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Setup and question

Main setup:

R commutative Noetherian complete local ring, a ⊆ m ⊂ R.

Λ Noetherian R-algebra, that is, ΛR ∈ mod R. Set Λ = Λ/aΛ.

R Λ D
−

(mod Λ) M
•

R/a Λ ∼= Λ⊗
R

R/a D
−

(mod Λ) M
•

= M
• L⊗
Λ

Λ

F

Motivating question:

How is the derived representation theory of Λ different from that of Λ ?

General problem:

Usually, the functor F is not dense and does not respect isomorphism classes.

Main assumption:

Tor
R
+(Λ,R/a) = 0, that is, Tor

R
n (Λ,R/a) = 0 for any n > 0. (?)



An example from Lie theory

Example 1 (A gentle quotient of the Gelfand quiver)

(Q, I) : • • • ab = cd

(Q, J) : • • •

a c

b d

a c

b d

R = kJxK Λ = k̂Q/I

R/m ∼= k Λ ∼= kQ/J

x 7−→ ba + ab + dc

( P1 P2 P1
a· b· ) has no lift to D

−
(mod Λ).

Set B•

λ = ( L1 ⊕ L3 L1 ⊕ L3

[ λba· da·bc· dc· ]

). Then B•

λ 6∼=B
•

0 but B•

λ
∼=B•

0 for any λ 6= 0.

Λ is skew-gentle, while Λ is gentle.



Structure of the talk

1 Lifting problems

2 Silting bijections

3 Applications and variations



1.1 An incomplete history of lifting problems

a ⊆ m ⊂ R Λ ∃L•? D
−

(mod Λ)

R/a Λ = Λ/aΛ P
• ∈ D

−
(mod Λ)

F

Derived lifting problem: Does P • lift to L•?

Abelian lifting problem: Does a proj. resolution P • lift to a proj. resolution L•?

Yes – if HomD(Λ̄)(P
•

, P
•

[2]) = 0 assuming any of the setups:

setup abelian lifting problem derived lifting problem

“representation theory

of finite groups”

R regular, dim R = 1, Λ = RG

a = m

[J.A. Green (1959)]

ΛR is free

a = m

[Rickard (1991a)]

commutative algebra
R = Λ, a = (x1, x2, . . . , x`︸ ︷︷ ︸

R-regular

)

[Eisenbud (1980)] [Yoshino (1997)]

non-commutative

generalizations

a = (x1, x2, . . . , x`︸ ︷︷ ︸
R- and Λ-regular

) common denominator

of setups?
[Auslander-Ding-Solberg (1990)]



1.2 A criterion to lift complexes

Next goal: lift P • ∈ D
−

(mod Λ)K
−

(proj Λ)

Basic observations: For any n > 0 set Λn = Λ/a
n
Λ. Then

Λ ∼= lim←−
(
. . .Λn+1 Λn . . .Λ2 Λ1 = Λ

)
For any n > 0 set Cn = K

−
(proj Λn). Try to lift by induction:

. . . Cn+1 Cn . . . C2 C1
. . .∃L•

n+1? ∃L•

n? . . .∃L•

2? L
•

1 = P
•

If there is a sequence of iterated lifts, then L•

= lim←−L
•

n yields a lift of P •.

n-th lifting step: Assume that P • has a lift L•

n for n > 0.

A construction of Eisenbud yields a certain morphism

4n : P
•

P
• ⊗
R/a

a
n
/a
n+1

[2] = αn(P
•

)[2]

It holds that: 4n ∼ 0 ⇒ P
• has a lift L•

n+1.

Proposition 1

If HomD(Λ̄)(P
•

, αn(P
•

)[2]) = 0 for any n > 0, then P • has a lift L• ∈ D
−

(mod Λ).



1.3 Lifting complexes without higher self-extensions

Proposition 1

If Hom(P
•

, αn(P
•

)[2]) = 0 for any n > 0, then P • has a lift L• ∈ D
−

(mod Λ).

Lemma 2

Let (a
n
/a
n+1

)R/a be free for any n > 0. Then αn(P
•

) = P
• ⊗
R/a

a
n
/a
n+1 ∼= P

• and

Tor
R
+(Λ,R/a

n
) = 0 for any n > 0. (??)

In particular, P • lifts if Hom(P
•

, P
•

[2]) = 0.

For any Q• ∈ D
−

(mod Λ) denote

P
• ≥ Q• if Hom(P

•

, Q
•

[n]) = 0 for any n > 0.

Proposition 3

Assume (??) and P • ∈ per Λ such that P • ≥ Q•. Then P • ≥ αn(Q
•

) for any n > 0.
In particular, P • lifts if P • ≥ P •

[1].

The idea of the proof is inspired by recent work of Nasseh, Ono and Yoshino (2021).



1.4 Summary on lifting problems

Recall of main setup and derived lifting problem:

a ⊆ m ⊂ R Λ ∃L•

? D
−

(mod Λ)

R/a Λ = Λ/aΛ P
• ∈ D

−
(mod Λ)

F

Common denominators of setups:

“complete intersections”

a = (x1, x2, . . . , x`︸ ︷︷ ︸
R- and Λ-regular

)
“rep. theory of groups”

a = m, ΛR free
ΛR free

a
n
/a
n+1 free ∀n > 0

Tor
R
+(Λ,R/a) = 0

Tor
R
+(Λ,R/a

n
) = 0 ∀n > 0

P
• lifts if Hom(P

•

, P
•

[2]) = 0

if P • is a projective resolution, so is L•

P
• lifts if P • ≥ P •

[1]

and P • ∈ per Λ.

Lemma 2

Lemma 2

Proposition 3



2.1 Recall of silting and tilting complexes

Notation for L•

,M
•

, T
• ∈ per Λ:

L
• ≥M • if Hom(L

•

,M
•

[n]) = 0 for any n > 0

T
•

. T
• if Hom(T

•

, T
•

[i]) = 0 for any i ∈ Z\{0}

Definition (Keller and Vossieck (1988), Rickard (1988))
1 L

• is silting if 〈L•〉 = per Λ and L• is presilting, that is, L• ≥ L•.
2 T

• is tilting if 〈T •〉 = per Λ and T • is pretilting, that is, T •

. T
•.

siltΛ = isomorphism classes of basic silting complexes of Λ.

Theorem (Aihara and Iyama (2012))
1 (siltΛ,≥) is a partially ordered set.
2 For any L• ∈ siltΛ and any D• ∈ smdL

• there exists µD• (L
•

) ∈ siltΛ.

Theorem (Rickard (1988))

Λ is derived equivalent to a ring Γ ⇔ there exists T • ∈ tiltΛ : EndD(Λ)(T
•

) ∼= Γ.

In this case: (siltΛ,≥) (siltΓ,≥)∼



2.2 Presilting complexes under change of rings

Proposition 4 (G.; cf. [Iyama and Kimura (2021)])

Any L•

,M
• ∈ per Λ satisfy:

L
• ≥M • ⇔ L

• ≥M • ⇒ Hom(L
•

,M
•

) Hom(L
•

,M
•

)F

Proof. (of first “⇒ ”, based on Rickard [1991b]): Set K •

= RHomΛ(L
•

,M
•

).

Tor+(Λ,R/a) = 0 ⇒ K
•

= K
• L
⊗
R

R/a ∼= RHomΛ̄(L
•

,M
•

)

Using the Künneth spectral sequence

E
pq
2 = Tor

R
−p(H

q
(K

•

),R/a) ⇒ E
p+q

= H
p+q

(K
•

)

it follows that

L
• ≥M • ⇔ H

+
(K

•

) = 0⇒ E
+q

= E
p+

= 0⇒ E
+

= 0⇔ H
+

(K
•

) = 0⇔ L
• ≥M •

Corollary 5

There are embeddings fps : presiltΛ presiltΛ and fs : siltΛ siltΛ .



2.3 Pretilting complexes under change of rings

Proposition (Rickard (1991b))

For any T • ∈ per Λ such that T •

. T
•

: Tor
R
+(End(T

•

),R/a) = 0 ⇒ T
•

. T
•.

So the embedding fs restricts:

ft : tilt
R/a

Λ = {T • ∈ tiltΛ | Tor
R
+(End(T

•

),R/a) = 0} tiltΛ

Next question: Are lifts of pretilting complexes pretilting?

Definition
R/a is Tor-rigid if for any M ∈ mod R :

Tor
R
1 (M,R/a) = 0 ⇒ Tor

R
+(M,R/a) = 0.

Proposition 6

Let R/a be Tor-rigid. For any T • ∈ per Λ, L
• ∈ D

−
(mod Λ) and i ∈ Z :

Hom(T
•

, L
•

[i]) = 0 ⇒ Hom(T
•

, L
•

[i]) = 0
In particular:

(a) If T •

. T
•, then T •

. T
•. (b) If L• is a projective resolution, so is L•.



2.4 Main result: silting and tilting bijections

Recall: Λ Noetherian R-algebra, R complete local, a ⊆ m ⊂ R and Λ = Λ/aΛ.

Theorem 7

Assume that R/a be Tor-rigid and Tor
R
+(Λ,R/a

n
) = 0 for any n > 0, for example,

“complete intersections”
or

“rep. theory of groups”
or

“rep. theory of orders”

a = (x1, x2, . . . , x`︸ ︷︷ ︸
R- and Λ-regular

) a = m, ΛR free R regular, ΛR free

Then there are bijections:

L
•

siltΛ tilt
R/a

Λ tilt
R/m

Λ

L
•

siltΛ tiltΛ tilt
R/m

Λ

F fs

∼

fs ft

∼
ft

equal if a = m

∼

f
∗
t

equal if a = m

tilt
R/a

Λ = {T • ∈ tiltΛ | Tor
R
+(End(T

•

),R/a) = 0}
tilt

R/m
Λ = { ” | End(T

•

)R free}
tilt

R/m
Λ =

{
P
• ∈ tiltΛ | End(P

•

)R/a free
}



2.5 Remarks on silting bijections

siltΛ tilt
R/a

Λ tilt
R/m

Λ

siltΛ tiltΛ tilt
R/m

Λ

∼

fs

∼

ft

∼

f
∗
t

1 In case a = m and ΛR is free, ft = f
∗
t is bijective by [Rickard (1991a)].

To show that “ T
• ∈ tiltΛ⇒ T

• ∈ tiltΛ ” Rickard proved that:

〈T •〉 = per Λ ⇔
T

•
. T

•
〈T •〉⊥ ∩D

−
(mod Λ) = 0. (1)

2 The proof of Theorem 7 follows Rickard’s approach.

Main difficulty: to extend characterization (1) assuming T
• ≥ T

•
.

This extension uses dg-categorical arguments due to Keller.

3 Eisele showed independently that fs is bijective if Λ and Λ are quotients of a
common kJxK-order [Eisele (2021)].
In this context, Eisele studied also derived Picard groups.



3.1 An example from Lie theory (continued)

Example 2 (A gentle quotient of the Gelfand quiver)

(Q, I) : • • • ab = cd

(Q, J) : • • •

a c

b d

a c

b d

R = kJxK Λ = k̂Q/I

R/m ∼= k Λ ∼= kQ/J

x 7−→ ba + ab + dc

siltΛ

(ba)
m

= (ab)
m

= (cd
m

) = (dc)
m

= 0 siltΛm

siltΛ

∼

∼

∼
(m > 1)

Although a quotient Λm is derived-wild and the order Λ is skew-gentle, both have
“gentle silting theory”.



3.2 Quotients of a preprojective algebra of type Ã

Example 3

Let Λ =
∏̂
Q with Q = Ã2. Then ΛR is free via:

m ⊂ R = kJx, yK −→ Λ x 7−→ sum of all 3-cycles y 7−→
3∑
i=1

aibi

Theorem 7 yields bijections for the family of quotients (Λa)a⊆m with Λa = Λ/aΛ :

siltΛ

siltΛa siltΛy

siltΛm

∼ ∼

∼

∼ ∼

2
•

•
1

•
3

a2

b1

a1

b3

a3

b2

a1b1 = b3a3= 0

a2b2 = b1a1= 0

a3b3 = b2a2= 0

a1a2a3 = b3b2b1

a2a3a1 = b1b3b2

a3a1a2 = b2b1b3

⇒ the kJxK-order Λy is nodal, and thus derived-tame by [Burban, Drozd (2004)]

⇒ there is hope to classify silting complexes over derived-wild quotients Λa and Λ



3.3 Silting embeddings and descent in a more general setup

Proposition 8
Let S be a commutative ring, Λ a Noetherian S-algebra and Γ an S-algebra such that:

Tor
S
+(Λ,Γ) = 0,

for any M ∈ mod S: M ⊗ Γ ∼= 0⇒M = 0.
Then there are well-defined injective maps, and for any L• ∈ per Λ it holds that:

addL
•

siltC Λ tilt
Γ
C Λ L

• ∈ siltΛ L
• ∈ tilt

Γ
Λ

addF(L
•

) siltC Λ⊗Γ tiltC Λ⊗Γ F(L
•

) ∈ siltΛ⊗Γ F(L
•

) ∈ tiltΛ⊗Γ

F fs ft if SΓ ∈ mod S if SΓ is Tor-rigid

Corollary 9
If SΓ is faithfully flat, the maps fs and ft are well-defined and injective.

Theorem (Iyama and Kimura (2021))

For any N • ∈ D
b
(mod Λ) it holds that

N
• ∈ siltΛ ⇔ N

•

p ∈ siltΛp for any prime ideal p of S.



3.4 A variation of the silting bijection for skew-central quotients

As before, Λ is a Noetherian R-algebra. Let s ∈ radΛ be regular and normal, that is:

Λ Λ, Λ Λ,·s s· sΛ = Λs.

There is an automorphism σ = σs of Λ such that sa = σ(a)s for any a ∈ Λ.

Redefine Λ by Λ/sΛ. The automorphism σ induces an automorphism α = σ of Λ.

Theorem 10

In the setup above, the functor F induces bijections

tilt
σ,s

Λ = {T • ∈ tilt
σ

Λ | HomD(Λ̄)(T
•

, T
•

[−1]) = 0}

silt
σ

Λ = {L• ∈ siltΛ | L•

σ = L
• L
⊗
Λ

Λσ ∼= L
•}

tilt
α

Λ

silt
α

Λ

∼

f
σ
t

∼

f
σ
s

If s is central, then silt
σ

Λ = siltΛ and silt
α

Λ = siltΛ.

The converse is not true, fortunately!



3.5 Ribbon graph orders and Brauer graph algebras

Definition of Λ and Λ: Example:

Λ: Let (Q, I) be 2-regular gentle, that is, at any i ∈ Q0 :

•
•

•

•

••

b4

a4

b3 a3

b2

a2

b1

a1

b5
a5

i
b

a

The arrow ideal completion Λ of its path algebra kQ/I
is a ribbon graph order.

Remark: The ring Λ has a central element

x = sum of repetition-free cycles =
∑

{a,b}⊆Q1
s(a)=s(b)

ca + cb x = a2b2 + b1a1 + . . .

Λ: Choose positive integers m = (ma)a∈Q1
which do

not differ along cycles.
Choose m1, . . . ,m5 ∈ N
and add relations:

This yields a normal element: (a2b2)
m2 = (b1a1)

m1

(a1b1)
m1 = (b4a4)

m4

...

(a3b3)
m3 = (b2a2)

m2

sm =
∑

{a,b}⊆Q1
s(a)=s(b)

c
ma
a − cmb

b

Then Λ = Λ/smΛ is a Brauer graph algebra.



3.6 Silting bijections between Brauer graph algebras and ribbon graph orders

Corollary 11

Let B be a Brauer graph algebra, so B ∼= Λ/sΛ for a ribbon graph order Λ and normal
regular element s ∈ radΛ. Then there are bijections

tilt
s,σ

Λ

siltΛ = silt
σ

Λ
tilt

α
B

silt B = silt
α
B

Λ not always symmetric!∼

f
σ
t

∼

fs
∼

f
σ
s

B is symmetric

Proof. s induces an involution σ of Λ ∼= k̂Q/I such that

ei 7→ ei for any i ∈ Q0, a 7→ εaa = ±a for any a ∈ Q1.

and an involution α = σ of B. Theorem 10 yields fσs and fσt .

Burban and Drozd (2004) gave a description of ind[per Λ].

It can be shown that L•

σ
∼= L

• for any L• ∈ ind[per Λ], and that [α] ∈ Out0 B.

The latter implies P •

α
∼= P

• for any P • ∈ per Λ with HomD(B)(P
•

, P
•

[1]) = 0 by a result
of Huisgen-Zimmermann and Saorin (2003).



Thank You for listening!



Happy birthday, Bill !


