := (\mathbb{P}^1, \mathcal{A})$ and $\mathcal{A} \subset Mat_2(\mathcal{O}_{\mathbb{P}^1})$ is a certain *sheaf of orders*.

Definition (Drozd, 1990)

Definition (Drozd, 1990)

A ring A is a nodal order if

• Its center R := Z(A) is reduced noetherian and semi-local.

Definition (Drozd, 1990)

- Its center R := Z(A) is reduced noetherian and semi-local.
- $R \subset A$ is finite, A is torsion free over R and $K \otimes_R A$ is semi-simple, where K = Quot(R)

Definition (Drozd, 1990)

- Its center R := Z(A) is reduced noetherian and semi-local.
- $R \subset A$ is finite, A is torsion free over R and $K \otimes_R A$ is semi-simple, where $K = \text{Quot}(R) \iff A$ is an order).

Definition (Drozd, 1990)

- Its center R := Z(A) is reduced noetherian and semi-local.
- $R \subset A$ is finite, A is torsion free over R and $K \otimes_R A$ is semi-simple, where $K = \text{Quot}(R) \iff A$ is an order).
- $H := \operatorname{End}_A(J)$ is hereditary, where $J = \operatorname{rad}(A)$

Definition (Drozd, 1990)

- Its center R := Z(A) is reduced noetherian and semi-local.
- $R \subset A$ is finite, A is torsion free over R and $K \otimes_R A$ is semi-simple, where $K = \text{Quot}(R) \iff A$ is an order).
- $H := \operatorname{End}_A(J)$ is hereditary, where $J = \operatorname{rad}(A) \iff \operatorname{kr.dim}(R) = 1$).

Definition (Drozd, 1990)

- Its center R := Z(A) is reduced noetherian and semi-local.
- $R \subset A$ is finite, A is torsion free over R and $K \otimes_R A$ is semi-simple, where $K = \text{Quot}(R) \iff A$ is an order).
- $H := \operatorname{End}_A(J)$ is hereditary, where $J = \operatorname{rad}(A) \iff \operatorname{kr.dim}(R) = 1$).
- We have: rad(H) = J and for any finitely generated simple left A-module S holds: $l_A(H \otimes_A S) \leq 2$.

Definition (Drozd, 1990)

A ring A is a nodal order if

- Its center R := Z(A) is reduced noetherian and semi-local.
- $R \subset A$ is finite, A is torsion free over R and $K \otimes_R A$ is semi-simple, where $K = \text{Quot}(R) \iff A$ is an order).
- $H := \operatorname{End}_A(J)$ is hereditary, where $J = \operatorname{rad}(A) \iff \operatorname{kr.dim}(R) = 1$).
- We have: rad(H) = J and for any finitely generated simple left A-module S holds: $l_A(H \otimes_A S) \leq 2$.

Example

The classical nodal ring $D := \mathbb{k} \llbracket x, y \rrbracket / (xy)$ is a nodal order.

Definition (Drozd, 1990)

A ring A is a nodal order if

- Its center R := Z(A) is reduced noetherian and semi-local.
- $R \subset A$ is finite, A is torsion free over R and $K \otimes_R A$ is semi-simple, where $K = \text{Quot}(R) \iff A$ is an order).
- $H := \operatorname{End}_A(J)$ is hereditary, where $J = \operatorname{rad}(A) \iff \operatorname{kr.dim}(R) = 1$).
- We have: rad(H) = J and for any finitely generated simple left A-module S holds: $l_A(H \otimes_A S) \leq 2$.

Example

The classical nodal ring $D := \mathbb{k} \llbracket x, y \rrbracket / (xy)$ is a nodal order. Indeed,

$$\bullet \ K:= \mathsf{Quot}(D) \cong \Bbbk(\!(x)\!) \times \Bbbk(\!(y)\!) \text{ and } J:= \mathsf{rad}(D) = (x,y).$$

Definition (Drozd, 1990)

A ring A is a *nodal order* if

- Its center R := Z(A) is reduced noetherian and semi-local.
- $R \subset A$ is finite, A is torsion free over R and $K \otimes_R A$ is semi-simple, where $K = \text{Quot}(R) \iff A$ is an order).
- $H := \operatorname{End}_A(J)$ is hereditary, where $J = \operatorname{rad}(A) \iff \operatorname{kr.dim}(R) = 1$).
- We have: rad(H) = J and for any finitely generated simple left A-module S holds: $l_A(H \otimes_A S) \leq 2$.

Example

The classical nodal ring $D := \mathbb{k} \llbracket x, y \rrbracket / (xy)$ is a nodal order. Indeed,

- $K := \operatorname{Quot}(D) \cong \Bbbk(\!(x)\!) \times \Bbbk(\!(y)\!)$ and $J := \operatorname{rad}(D) = (x, y)$.
- $\widetilde{D} := \operatorname{End}_D(J) \cong \Bbbk \llbracket x \rrbracket \times \Bbbk \llbracket y \rrbracket$ is hereditary and $\operatorname{rad}(D) = \operatorname{rad}(\widetilde{D})$.

Definition (Drozd, 1990)

A ring A is a *nodal order* if

- Its center R := Z(A) is reduced noetherian and semi-local.
- $R \subset A$ is finite, A is torsion free over R and $K \otimes_R A$ is semi-simple, where $K = \text{Quot}(R) \iff A$ is an order).
- $H := \operatorname{End}_A(J)$ is hereditary, where $J = \operatorname{rad}(A) \iff \operatorname{kr.dim}(R) = 1$).
- We have: rad(H) = J and for any finitely generated simple left A-module S holds: $l_A(H \otimes_A S) \leq 2$.

Example

The classical nodal ring $D := \Bbbk \llbracket x, y \rrbracket / (xy)$ is a nodal order. Indeed,

- $\bullet \ K:= \mathsf{Quot}(D) \cong \Bbbk(\!(x)\!) \times \Bbbk(\!(y)\!) \text{ and } J:= \mathsf{rad}(D) = (x,y).$
- $\widetilde{D} := \operatorname{End}_D(J) \cong \Bbbk\llbracket x \rrbracket \times \Bbbk\llbracket y \rrbracket$ is hereditary and $\operatorname{rad}(D) = \operatorname{rad}(\widetilde{D})$.
- $\widetilde{D} \otimes (D/J) \cong \widetilde{D}/J \cong \Bbbk \times \Bbbk$.

Example

Let $R = \mathbb{k} \llbracket t \rrbracket \supset \mathfrak{m} = (t)$.

Let
$$R = \mathbb{k}\llbracket t \rrbracket \supset \mathfrak{m} = (t)$$
. Then $A := \begin{pmatrix} R & \mathfrak{m} \\ \mathfrak{m} & R \end{pmatrix}$ is nodal.

Let
$$R = \mathbb{k}\llbracket t \rrbracket \supset \mathfrak{m} = (t)$$
. Then $A := \begin{pmatrix} R & \mathfrak{m} \\ \mathfrak{m} & R \end{pmatrix}$ is nodal. Indeed,
• $J := \operatorname{rad}(A) = \begin{pmatrix} \mathfrak{m} & \mathfrak{m} \\ \mathfrak{m} & \mathfrak{m} \end{pmatrix}$

Let
$$R = \mathbb{k}\llbracket t \rrbracket \supset \mathfrak{m} = (t)$$
. Then $A := \begin{pmatrix} R & \mathfrak{m} \\ \mathfrak{m} & R \end{pmatrix}$ is nodal. Indeed,
• $J := \operatorname{rad}(A) = \begin{pmatrix} \mathfrak{m} & \mathfrak{m} \\ \mathfrak{m} & \mathfrak{m} \end{pmatrix} = \operatorname{rad}(H) \subset H = \begin{pmatrix} R & R \\ R & R \end{pmatrix}$

Let
$$R = \mathbb{k}\llbracket t \rrbracket \supset \mathfrak{m} = (t)$$
. Then $A := \begin{pmatrix} R & \mathfrak{m} \\ \mathfrak{m} & R \end{pmatrix}$ is nodal. Indeed,
• $J := \operatorname{rad}(A) = \begin{pmatrix} \mathfrak{m} & \mathfrak{m} \\ \mathfrak{m} & \mathfrak{m} \end{pmatrix} = \operatorname{rad}(H) \subset H = \begin{pmatrix} R & R \\ R & R \end{pmatrix}$
• We have:
 $A/J \xrightarrow{\cong} \mathbb{k} \times \mathbb{k}$
 $H/J \xrightarrow{\cong} \operatorname{Mat}_2(\mathbb{k})$

Let
$$R = \mathbb{k}\llbracket t \rrbracket \supset \mathfrak{m} = (t)$$
. Then $A := \begin{pmatrix} R & \mathfrak{m} \\ \mathfrak{m} & R \end{pmatrix}$ is nodal. Indeed,
• $J := \operatorname{rad}(A) = \begin{pmatrix} \mathfrak{m} & \mathfrak{m} \\ \mathfrak{m} & \mathfrak{m} \end{pmatrix} = \operatorname{rad}(H) \subset H = \begin{pmatrix} R & R \\ R & R \end{pmatrix}$
• We have:
 $A/J \xrightarrow{\cong} \mathbb{k} \times \mathbb{k}$
• We have:
 $H/J \xrightarrow{\cong} \operatorname{Mat}_2(\mathbb{k})$
In particular, $H \otimes_A S_i \cong \begin{pmatrix} \mathbb{k} \\ \mathbb{k} \end{pmatrix}$ is two-dimensional for $i = 1, 2$.

Example

Let
$$R = \mathbb{k}\llbracket t \rrbracket \supset \mathfrak{m} = (t)$$
. Then $A := \begin{pmatrix} R & \mathfrak{m} \\ \mathfrak{m} & R \end{pmatrix}$ is nodal. Indeed,
• $J := \operatorname{rad}(A) = \begin{pmatrix} \mathfrak{m} & \mathfrak{m} \\ \mathfrak{m} & \mathfrak{m} \end{pmatrix} = \operatorname{rad}(H) \subset H = \begin{pmatrix} R & R \\ R & R \end{pmatrix}$
• We have:
 $A/J \xrightarrow{\cong} \mathbb{k} \times \mathbb{k}$
 $H/J \xrightarrow{\cong} \operatorname{Mat}_2(\mathbb{k})$
In particular, $H \otimes_A S_i \cong \begin{pmatrix} \mathbb{k} \\ \mathbb{k} \end{pmatrix}$ is two-dimensional for $i = 1, 2$.

Remark

In fact, $A \cong D * \mathbb{Z}_2$, where $D = \Bbbk \llbracket x, y \rrbracket / (xy)$ and \mathbb{Z}_2 acts on D by $x \leftrightarrow y$.

Igor Burban (Paderborn)
For any 0 < c < n such that gcd(n,c) = 1, consider the action of the cyclic group $G = \langle \rho \, \big| \, \rho^n = e \rangle$ on $D = \Bbbk \llbracket u, v \rrbracket / (uv)$, given by the rule

$$\begin{cases} \rho \circ u &= \zeta u \\ \rho \circ v &= \zeta^c v. \end{cases}$$

Then A := D * G is nodal.

For any 0 < c < n such that gcd(n,c) = 1, consider the action of the cyclic group $G = \langle \rho | \rho^n = e \rangle$ on D = k[[u,v]]/(uv), given by the rule

$$\begin{cases} \rho \circ u &= \zeta u \\ \rho \circ v &= \zeta^c v. \end{cases}$$

Then A := D * G is nodal. For example, for c = n - 1 we have:

modulo the relations $a_k b_k = 0 = b_k a_k$ for all $1 \le k \le n$.

Example (Gelfand order, Gelfand 1970)

$$A := \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & \mathfrak{m} \\ R & \mathfrak{m} & R \end{pmatrix}$$

Example (Gelfand order, Gelfand 1970)

$$A := \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & \mathfrak{m} \\ R & \mathfrak{m} & R \end{pmatrix} \subset H = \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & R \\ R & R & R \end{pmatrix}$$

Example (Gelfand order, Gelfand 1970)

$$A := \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & \mathfrak{m} \\ R & \mathfrak{m} & R \end{pmatrix} \ \subset H = \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & R \\ R & R & R \end{pmatrix} \stackrel{M}{\sim} \begin{pmatrix} R & \mathfrak{m} \\ R & R \end{pmatrix}.$$

Example (Gelfand order, Gelfand 1970)

$$A := \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & \mathfrak{m} \\ R & \mathfrak{m} & R \end{pmatrix} \subset H = \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & R \\ R & R & R \end{pmatrix} \overset{M}{\sim} \begin{pmatrix} R & \mathfrak{m} \\ R & R \end{pmatrix}.$$

 \boldsymbol{A} is isomorphic to the arrow ideal completion of the path algebra

Example (Gelfand order, Gelfand 1970)

$$A := \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & \mathfrak{m} \\ R & \mathfrak{m} & R \end{pmatrix} \subset H = \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & R \\ R & R & R \end{pmatrix} \overset{M}{\sim} \begin{pmatrix} R & \mathfrak{m} \\ R & R \end{pmatrix}.$$

A is isomorphic to the arrow ideal completion of the path algebra

$$-\underbrace{\overbrace{b_{-}}^{a_{-}}}_{b_{-}}\star\underbrace{\overbrace{b_{+}}^{a_{+}}}_{b_{+}}+ \qquad a_{+}b_{+}=a_{-}b_{-}$$

Example (Zhelobenko order, Zhelobenko 1958)

$$H := R \times \left(\begin{array}{cc} R & \mathfrak{m} \\ R & R \end{array} \right) \supset A := \left\{ \left(a, \left(\begin{array}{cc} b_{11} & b_{12} \\ b_{21} & b_{22} \end{array} \right) \right) \middle| a(0) = b_{11}(0) \right\}$$

Example (Gelfand order, Gelfand 1970)

$$A := \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & \mathfrak{m} \\ R & \mathfrak{m} & R \end{pmatrix} \subset H = \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & R \\ R & R & R \end{pmatrix} \overset{M}{\sim} \begin{pmatrix} R & \mathfrak{m} \\ R & R \end{pmatrix}.$$

A is isomorphic to the arrow ideal completion of the path algebra

$$-\underbrace{\overbrace{b_{-}}^{a_{-}}}_{b_{-}}\star\underbrace{\overbrace{b_{+}}^{a_{+}}}_{b_{+}}+ \qquad a_{+}b_{+}=a_{-}b_{-}$$

Example (Zhelobenko order, Zhelobenko 1958)

$$H := R \times \begin{pmatrix} R & \mathfrak{m} \\ R & R \end{pmatrix} \supset A := \left\{ \left(a, \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \right) \middle| a(0) = b_{11}(0) \right\}$$

A is the completion of $a \bigoplus \bullet \bigoplus c$ $b = 0, ac = 0.$

Igor Burban (Paderborn)

Example (Gelfand 1970, representations of $SL_2(\mathbb{R})$)

$$A := \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & \mathfrak{m} \\ R & \mathfrak{m} & R \end{pmatrix} \subset H = \begin{pmatrix} R & \mathfrak{m} & \mathfrak{m} \\ R & R & R \\ R & R & R \end{pmatrix} \overset{M}{\sim} \begin{pmatrix} R & \mathfrak{m} \\ R & R \end{pmatrix}.$$

 \boldsymbol{A} is isomorphic to the arrow ideal completion of the path algebra

$$-\underbrace{\overbrace{b_{-}}^{a_{-}}}_{b_{-}}\star\underbrace{\overbrace{b_{+}}^{a_{+}}}_{b_{+}}+ \qquad a_{+}b_{+}=a_{-}b_{-}$$

Example (Zhelobenko 1958, Gelfand & Ponomarev 1968, on $SL_2(\mathbb{C})$)

$$H := R \times \begin{pmatrix} R & \mathfrak{m} \\ R & R \end{pmatrix} \supset A := \left\{ \left(a, \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \right) \middle| a(0) = b_{11}(0) \right\}$$

A is the completion of $a \bigcirc \bullet \bigcirc \bullet$ $ba = 0, ac = 0.$

Igor Burban (Paderborn)

Let A be a non-hereditary order with a semi-local center.

Let A be a non-hereditary order with a semi-local center. Then

 $A - \mathsf{fImod} \text{ is tame } \iff A \text{ is nodal}$

Let A be a non-hereditary order with a semi-local center. Then

 $A - \mathsf{fImod} \text{ is tame } \iff A \text{ is nodal}$

Theorem (Burban & Drozd, 2002)

If A is a nodal order then $D^b(A - flmod)$ is tame.

Let A be a non-hereditary order with a semi-local center. Then

 $A - \mathsf{fImod} \text{ is tame } \iff A \text{ is nodal}$

Theorem (Burban & Drozd, 2002)

If A is a nodal order then $D^b(A - \mathsf{fImod})$ is tame.

Remark

• (Skew-)gentle algebras are finite dimensional versions of nodal orders.

Let A be a non-hereditary order with a semi-local center. Then

 $A - \mathsf{fImod} \text{ is tame } \iff A \text{ is nodal}$

Theorem (Burban & Drozd, 2002)

If A is a nodal order then $D^b(A - \mathsf{fImod})$ is tame.

Remark

- (Skew-)gentle algebras are finite dimensional versions of nodal orders.
- Nodal orders over $\mathbb{k} = \overline{\mathbb{k}}$ are completely classified (Drozd-Zembyk).

Let A be a non-hereditary order with a semi-local center. Then

 $A - \mathsf{fImod} \text{ is tame } \iff A \text{ is nodal}$

Theorem (Burban & Drozd, 2002)

If A is a nodal order then $D^b(A - \mathsf{fImod})$ is tame.

Remark

- (Skew-)gentle algebras are finite dimensional versions of nodal orders.
- Nodal orders over $\mathbb{k} = \overline{\mathbb{k}}$ are completely classified (Drozd-Zembyk).
- For $\mathbb{k} \neq \overline{\mathbb{k}}$, the picture becomes more involved as $Br(\mathbb{k}((t))) \neq 0$.

The Auslander order of a nodal order

Definition

Let A be a nodal order and $H = \operatorname{End}_A(J)$ be its hereditary cover.

Let A be a nodal order and $H = \text{End}_A(J)$ be its hereditary cover. Then

 $B \cong (\operatorname{End}_A(A \oplus H))^{\circ}$

is called *Auslander order* of *A*.

Let A be a nodal order and $H = End_A(J)$ be its hereditary cover. Then

 $B \cong (\operatorname{End}_A(A \oplus H))^{\circ}$

is called *Auslander order* of *A*.

Theorem

• We have: $Latt(A) = add(A \oplus H)$.

Let A be a nodal order and $H = End_A(J)$ be its hereditary cover. Then

 $B \cong (\operatorname{End}_A(A \oplus H))^{\circ}$

is called *Auslander order* of *A*.

Theorem

- We have: $Latt(A) = add(A \oplus H)$.
- The conductor ideal C := {h ∈ H | H · h ⊂ A} → Hom_A(H, A) is a two-sided ideal, both in H and A, containing their common radical J.

Let A be a nodal order and $H = End_A(J)$ be its hereditary cover. Then

 $B \cong (\operatorname{End}_A(A \oplus H))^{\circ}$

is called *Auslander order* of *A*.

Theorem

• We have:
$$Latt(A) = add(A \oplus H)$$
.

The conductor ideal C := {h ∈ H | H · h ⊂ A} → Hom_A(H, A) is a two-sided ideal, both in H and A, containing their common radical J.

• The order
$$B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$$
 is again nodal

Let A be a nodal order and $H = End_A(J)$ be its hereditary cover. Then

 $B \cong (\operatorname{End}_A(A \oplus H))^{\circ}$

is called *Auslander order* of *A*.

Theorem

• We have:
$$Latt(A) = add(A \oplus H)$$
.

The conductor ideal C := {h ∈ H | H · h ⊂ A} → Hom_A(H, A) is a two-sided ideal, both in H and A, containing their common radical J.

• The order
$$B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$$
 is again nodal and gl.dim $(B) = 2$.

Igor Burban (Paderborn)

Notation. A is a nodal order, H is its hereditary cover, $B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$.

Notation. A is a nodal order, H is its hereditary cover, $B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$.

Let
$$e := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in B$$
 and $P := Be = \begin{pmatrix} A \\ C \end{pmatrix}$. Then we have:

Notation. A is a nodal order, H is its hereditary cover, $B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$.

Let
$$e := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in B$$
 and $P := Be = \begin{pmatrix} A \\ C \end{pmatrix}$. Then we have:

Let
$$f := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$$
 and $Q := Bf = \begin{pmatrix} H \\ H \end{pmatrix}$.

Let
$$f := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$$
 and $Q := Bf = \begin{pmatrix} H \\ H \end{pmatrix}$.
 $(\operatorname{End}_B(Q))^{\circ} \cong H, \ BfB = \begin{pmatrix} C & H \\ C & H \end{pmatrix}, \ B/BfB \cong A/C =: \overline{A}.$

Let
$$f := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$$
 and $Q := Bf = \begin{pmatrix} H \\ H \end{pmatrix}$.
 $(\operatorname{End}_B(Q))^{\circ} \cong H, \ BfB = \begin{pmatrix} C & H \\ C & H \end{pmatrix}, \ B/BfB \cong A/C =: \overline{A}.$

Then we have a recollement diagram (after Parshall, Cline and Scott):

Let
$$f := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$$
 and $Q := Bf = \begin{pmatrix} H \\ H \end{pmatrix}$.
 $(\operatorname{End}_B(Q))^{\circ} \cong H, \ BfB = \begin{pmatrix} C & H \\ C & H \end{pmatrix}, \ B/BfB \cong A/C =: \overline{A}.$

Then we have a recollement diagram (after Parshall, Cline and Scott):

$$D^{b}(\bar{A} - \operatorname{mod}) \xrightarrow[J^{*}]{} D^{b}(B - \operatorname{mod}) \xrightarrow[R]{} D^{G} \xrightarrow{} D^{b}(H - \operatorname{mod})$$

where $\mathsf{G} = \operatorname{Hom}_B(Q, -)$, $\mathsf{F} = Q \otimes_H$ -, $\mathsf{H} = \operatorname{Hom}_H(Q^{\vee}, -)$ and

$$0 \longrightarrow \left(\begin{array}{c} C \\ C \end{array} \right) \longrightarrow \left(\begin{array}{c} A \\ C \end{array} \right) \longrightarrow \mathsf{J}(\bar{A}) \longrightarrow 0.$$

Nodal orders: Summary

Nodal orders: Summary

• Nodal orders are non-commutative generalizations of $\mathbb{k}[[x, y]]/(xy)$.
- Nodal orders are non-commutative generalizations of $\mathbb{k}[[x, y]]/(xy)$.
- They are derived-tame.

- Nodal orders are non-commutative generalizations of $\mathbb{k}[[x, y]]/(xy)$.
- They are derived-tame.
- To any nodal order A, one can canonically attach

- Nodal orders are non-commutative generalizations of $\mathbb{k}[[x, y]]/(xy)$.
- They are derived-tame.
- To any nodal order A, one can canonically attach
 - its hereditary cover $H = \operatorname{End}_A(\operatorname{rad}(A))$,

- Nodal orders are non-commutative generalizations of $\mathbb{k}[[x, y]]/(xy)$.
- They are derived-tame.
- To any nodal order A, one can canonically attach
 - its hereditary cover $H = \operatorname{End}_A(\operatorname{rad}(A))$,
 - a semi-simple quotient $\overline{A} = A/C$, where $C = \operatorname{Hom}_A(H, A)$,

- Nodal orders are non-commutative generalizations of k[[x, y]]/(xy).
- They are derived-tame.
- To any nodal order A, one can canonically attach
 - its hereditary cover $H = \operatorname{End}_A(\operatorname{rad}(A))$,
 - a semi-simple quotient $\overline{A} = A/C$, where $C = \operatorname{Hom}_A(H, A)$,

• its Auslander order
$$B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$$
.

- Nodal orders are non-commutative generalizations of k[[x, y]]/(xy).
- They are derived-tame.
- To any nodal order A, one can canonically attach
 - its hereditary cover $H = \operatorname{End}_A(\operatorname{rad}(A))$,
 - a semi-simple quotient $\overline{A} = A/C$, where $C = \operatorname{Hom}_A(H, A)$,

• its Auslander order
$$B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$$
.

$$\begin{split} \mathsf{Perf}(A) & \xleftarrow{\mathsf{E}} D^b(B - \operatorname{\mathsf{mod}}) \xleftarrow{=} \left\langle D^b(\bar{A} - \operatorname{\mathsf{mod}}), \ D^b(H - \operatorname{\mathsf{mod}}) \right\rangle \\ & \swarrow \\ & \swarrow \\ D^b(A - \operatorname{\mathsf{mod}}) \end{split}$$

- Nodal orders are non-commutative generalizations of k[[x, y]]/(xy).
- They are derived-tame.
- To any nodal order A, one can canonically attach
 - its hereditary cover $H = \operatorname{End}_A(\operatorname{rad}(A))$,
 - a semi-simple quotient $\overline{A} = A/C$, where $C = \operatorname{Hom}_A(H, A)$,

• its Auslander order
$$B = \begin{pmatrix} A & H \\ C & H \end{pmatrix}$$

$$\begin{split} \mathsf{Perf}(A) & \xleftarrow{\mathsf{E}} D^b(B - \mathsf{mod}) \lessdot \overset{=}{\longleftarrow} \left\langle D^b(\bar{A} - \mathsf{mod}), \ D^b(H - \mathsf{mod}) \right\rangle \\ & \swarrow \\ & \swarrow \\ D^b(A - \mathsf{mod}) \end{split}$$

• Global version of nodal orders: non-commutative nodal projective curves.

Definition

Definition

A non-commutative curve is a ringed space $\mathbb{X} = (X, \mathcal{A})$, where

• X is a reduced quasi-projective curve over a field \Bbbk .

Definition

- X is a reduced quasi-projective curve over a field \Bbbk .
- \mathcal{A} is a sheaf of orders on X.

Definition

- X is a reduced quasi-projective curve over a field \Bbbk .
- \mathcal{A} is a sheaf of orders on X.
- X is *nodal* if A_p is hereditary/nodal for all $p \in X$.

Definition

- X is a reduced quasi-projective curve over a field \Bbbk .
- \mathcal{A} is a sheaf of orders on X.
- X is *nodal* if A_p is hereditary/nodal for all $p \in X$.
- We usually assume that $Z(\mathcal{A}_p) = \mathcal{O}_p$ for all $p \in X$.

Definition

- X is a reduced quasi-projective curve over a field \Bbbk .
- \mathcal{A} is a sheaf of orders on X.
- X is *nodal* if A_p is hereditary/nodal for all $p \in X$.
- We usually assume that $Z(\mathcal{A}_p) = \mathcal{O}_p$ for all $p \in X$.
- X is projective if X is projective and rational if X is rational.

Definition

A non-commutative curve is a ringed space $\mathbb{X} = (X, \mathcal{A})$, where

- X is a reduced quasi-projective curve over a field \Bbbk .
- \mathcal{A} is a sheaf of orders on X.
- X is *nodal* if A_p is hereditary/nodal for all $p \in X$.
- We usually assume that $Z(\mathcal{A}_p) = \mathcal{O}_p$ for all $p \in X$.
- X is *projective* if X is projective and *rational* if X is rational.

Remark

Let X be an irreducible projective curve over $\mathbb{k} = \overline{\mathbb{k}}$.

Definition

A non-commutative curve is a ringed space $\mathbb{X} = (X, \mathcal{A})$, where

- X is a reduced quasi-projective curve over a field \Bbbk .
- \mathcal{A} is a sheaf of orders on X.
- X is *nodal* if A_p is hereditary/nodal for all $p \in X$.
- We usually assume that $Z(\mathcal{A}_p) = \mathcal{O}_p$ for all $p \in X$.
- X is *projective* if X is projective and *rational* if X is rational.

Remark

Let X be an irreducible projective curve over $\mathbb{k} = \overline{\mathbb{k}}$. Since $Br(\mathbb{k}(X)) = 0$, we have:

$$\Gamma(X, \mathcal{K} \otimes_{\mathcal{O}} \mathcal{A}) \cong \operatorname{Mat}_n(\Bbbk(X))$$

for some $n \in \mathbb{N}$.

To any sheaf of nodal orders ${\mathcal A}$ on a reduced curve X one can attach:

To any sheaf of nodal orders \mathcal{A} on a reduced curve X one can attach: • its hereditary cover $\mathcal{H} := End_{\mathcal{A}}(\mathcal{I})$, where $\mathcal{I} \subset \mathcal{A}$ is such that

To any sheaf of nodal orders ${\mathcal A}$ on a reduced curve X one can attach:

• its hereditary cover $\mathcal{H} := End_{\mathcal{A}}(\mathcal{I})$, where $\mathcal{I} \subset \mathcal{A}$ is such that

• $\mathcal{I}_p = \mathcal{A}_p$ if p is a hereditary point.

To any sheaf of nodal orders \mathcal{A} on a reduced curve X one can attach:

- its hereditary cover $\mathcal{H} := End_{\mathcal{A}}(\mathcal{I})$, where $\mathcal{I} \subset \mathcal{A}$ is such that
 - $\mathcal{I}_p = \mathcal{A}_p$ if p is a hereditary point.
 - $\mathcal{I}_p = \operatorname{rad}(\mathcal{A}_p)$ if p is not hereditary.

To any sheaf of nodal orders ${\cal A}$ on a reduced curve X one can attach:

- its hereditary cover $\mathcal{H} := End_{\mathcal{A}}(\mathcal{I})$, where $\mathcal{I} \subset \mathcal{A}$ is such that
 - $\mathcal{I}_p = \mathcal{A}_p$ if p is a hereditary point.
 - $\mathcal{I}_p = \operatorname{rad}(\mathcal{A}_p)$ if p is not hereditary.

• The Auslander order
$$\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$$
, where $\mathcal{C} = Hom_{\mathcal{A}}(\mathcal{H}, \mathcal{A})$.

To any sheaf of nodal orders ${\mathcal A}$ on a reduced curve X one can attach:

- its hereditary cover $\mathcal{H} := End_{\mathcal{A}}(\mathcal{I})$, where $\mathcal{I} \subset \mathcal{A}$ is such that
 - $\mathcal{I}_p = \mathcal{A}_p$ if p is a hereditary point.
 - $\mathcal{I}_p = \operatorname{rad}(\mathcal{A}_p)$ if p is not hereditary.
- The Auslander order $\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$, where $\mathcal{C} = Hom_{\mathcal{A}}(\mathcal{H}, \mathcal{A})$.
- A semi-simple algebra $\overline{A} := \Gamma(X, \overline{A})$, where $\overline{A} = A/C$.

To any sheaf of nodal orders ${\cal A}$ on a reduced curve X one can attach:

- its hereditary cover $\mathcal{H} := End_{\mathcal{A}}(\mathcal{I})$, where $\mathcal{I} \subset \mathcal{A}$ is such that
 - $\mathcal{I}_p = \mathcal{A}_p$ if p is a hereditary point.
 - $\mathcal{I}_p = \operatorname{rad}(\mathcal{A}_p)$ if p is not hereditary.

• The Auslander order $\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$, where $\mathcal{C} = Hom_{\mathcal{A}}(\mathcal{H}, \mathcal{A})$.

• A semi-simple algebra $\bar{A} := \Gamma(X, \bar{A})$, where $\bar{A} = \mathcal{A}/\mathcal{C}_{\sim}$

Let $\mathbb{X} = (X, \mathcal{A})$ be a non-commutative nodal curve, $\widetilde{\mathbb{X}} = (\widetilde{X}, \mathcal{H}) \longrightarrow \mathbb{X}$ be its hereditary cover and $\mathbb{Y} = (X, \mathcal{A})$ be its Auslander curve.

To any sheaf of nodal orders ${\cal A}$ on a reduced curve X one can attach:

- its hereditary cover $\mathcal{H} := End_{\mathcal{A}}(\mathcal{I})$, where $\mathcal{I} \subset \mathcal{A}$ is such that
 - $\mathcal{I}_p = \mathcal{A}_p$ if p is a hereditary point.
 - $\mathcal{I}_p = \operatorname{rad}(\mathcal{A}_p)$ if p is not hereditary.
- The Auslander order $\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$, where $\mathcal{C} = Hom_{\mathcal{A}}(\mathcal{H}, \mathcal{A})$.
- A semi-simple algebra $\overline{A} := \Gamma(X, \overline{A})$, where $\overline{A} = \mathcal{A}/\mathcal{C}_{\sim}$

Let $\mathbb{X} = (X, \mathcal{A})$ be a non-commutative nodal curve, $\widetilde{\mathbb{X}} = (\widetilde{X}, \mathcal{H}) \longrightarrow \mathbb{X}$ be its hereditary cover and $\mathbb{Y} = (X, \mathcal{A})$ be its Auslander curve. Then we have:

$$\operatorname{Perf}(\mathbb{X}) \xrightarrow{\mathsf{E}} D^{b} \left(\operatorname{Coh}(\mathbb{Y}) \right) \xleftarrow{=} \left\langle D^{b} (\bar{A} - \operatorname{mod}), D^{b} \left(\operatorname{Coh}(\widetilde{\mathbb{X}}) \right) \right\rangle$$

To any sheaf of nodal orders ${\cal A}$ on a reduced curve X one can attach:

- its hereditary cover $\mathcal{H} := End_{\mathcal{A}}(\mathcal{I})$, where $\mathcal{I} \subset \mathcal{A}$ is such that
 - $\mathcal{I}_p = \mathcal{A}_p$ if p is a hereditary point.
 - $\mathcal{I}_p = \operatorname{rad}(\mathcal{A}_p)$ if p is not hereditary.
- The Auslander order $\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$, where $\mathcal{C} = Hom_{\mathcal{A}}(\mathcal{H}, \mathcal{A})$.
- A semi-simple algebra $\overline{A} := \Gamma(X, \overline{A})$, where $\overline{A} = \mathcal{A}/\mathcal{C}$.

Let $\mathbb{X} = (X, \mathcal{A})$ be a non-commutative nodal curve, $\mathbb{X} = (X, \mathcal{H}) \longrightarrow \mathbb{X}$ be its hereditary cover and $\mathbb{Y} = (X, \mathcal{A})$ be its Auslander curve. Then we have:

$$\operatorname{Perf}(\mathbb{X}) \underbrace{\overset{\mathsf{E}}{\longrightarrow} D^{b} (\operatorname{Coh}(\mathbb{Y}))}_{\mathsf{I}} \underbrace{\overset{=}{\longrightarrow}}_{D^{b} (\operatorname{Coh}(\mathbb{X}))} \left\langle \begin{array}{c} D^{b} (\operatorname{Coh}(\mathbb{X})) \\ P \\ D^{b} (\operatorname{Coh}(\mathbb{X})) \end{array} \right\rangle$$

Observation. If X is projective and rational then $D^b(Coh(\overline{X}))$ and $D^b(Coh(\mathbb{Y}))$ have tilting objects!

Igor Burban (Paderborn)

Geigle-Lenzing tilting for weighted projective lines

Geigle-Lenzing tilting for weighted projective lines

Fact: A rational hereditary curve $\widetilde{\mathbb{X}} = (\mathbb{P}^1, \mathcal{H})$ (a weighted projective line) is specified by its ramification points $(\lambda_1 : \mu_1), \ldots, (\lambda_r : \mu_r) \in \mathbb{P}^1$ and the corresponding weights $l_1, \ldots, l_r \in \mathbb{N}$.

Geigle-Lenzing tilting for weighted projective lines

Fact: A rational hereditary curve $\widetilde{\mathbb{X}} = (\mathbb{P}^1, \mathcal{H})$ (a weighted projective line) is specified by its ramification points $(\lambda_1 : \mu_1), \ldots, (\lambda_r : \mu_r) \in \mathbb{P}^1$ and the corresponding weights $l_1, \ldots, l_r \in \mathbb{N}$.

Theorem (Geigle & Lenzing, 1985)

 $D^b(\mathsf{Coh}(\widetilde{\mathbb{X}})) \simeq D^b(\Gamma - \mathsf{mod})$, where Γ is the path algebra of

17 / 31

Let $\mathbb{X} = (X, \mathcal{A})$ be a rational projective nodal curve and $\mathbb{Y} = (X, \mathcal{B})$ be its Auslander curve, where $\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$.

Let $\mathbb{X} = (X, \mathcal{A})$ be a rational projective nodal curve and $\mathbb{Y} = (X, \mathcal{B})$ be its Auslander curve, where $\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$.

Theorem (Burban & Drozd, 2018)

Let \mathcal{E} be the GL tilting bundle on $\widetilde{\mathbb{X}} = (\widetilde{X}, \mathcal{H})$

Let $\mathbb{X} = (X, \mathcal{A})$ be a rational projective nodal curve and $\mathbb{Y} = (X, \mathcal{B})$ be its Auslander curve, where $\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$.

Theorem (Burban & Drozd, 2018)

Let \mathcal{E} be the GL tilting bundle on $\widetilde{\mathbb{X}} = (\widetilde{X}, \mathcal{H})$ and $\mathcal{S} \in \mathsf{Tor}(\mathbb{X})$ be given by

$$0 \longrightarrow \begin{pmatrix} \mathcal{C} \\ \mathcal{C} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{A} \\ \mathcal{C} \end{pmatrix} \longrightarrow \mathcal{S} \longrightarrow 0.$$

Let $\mathbb{X} = (X, \mathcal{A})$ be a rational projective nodal curve and $\mathbb{Y} = (X, \mathcal{B})$ be its Auslander curve, where $\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$.

Theorem (Burban & Drozd, 2018)

Let \mathcal{E} be the GL tilting bundle on $\widetilde{\mathbb{X}} = (\widetilde{X}, \mathcal{H})$ and $\mathcal{S} \in \mathsf{Tor}(\mathbb{X})$ be given by

$$0 \longrightarrow \begin{pmatrix} \mathcal{C} \\ \mathcal{C} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{A} \\ \mathcal{C} \end{pmatrix} \longrightarrow \mathcal{S} \longrightarrow 0.$$

Then $\mathcal{X} := \mathcal{S}[-1] \oplus \begin{pmatrix} \mathcal{E} \\ \mathcal{E} \end{pmatrix}$ is a tilting object in $D^b(\mathsf{Coh}(\mathbb{Y}))$.

Let $\mathbb{X} = (X, \mathcal{A})$ be a rational projective nodal curve and $\mathbb{Y} = (X, \mathcal{B})$ be its Auslander curve, where $\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$.

Theorem (Burban & Drozd, 2018)

Let \mathcal{E} be the GL tilting bundle on $\widetilde{\mathbb{X}} = (\widetilde{X}, \mathcal{H})$ and $\mathcal{S} \in \mathsf{Tor}(\mathbb{X})$ be given by

$$0 \longrightarrow \begin{pmatrix} \mathcal{C} \\ \mathcal{C} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{A} \\ \mathcal{C} \end{pmatrix} \longrightarrow \mathcal{S} \longrightarrow 0.$$

Then $\mathcal{X} := \mathcal{S}[-1] \oplus \begin{pmatrix} \mathcal{E} \\ \mathcal{E} \end{pmatrix}$ is a tilting object in $D^b(\mathsf{Coh}(\mathbb{Y}))$. Hence,

$$D^b(\mathsf{Coh}(\mathbb{Y})) \simeq D^b(\Lambda - \mathsf{mod}),$$

where $\Lambda = (\operatorname{End}_{D^b(\mathbb{Y})}(\mathcal{X}))^{\circ}$.

Let $\mathbb{X} = (X, \mathcal{A})$ be a rational projective nodal curve and $\mathbb{Y} = (X, \mathcal{B})$ be its Auslander curve, where $\mathcal{B} = \begin{pmatrix} \mathcal{A} & \mathcal{H} \\ \mathcal{C} & \mathcal{H} \end{pmatrix}$.

Theorem (Burban & Drozd, 2018)

Let \mathcal{E} be the GL tilting bundle on $\widetilde{\mathbb{X}} = (\widetilde{X}, \mathcal{H})$ and $\mathcal{S} \in \mathsf{Tor}(\mathbb{X})$ be given by

$$0 \longrightarrow \begin{pmatrix} \mathcal{C} \\ \mathcal{C} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{A} \\ \mathcal{C} \end{pmatrix} \longrightarrow \mathcal{S} \longrightarrow 0.$$

Then $\mathcal{X} := \mathcal{S}[-1] \oplus \begin{pmatrix} \mathcal{E} \\ \mathcal{E} \end{pmatrix}$ is a tilting object in $D^b(\mathsf{Coh}(\mathbb{Y}))$. Hence,

$$D^b\big(\mathsf{Coh}(\mathbb{Y})\big)\simeq D^b(\Lambda-\mathsf{mod}),$$

where $\Lambda = (\operatorname{End}_{D^b(\mathbb{Y})}(\mathcal{X}))^{\circ}$. Moreover, $\operatorname{gl.dim}(\Lambda) = 2$.
Summary.

Summary. Let X be a rational projective non-commutative nodal curve, \widetilde{X} be its hereditary cover and Y be its Auslander curve.

• I, E, \widetilde{E} are fully faithful.

- I, E, \tilde{E} are fully faithful.
- P is a Verdier localization and T is an exact equivalence.

- I, E, \tilde{E} are fully faithful.
- P is a Verdier localization and T is an exact equivalence.
- $\operatorname{gl.dim}(\operatorname{Coh}(\mathbb{Y})) = 2 = \operatorname{gl.dim}(\Lambda).$

- I, E, \tilde{E} are fully faithful.
- P is a Verdier localization and T is an exact equivalence.
- $\operatorname{gl.dim}(\operatorname{Coh}(\mathbb{Y})) = 2 = \operatorname{gl.dim}(\Lambda).$

Fact. Let Γ be a finite dimensional \Bbbk -algebra for which there exists a non-commutative projective curve T such that

$$D^b(\Gamma - \operatorname{mod}) \simeq D^b(\operatorname{Coh}(\mathbb{T})).$$

- I, E, \tilde{E} are fully faithful.
- P is a Verdier localization and T is an exact equivalence.
- $\operatorname{gl.dim}(\operatorname{Coh}(\mathbb{Y})) = 2 = \operatorname{gl.dim}(\Lambda).$

Fact. Let Γ be a finite dimensional \Bbbk -algebra for which there exists a non-commutative projective curve T such that

$$D^b(\Gamma - \operatorname{mod}) \simeq D^b(\operatorname{Coh}(\mathbb{T})).$$

If Γ is derived tame then $\mathbb T$ is a tame projective rational nodal curve.

Let
$$r, s \in \mathbb{N}_0$$
 and
 $\vec{p} = \left((p_1^+, p_1^-), \dots, (p_r^+, p_r^-) \right) \in \left(\mathbb{N}^2 \right)^r$ and $\vec{q} = (q_1, \dots, q_s) \in \mathbb{N}^s$.

Let $r, s \in \mathbb{N}_0$ and $\vec{p} = \left((p_1^+, p_1^-), \dots, (p_r^+, p_r^-)\right) \in \left(\mathbb{N}^2\right)^r$ and $\vec{q} = (q_1, \dots, q_s) \in \mathbb{N}^s$. For any $1 \le i \le r$ and $1 \le j \le s$, consider the following sets: $\Xi_i^{\pm} := \left\{x_{i,1}^{\pm}, \dots, x_{i,p_{\cdot}^{\pm}}^{\pm}\right\}$ and $\Xi_j^{\circ} := \left\{w_{j,1}, \dots, w_{j,q_j}\right\}$.

Let $r, s \in \mathbb{N}_0$ and $\vec{p} = ((p_1^+, p_1^-), \dots, (p_r^+, p_r^-)) \in (\mathbb{N}^2)^r$ and $\vec{q} = (q_1, \dots, q_s) \in \mathbb{N}^s$.

For any $1 \le i \le r$ and $1 \le j \le s$, consider the following sets:

$$\Xi_i^{\pm} := \{ x_{i,1}^{\pm}, \dots, x_{i,p_i^{\pm}}^{\pm} \} \text{ and } \Xi_j^{\circ} := \{ w_{j,1}, \dots, w_{j,q_j} \}.$$

Let \approx be a relation (i.e. \approx is symmetric, transitive, but not necessarily reflexive) on the set $\Xi := ((\Xi_1^+ \cup \Xi_1^-) \cup \cdots \cup (\Xi_r^+ \cup \Xi_r^-)) \cup (\Xi_1^\circ \cup \cdots \cup \Xi_s^\circ)$ such that for any $\xi \in \Xi$, there exists at most one $\xi' \in \Xi$ such that $\xi \approx \xi'$.

Let $r, s \in \mathbb{N}_0$ and $\vec{p} = \left((p_1^+, p_1^-), \dots, (p_r^+, p_r^-)\right) \in (\mathbb{N}^2)^r$ and $\vec{q} = (q_1, \dots, q_s) \in \mathbb{N}^s$. For any $1 \le i \le r$ and $1 \le j \le s$, consider the following sets:

$$\Xi_i^{\pm} := \left\{ x_{i,1}^{\pm}, \dots, x_{i,p_i^{\pm}}^{\pm} \right\} \text{ and } \Xi_j^{\circ} := \left\{ w_{j,1}, \dots, w_{j,q_j} \right\}.$$

Let \approx be a relation (i.e. \approx is symmetric, transitive, but not necessarily reflexive) on the set $\Xi := ((\Xi_1^+ \cup \Xi_1^-) \cup \cdots \cup (\Xi_r^+ \cup \Xi_r^-)) \cup (\Xi_1^\circ \cup \cdots \cup \Xi_s^\circ)$ such that for any $\xi \in \Xi$, there exists at most one $\xi' \in \Xi$ such that $\xi \approx \xi'$.

Theorem (Drozd-Voloshyn 2013, Burban-Drozd 2021)

Up to a Morita equivalence, tame non-commutative nodal curves are parameterized by the data $(\Xi(\vec{p}, \vec{q}), \approx)$.

Let $r, s \in \mathbb{N}_0$ and $\vec{p} = ((p_1^+, p_1^-), \dots, (p_r^+, p_r^-)) \in (\mathbb{N}^2)^r$ and $\vec{q} = (q_1, \dots, q_s) \in \mathbb{N}^s$. For any $1 \le i \le r$ and $1 \le j \le s$, consider the following sets:

$$\Xi_i^{\pm} := \{ x_{i,1}^{\pm}, \dots, x_{i,p_i^{\pm}}^{\pm} \} \text{ and } \Xi_j^{\circ} := \{ w_{j,1}, \dots, w_{j,q_j} \}.$$

Let \approx be a relation (i.e. \approx is symmetric, transitive, but not necessarily reflexive) on the set $\Xi := ((\Xi_1^+ \cup \Xi_1^-) \cup \cdots \cup (\Xi_r^+ \cup \Xi_r^-)) \cup (\Xi_1^\circ \cup \cdots \cup \Xi_s^\circ)$ such that for any $\xi \in \Xi$, there exists at most one $\xi' \in \Xi$ such that $\xi \approx \xi'$.

Theorem (Drozd-Voloshyn 2013, Burban-Drozd 2021)

Up to a Morita equivalence, tame non-commutative nodal curves are parameterized by the data $(\Xi(\vec{p},\vec{q}),\approx)$.

Remark

Stacky chains/cycles of projective lines of are special classes of non-commutative tame nodal curves.

Igor Burban (Paderborn)

Tame nodal curves and derived-tame algebras

Let $(\vec{p},\vec{q},\approx)$ be a datum defining a tame non-commutative nodal curve.

Let $(\vec{p}, \vec{q}, \approx)$ be a datum defining a tame non-commutative nodal curve.

Coming next: explicit description of derived-tame algebras $\Lambda(\vec{p}, \vec{q}, \approx)$.

Let
$$\vec{p} = \left((p_1^+, p_1^-), \dots, (p_r^+, p_r^-)\right) \in \left(\mathbb{N}^2\right)^r$$
 and $\vec{q} = (q_1, \dots, q_s) \in \mathbb{N}^s$.

Let
$$\vec{p} = ((p_1^+, p_1^-), \dots, (p_r^+, p_r^-)) \in (\mathbb{N}^2)^r$$
 and $\vec{q} = (q_1, \dots, q_s) \in \mathbb{N}^s$.

Let
$$\vec{p} = ((p_1^+, p_1^-), \dots, (p_r^+, p_r^-)) \in (\mathbb{N}^2)^r$$
 and $\vec{q} = (q_1, \dots, q_s) \in \mathbb{N}^s$.

pprox is a symmetric (but not necessarily reflexive) relation on the set

$$\Xi := \left\{ x_{i,k}^{\pm} \middle| 1 \le i \le r, 1 \le k \le p_i^{\pm} \right\} \cup \left\{ w_{j,l}^{\pm} \middle| 1 \le j \le s, 1 \le l \le q_j \right\}.$$

pprox is a symmetric (but not necessarily reflexive) relation on the set

$$\Xi := \left\{ x_{i,k}^{\pm} \middle| 1 \le i \le r, 1 \le k \le p_i^{\pm} \right\} \cup \left\{ w_{j,l}^{\pm} \middle| 1 \le j \le s, 1 \le l \le q_j \right\}.$$

The algebra $\Lambda(\vec{p},\vec{q},\approx)$ is obtained from

$$(\Gamma(p_1^+, p_1^-) \times \cdots \times \Gamma(p_r^+, p_r^-)) \times (\Gamma(2, 2, q_1) \times \cdots \times \Gamma(2, 2, q_s))$$

by the following procedure of adding new vertices and arrows.

pprox is a symmetric (but not necessarily reflexive) relation on the set

$$\Xi := \left\{ x_{i,k}^{\pm} \middle| 1 \le i \le r, 1 \le k \le p_i^{\pm} \right\} \cup \left\{ w_{j,l}^{\pm} \middle| 1 \le j \le s, 1 \le l \le q_j \right\}.$$

The algebra $\Lambda(\vec{p},\vec{q},pprox)$ is obtained from

$$(\Gamma(p_1^+, p_1^-) \times \cdots \times \Gamma(p_r^+, p_r^-)) \times (\Gamma(2, 2, q_1) \times \cdots \times \Gamma(2, 2, q_s))$$

by the following procedure of adding new vertices and arrows. **Case 1**. Let $\varrho' \neq \varrho'' \in \Xi$ be such that $\varrho' \approx \varrho''$

$$\circ \xrightarrow{\varrho'} \circ$$

$$\circ \xrightarrow{\varrho''} \circ$$

pprox is a symmetric (but not necessarily reflexive) relation on the set

$$\Xi := \left\{ x_{i,j}^{\pm} \middle| 1 \le i \le r, 1 \le j \le p_i^{\pm} \right\} \cup \left\{ w_{i,j}^{\pm} \middle| 1 \le i \le s, 1 \le j \le q_j \right\}.$$

The algebra $\Lambda(\vec{p},\vec{q},\approx)$ is obtained from

$$(\Gamma(p_1^+, p_1^-) \times \cdots \times \Gamma(p_r^+, p_r^-)) \times (\Gamma(2, 2, q_1) \times \cdots \times \Gamma(2, 2, q_s))$$

by the following procedure of adding new vertices and arrows. **Case 1**. Let $\varrho' \neq \varrho'' \in \Xi$ be such that $\varrho' \approx \varrho''$

pprox is a symmetric (but not necessarily reflexive) relation on the set

$$\Xi := \left\{ x_{i,j}^{\pm} \middle| 1 \le i \le r, 1 \le j \le p_i^{\pm} \right\} \cup \left\{ w_{i,j}^{\pm} \middle| 1 \le i \le s, 1 \le j \le q_j \right\}.$$

The algebra $\Lambda(\vec{p},\vec{q},\approx)$ is obtained from

$$(\Gamma(p_1^+, p_1^-) \times \cdots \times \Gamma(p_r^+, p_r^-)) \times (\Gamma(2, 2, q_1) \times \cdots \times \Gamma(2, 2, q_s))$$

by the following procedure of adding new vertices and arrows. Case 2. For any $\rho \in \Xi$ such that $\rho \approx \rho$:

$$\circ \xrightarrow{\varrho} \circ$$

pprox is a symmetric (but not necessarily reflexive) relation on the set

$$\Xi := \left\{ x_{i,j}^{\pm} \middle| 1 \le i \le r, 1 \le j \le p_i^{\pm} \right\} \cup \left\{ w_{i,j}^{\pm} \middle| 1 \le i \le s, 1 \le j \le q_j \right\}.$$

The algebra $\Lambda(\vec{p},\vec{q},\approx)$ is obtained from

$$(\Gamma(p_1^+, p_1^-) \times \cdots \times \Gamma(p_r^+, p_r^-)) \times (\Gamma(2, 2, q_1) \times \cdots \times \Gamma(2, 2, q_s))$$

by the procedure of adding new vertices and arrows. Case 2. For any $\rho \in \Xi$ such that $\rho \approx \rho$:

Example. Let $\vec{p} = (3,2)$, \vec{q} be void (i.e. r = 1 and s = 0) and \approx be given by the rule $x_{1,1}^+ \approx x_{1,1}^-$ and $x_{1,3}^+ \approx x_{1,2}^-$. Then the corresponding gentle algebra $\Lambda(\vec{p}, \approx)$ is the path algebra of the following quiver

subject to the relations: $u_1 x_{1,1}^+ = 0 = v_1 x_{1,1}^-$ and $u_2 x_{1,3}^+ = 0 = v_2 x_{1,2}^-$.

Example. Let $\vec{p} = ((1,1), (1,1))$, $\vec{q} = (2)$ and \approx be given by: $x_{1,1}^+ \approx w_{1,1}$, $x_{1,1}^- \approx x_{2,1}^+$ and $w_{1,2} \approx w_{1,2}$. Then $\Lambda(\vec{p}, \vec{q}, \approx)$ is the path algebra

For any $n \in \mathbb{N}$, let Υ_n be the path algebra of the following quiver

modulo the relations

 $b_i^{\pm} a_i^{\mp} = 0, c_i^{-} b_i^{+} = 0$ and $c_{i+1}^{+} b_i^{-} = 0$ for $1 \le i \le n$.

For any $n \in \mathbb{N}$, let Υ_n be the path algebra of the following quiver

modulo the relations

$$b_i^{\pm} a_i^{\mp} = 0, c_i^{-} b_i^{+} = 0$$
 and $c_{i+1}^{+} b_i^{-} = 0$ for $1 \le i \le n$.

Since $HH^3(\Upsilon_n) \neq 0$, the algebra Υ_n can not be derived equivalent to any algebra of the form $\Lambda(\vec{p}, \vec{q}, \approx)$.

For any $n \in \mathbb{N}$, let Υ_n be the path algebra of the following quiver

modulo the relations

$$b_i^{\pm} a_i^{\mp} = 0, c_i^{-} b_i^{+} = 0$$
 and $c_{i+1}^{+} b_i^{-} = 0$ for $1 \le i \le n$.

Since $\operatorname{HH}^3(\Upsilon_n) \neq 0$, the algebra Υ_n can not be derived equivalent to any algebra of the form $\Lambda(\vec{p}, \vec{q}, \approx)$. On the other hand, $D^b(\Upsilon_n - \operatorname{mod})$ is equivalent to the derived category of coherent sheaves an an appropriate non-commutative projective tame nodal curve, whose central curve is a cycle of 2n projective lines.

Igor Burban (Paderborn)

Derived tame algebras and non-commutative nodal curves

Derived tame algebras and non-commutative nodal curves

A datum $(\vec{p}, \vec{q}, \approx)$ defines a finite dimensional algebra Λ , a tame non-commutative nodal curve \mathbb{X} and its Auslander nodal curve \mathbb{Y} .

Derived tame algebras and non-commutative nodal curves

A datum $(\vec{p}, \vec{q}, \approx)$ defines a finite dimensional algebra Λ , a tame non-commutative nodal curve \mathbb{X} and its Auslander nodal curve \mathbb{Y} .
A datum $(\vec{p}, \vec{q}, \approx)$ defines a finite dimensional algebra Λ , a tame non-commutative nodal curve \mathbb{X} and its Auslander nodal curve \mathbb{Y} .

• All categories in the above diagram are representation tame.

- All categories in the above diagram are representation tame.
- If \vec{q} is void then Λ is *skew-gentle*.

- All categories in the above diagram are representation tame.
- If \vec{q} is void then Λ is *skew-gentle*.
- Moreover, if there are no reflexive points wrt. \approx then Λ is *gentle*.

- All categories in the above diagram are representation tame.
- If \vec{q} is void then Λ is *skew-gentle*.
- Moreover, if there are no reflexive points wrt. \approx then Λ is gentle.
- The obtained results were used by Polishchuk and Lekili to establish the homological mirror symmetry for compact Riemann surfaces with non-empty marked boundary.

- All categories in the above diagram are representation tame.
- If \vec{q} is void then Λ is *skew-gentle*.
- Moreover, if there are no reflexive points wrt. \approx then Λ is gentle.
- The obtained results were used by Polishchuk and Lekili to establish the homological mirror symmetry for compact Riemann surfaces with non-empty marked boundary.
- Tame non-commutative nodal curves recently appeared in a work of Polishchuk on trigonometric solutions of the associative Yang–Baxter equation.

Happy Birthday, Bill!