Silting theory under change of rings

Wassilij Gnedin
Ruhr University Bochum, Germany

A conference in celebration of the work of Crawley-Boevey
September, 8th 2021

Setup and question

Main setup:

- R commutative Noetherian complete local ring, $\mathfrak{a} \subseteq \mathfrak{m} \subset \mathrm{R}$.
- Λ Noetherian R-algebra, that is, $\Lambda_{\mathrm{R}} \in \bmod$. Set $\bar{\Lambda}=\Lambda / \mathfrak{a} \Lambda$.

$$
\mathrm{R} / \mathfrak{a} \longrightarrow \bar{\Lambda} \cong \Lambda \underset{\mathrm{R}}{\otimes} \mathrm{R} / \mathfrak{a}
$$

$\mathrm{D}^{-}(\bmod \bar{\Lambda})$

$$
\bar{M}=M \cdot \stackrel{\mathbb{L}}{\otimes} \bar{\Lambda}
$$

Motivating question:
How is the derived representation theory of Λ different from that of $\bar{\Lambda}$?
General problem:
Usually, the functor \mathbb{F} is not dense and does not respect isomorphism classes.
Main assumption:

$$
\operatorname{Tor}_{+}^{\mathrm{R}}(\Lambda, \mathrm{R} / \mathfrak{a})=0, \text { that is, } \operatorname{Tor}_{n}^{\mathrm{R}}(\Lambda, \mathrm{R} / \mathfrak{a})=0 \text { for any } n>0
$$

An example from Lie theory

Example 1 (A gentle quotient of the Gelfand quiver)

- $\left(P_{1} \xrightarrow{a \cdot} P_{2} \xrightarrow{b \cdot} P_{1}\right)$ has no lift to $\mathrm{D}^{-}(\bmod \Lambda)$.
$\left[\begin{array}{cc}\left.\begin{array}{cc}\lambda b a \cdot & d a \cdot \\ b c & d c\end{array}\right]\end{array}\right.$
- Set $B_{\lambda}^{*}=\left(L_{1} \oplus L_{3} \longrightarrow L_{1} \oplus L_{3}\right)$. Then $B_{\lambda}^{*} \neq B_{0}^{\cdot}$ but $\overline{B_{\lambda}} \cong \overline{B_{0}^{*}}$ for any $\lambda \neq 0$.
- Λ is skew-gentle, while $\bar{\Lambda}$ is gentle.

Structure of the talk

(1) Lifting problems
(2) Silting bijections
(3) Applications and variations

1.1 An incomplete history of lifting problems

Derived lifting problem: Does P^{*} lift to L^{*} ?
Abelian lifting problem: Does a proj. resolution P^{*} lift to a proj. resolution L^{*} ?
Yes - if $\operatorname{Hom}_{\mathrm{D}(\bar{\Lambda})}\left(P^{*}, P^{*}[2]\right)=0$ assuming any of the setups:

setup	abelian lifting problem	derived lifting problem
"representation theory of finite groups"	R regular, $\operatorname{dim} \mathrm{R}=1, \Lambda=\mathrm{R} G$ $\mathfrak{a}=\mathfrak{m}$ [J.A. Green (1959)]	Λ_{R} is free $\mathfrak{a}=\mathfrak{m}$ [Rickard (1991a)]
commutative algebra	$\mathrm{R}=\Lambda, \quad \mathfrak{a}=(\underbrace{x_{1}, x_{2}, \ldots, x_{\ell}}_{\text {R-regular }})$	
	[Eisenbud (1980)]	[Yoshino (1997)]
non-commutative generalizations	$\begin{gathered} \mathfrak{a}=(\underbrace{x_{1}, x_{2}, \ldots, x_{\ell}}_{\text {R- and } \Lambda \text {-regular }}) \\ \text { [Auslander-Ding-Solberg (1990)] } \end{gathered}$	common denominator of setups?

1.2 A criterion to lift complexes

Next goal: lift $P^{*} \in \mathrm{D}^{-}(\bmod \bar{\Lambda}) \mathrm{K}^{-}(\operatorname{proj} \bar{\Lambda})$
Basic observations: For any $n>0$ set $\Lambda_{n}=\Lambda / \mathfrak{a}^{n} \Lambda$. Then

$$
\Lambda \cong \lim _{\hookleftarrow}\left(\ldots \Lambda_{n+1} \longrightarrow \Lambda_{n} \longrightarrow \ldots \Lambda_{2} \longrightarrow \Lambda_{1}=\bar{\Lambda}\right)
$$

For any $n>0$ set $\mathcal{C}_{n}=\mathrm{K}^{-}\left(\operatorname{proj} \Lambda_{n}\right)$. Try to lift by induction:

$$
\begin{aligned}
& \ldots \mathcal{C}_{n+1} \longrightarrow \mathcal{C}_{n} \longrightarrow \quad \ldots \mathcal{C}_{2} \longrightarrow \mathcal{C}_{1}
\end{aligned}
$$

If there is a sequence of iterated lifts, then $L^{*}=\lim _{\leftarrow} L_{n}^{*}$ yields a lift of P^{*}.
n-th lifting step: Assume that P^{*} has a lift $L_{n}^{\dot{n}}$ for $n>0$.
A construction of Eisenbud yields a certain morphism

$$
\triangle_{n}: P^{\cdot} \longrightarrow \underset{\mathrm{R} / \mathfrak{a}}{\bullet} \otimes \mathfrak{a}^{n} / \mathfrak{a}^{n+1}[2]=\alpha_{n}\left(P^{\cdot}\right)[2]
$$

It holds that:

$$
\triangle_{n} \sim 0 \quad \Rightarrow \quad P^{\cdot} \text { has a lift } L_{n+1}^{*} .
$$

Proposition 1

If $\operatorname{Hom}_{\mathrm{D}(\bar{\Lambda})}\left(P^{*}, \alpha_{n}\left(P^{*}\right)[2]\right)=0$ for any $n>0$, then P^{*} has a lift $L^{*} \in \mathrm{D}^{-}(\bmod \Lambda)$.

1.3 Lifting complexes without higher self-extensions

Proposition 1

If $\operatorname{Hom}\left(P^{*}, \alpha_{n}\left(P^{*}\right)[2]\right)=0$ for any $n>0$, then P^{\cdot} has a lift $L^{*} \in \mathrm{D}^{-}(\bmod \Lambda)$.

Lemma 2

Let $\left(\mathfrak{a}^{n} / \mathfrak{a}^{n+1}\right)_{\mathrm{R} / \mathfrak{a}}$ be free for any $n>0$. Then $\alpha_{n}\left(P^{\bullet}\right)=P_{\substack{\bullet \\ \bullet}}^{\otimes} \mathfrak{a}^{n} / \mathfrak{a}^{n+1} \cong P^{\bullet}$ and

$$
\operatorname{Tor}_{+}^{\mathrm{R}}\left(\Lambda, \mathrm{R} / \mathfrak{a}^{n}\right)=0 \quad \text { for any } n>0
$$

In particular, P^{\bullet} lifts if $\operatorname{Hom}\left(P^{\bullet}, P^{\bullet}[2]\right)=0$.

For any $Q^{*} \in \mathrm{D}^{-}(\bmod \bar{\Lambda})$ denote

$$
P^{\bullet} \geq Q^{\bullet} \quad \text { if } \operatorname{Hom}\left(P^{*}, Q^{\bullet}[n]\right)=0 \text { for any } n>0
$$

Proposition 3

Assume $(\star \star)$ and $P^{*} \in \operatorname{per} \bar{\Lambda}$ such that $P^{\cdot} \geq Q^{*}$. Then $P^{*} \geq \alpha_{n}\left(Q^{*}\right)$ for any $n>0$. In particular, P^{*} lifts if $P^{*} \geq P^{*}[1]$.

The idea of the proof is inspired by recent work of Nasseh, Ono and Yoshino (2021).

1.4 Summary on lifting problems

Recall of main setup and derived lifting problem:

$\exists L^{\bullet} ? \quad \mathrm{D}^{-}(\bmod \Lambda)$ $\mathbb{F} \downarrow$

$$
\mathrm{R} / \mathfrak{a} \longrightarrow \bar{\Lambda}=\Lambda / \mathfrak{a} \Lambda \quad P^{\cdot} \in \quad \mathrm{D}^{-}(\bmod \bar{\Lambda})
$$

Common denominators of setups:
"complete intersections'
"rep. theory of groups"

$$
\mathfrak{a}=(\underbrace{x_{1}, x_{2}, \ldots, x_{\ell}}_{\text {R- and } \Lambda \text {-regular }})
$$ $\mathfrak{a}=\mathfrak{m}, \quad \Lambda_{\mathrm{R}}$ free

$$
\mathfrak{a}^{n} / \mathfrak{a}^{n+1} \text { free } \forall n>0 \quad \text { Lemma } 2
$$

Lemma 2
$\Longrightarrow \Lambda_{\mathrm{R}}$ free

$$
\operatorname{Tor}_{+}^{\mathrm{R}}(\Lambda, \mathrm{R} / \mathfrak{a})=0
$$

$\Longrightarrow \operatorname{Tor}_{+}^{\mathrm{R}}\left(\Lambda, \mathrm{R} / \mathfrak{a}^{n}\right)=0 \quad \forall n>0$
P^{\cdot} lifts if $\operatorname{Hom}\left(P^{\bullet}, P^{\bullet}[2]\right)=0$ if P^{*} is a projective resolution, so is L^{*}
$\Longrightarrow P^{\bullet}$ lifts if $P^{\boldsymbol{\bullet}} \geq P^{\boldsymbol{\bullet}}[1]$ and $P^{*} \in \operatorname{per} \bar{\Lambda}$.

2.1 Recall of silting and tilting complexes

Notation for $L^{*}, M^{*}, T^{*} \in \operatorname{per} \Lambda$:

$$
\begin{array}{ll}
L^{*} \geq M^{*} & \text { if } \operatorname{Hom}\left(L^{*}, M^{*}[n]\right)=0 \text { for any } n>0 \\
T^{*} \unrhd T^{*} & \text { if } \operatorname{Hom}\left(T^{*}, T^{*}[i]\right)=0 \text { for any } i \in \mathbb{Z} \backslash\{0\}
\end{array}
$$

Definition (Keller and Vossieck (1988), Rickard (1988))

(1) L^{*} is silting if $\left\langle L^{*}\right\rangle=$ per Λ and L^{*} is presilting, that is, $L^{*} \geq L^{*}$.
(2) T^{*} is tilting if $\left\langle T^{*}\right\rangle=\operatorname{per} \Lambda$ and T^{*} is pretilting, that is, $T^{*} \unrhd T^{*}$.

- silt $\Lambda=$ isomorphism classes of basic silting complexes of Λ.

Theorem (Aihara and lyama (2012))

(1) (silt Λ, \geq) is a partially ordered set.
(2) For any $L^{*} \in$ silt Λ and any $D^{*} \in \operatorname{smd} L^{*}$ there exists $\mu_{D^{\cdot}}\left(L^{*}\right) \in$ silt Λ.

Theorem (Rickard (1988))

Λ is derived equivalent to a ring $\Gamma \quad \Leftrightarrow \quad$ there exists $T^{*} \in \operatorname{tilt} \Lambda: \quad \operatorname{End}_{D(\Lambda)}\left(T^{*}\right) \cong \Gamma$.

In this case:
$($ silt $\Lambda, \geq) \xrightarrow{\sim}($ silt $\Gamma, \geq)$

2.2 Presilting complexes under change of rings

Proposition 4 (G.; cf. [lyama and Kimura (2021)])

Any $L^{*}, M^{*} \in \operatorname{per} \Lambda$ satisfy:

$$
L^{\cdot} \geq M^{\cdot} \quad \Leftrightarrow \quad \overline{L^{*}} \geq \overline{M^{*}} \quad \Rightarrow \quad \operatorname{Hom}\left(L^{\cdot}, M^{*}\right) \xrightarrow{\mathbb{F}} \operatorname{Hom}\left(\overline{L^{*}}, \overline{M^{*}}\right)
$$

Proof. (of first " \Rightarrow ", based on Rickard [1991b]): \quad Set $K^{*}=\mathbb{R} \operatorname{Hom}_{\Lambda}\left(L^{*}, M^{*}\right)$.

$$
\operatorname{Tor}_{+}(\Lambda, \mathrm{R} / \mathfrak{a})=0 \quad \Rightarrow \quad \overline{K^{\cdot}}=K^{\cdot} \cdot \stackrel{\mathbb{L}}{\mathbb{R}} \mathrm{R} / \mathfrak{a} \cong \mathbb{R} \operatorname{Hom}_{\bar{\Lambda}}\left(\overline{L^{*}}, \overline{M^{\cdot}}\right)
$$

Using the Künneth spectral sequence

$$
E_{2}^{p q}=\operatorname{Tor}_{-p}^{\mathrm{R}}\left(\mathrm{H}^{q}\left(K^{*}\right), \mathrm{R} / \mathfrak{a}\right) \Rightarrow E^{p+q}=\mathrm{H}^{p+q}\left(\overline{K^{*}}\right)
$$

it follows that

$$
L^{\cdot} \geq M^{\bullet} \Leftrightarrow \mathrm{H}^{+}\left(K^{\bullet}\right)=0 \Rightarrow E^{+q}=E^{p+}=0 \Rightarrow E^{+}=0 \Leftrightarrow \mathrm{H}^{+}\left(\overline{K^{\bullet}}\right)=0 \Leftrightarrow \bar{L} \geq \overline{M^{\bullet}}
$$

Corollary 5

There are embeddings $f_{p s}$: presilt $\Lambda \longleftrightarrow$ presilt $\bar{\Lambda}$ and $f_{s}:$ silt $\Lambda \longleftrightarrow$ silt $\bar{\Lambda}$.

2.3 Pretilting complexes under change of rings

Proposition (Rickard (1991b))

For any $T^{*} \in \operatorname{per} \Lambda$ such that $T^{*} \unrhd T^{*}: \operatorname{Tor}_{+}^{\mathrm{R}}\left(\operatorname{End}\left(T^{*}\right), \mathrm{R} / \mathfrak{a}\right)=0 \Rightarrow \bar{T} \unrhd \bar{T}^{*}$.

So the embedding f_{s} restricts:

$$
f_{t}: \operatorname{tilt}^{\mathrm{R} / \mathfrak{a}} \Lambda=\left\{T^{*} \in \operatorname{tilt} \Lambda \mid \operatorname{Tor}_{+}^{\mathrm{R}}\left(\operatorname{End}\left(T^{*}\right), \mathrm{R} / \mathfrak{a}\right)=0\right\} \Longleftrightarrow \operatorname{tilt} \bar{\Lambda}
$$

Next question: Are lifts of pretilting complexes pretilting?

Definition

$\mathrm{R} / \mathfrak{a}$ is Tor-rigid if for any $M \in \bmod \mathrm{R}$:

$$
\operatorname{Tor}_{1}^{\mathrm{R}}(M, \mathrm{R} / \mathfrak{a})=0 \quad \Rightarrow \quad \operatorname{Tor}_{+}^{\mathrm{R}}(M, \mathrm{R} / \mathfrak{a})=0 .
$$

Proposition 6

Let $\mathrm{R} / \mathfrak{a}$ be Tor-rigid. For any $T^{*} \in \operatorname{per} \Lambda, L^{*} \in \mathrm{D}^{-}(\bmod \Lambda)$ and $i \in \mathbb{Z}$:

$$
\operatorname{Hom}\left(\overline{T^{*}}, \overline{L^{*}}[i]\right)=0 \quad \Rightarrow \quad \operatorname{Hom}\left(T^{*}, L^{*}[i]\right)=0
$$

In particular:
(a) If $\overline{T^{*}} \unrhd \bar{T}^{*}$, then $T^{*} \unrhd T^{*}$.
(b) If \bar{L} is a projective resolution, so is L°.

2.4 Main result: silting and tilting bjections

Recall: $\quad \Lambda$ Noetherian R-algebra, R complete local, $\mathfrak{a} \subseteq \mathfrak{m} \subset \mathrm{R}$ and $\bar{\Lambda}=\Lambda / \mathfrak{a} \Lambda$.

Theorem 7

Assume that $\mathrm{R} / \mathfrak{a}$ be Tor-rigid and $\operatorname{Tor}_{+}^{\mathrm{R}}\left(\Lambda, \mathrm{R} / \mathfrak{a}^{n}\right)=0$ for any $n>0$, for example,
"complete intersections"

$$
\mathfrak{a}=(\underbrace{x_{1}, x_{2}, \ldots, x_{\ell}}_{\mathrm{R}-\text { and } \Lambda \text {-regular }})
$$

"rep. theory of groups"
$\mathfrak{a}=\mathfrak{m}, \quad \Lambda_{\mathrm{R}}$ free
"rep. theory of orders"
R regular, Λ_{R} free

Then there are bijections:

$$
\begin{aligned}
\text { tilt }^{\mathrm{R} / \mathfrak{a}} \Lambda & =\left\{T^{*} \in \text { tilt } \Lambda \mid \operatorname{Tor}_{+}^{\mathrm{R}}\left(\operatorname{End}\left(T^{*}\right), \mathrm{R} / \mathfrak{a}\right)=0\right\} \\
\text { tilt }^{\mathrm{R} / \mathfrak{m}} \Lambda & =\left\{\quad " \quad \mid \operatorname{End}\left(T^{*}\right)_{\mathrm{R}} \text { free }\right\} \\
\text { tilt }^{\mathrm{R} / \mathfrak{m}} \bar{\Lambda} & =\left\{P^{*} \in \operatorname{tilt} \bar{\Lambda} \mid \operatorname{End}\left(P^{*}\right)_{\mathrm{R} / \mathfrak{a}} \text { free }\right\}
\end{aligned}
$$

2.5 Remarks on silting bijections

(1) In case $\mathfrak{a}=\mathfrak{m}$ and Λ_{R} is free, $f_{t}=f_{t}^{*}$ is bijective by [Rickard (1991a)].

- To show that " $\bar{T} \in$ tilt $\bar{\Lambda} \Rightarrow T^{*} \in$ tilt Λ " Rickard proved that:

$$
\begin{equation*}
\left\langle T^{*}\right\rangle=\operatorname{per} \Lambda \quad \underset{T^{*}}{\stackrel{\leftrightarrow}{\unrhd} T^{*}} \stackrel{\Leftrightarrow}{\left\langle T^{*}\right\rangle^{\perp} \cap \mathrm{D}^{-}(\bmod \Lambda)=0 .} \tag{1}
\end{equation*}
$$

(2) The proof of Theorem 7 follows Rickard's approach.

- Main difficulty: to extend characterization (1) assuming $T^{*} \geq T^{*}$.

This extension uses dg-categorical arguments due to Keller.
(3) Eisele showed independently that f_{s} is bijective if Λ and $\bar{\Lambda}$ are quotients of a common $\mathbb{k} \llbracket x \rrbracket$-order [Eisele (2021)].
In this context, Eisele studied also derived Picard groups.

3.1 An example from Lie theory (continued)

Example 2 (A gentle quotient of the Gelfand quiver)

$$
\begin{equation*}
(b a)^{m}=(a b)^{m}=\left(c d^{m}\right)=(d c)^{m}=0 \quad \text { silt } \Lambda_{m}^{\text {silt } \Lambda} \tag{m>1}
\end{equation*}
$$

Although a quotient Λ_{m} is derived-wild and the order Λ is skew-gentle, both have "gentle silting theory".

3.2 Quotients of a preprojective algebra of type $\widetilde{\mathbb{A}}$

Example 3

Let $\Lambda=\widehat{\prod}_{Q}$ with $Q=\widetilde{\mathbb{A}}_{2}$. Then Λ_{R} is free via:

$$
\mathfrak{m} \subset \mathrm{R}=\mathbb{k} \llbracket x, y \rrbracket \longrightarrow \Lambda \quad x \longmapsto \text { sum of all 3-cycles } \quad y \longmapsto \sum_{i=1}^{3} a_{i} b_{i}
$$

Theorem 7 yields bijections for the family of quotients $\left(\bar{\Lambda}_{\mathfrak{a}}\right)_{\mathfrak{a} \subseteq \mathfrak{m}}$ with $\bar{\Lambda}_{\mathfrak{a}}=\Lambda / \mathfrak{a} \Lambda$:

\Rightarrow the $\mathbb{k} \llbracket x \rrbracket$-order $\bar{\Lambda}_{y}$ is nodal, and thus derived-tame by [Burban, Drozd (2004)]
\Rightarrow there is hope to classify silting complexes over derived-wild quotients $\bar{\Lambda}_{a}$ and Λ

3.3 Silting embeddings and descent in a more general setup

Proposition 8

Let S be a commutative ring, Λ a Noetherian S-algebra and Γ an S -algebra such that:

- $\operatorname{Tor}_{+}^{\mathrm{S}}(\Lambda, \Gamma)=0$,
- for any $M \in \bmod S: M \otimes \Gamma \cong 0 \Rightarrow M=0$.

Then there are well-defined injective maps, and for any $L^{*} \in$ per Λ it holds that:

$\operatorname{add} \mathbb{F}\left(L^{*}\right) \quad \operatorname{silt}_{\mathcal{C}} \Lambda \otimes \Gamma \longleftrightarrow$ tilt $_{\mathcal{C}} \Lambda \otimes \Gamma \quad \mathbb{F}\left(L^{*}\right) \in \operatorname{silt} \Lambda \otimes \Gamma \quad \mathbb{F}\left(L^{*}\right) \in$ tilt $\Lambda \otimes \Gamma$

Corollary 9

If ${ }_{S} \Gamma$ is faithfully flat, the maps f_{s} and f_{t} are well-defined and injective.

Theorem (Iyama and Kimura (2021))

For any $N^{*} \in \mathrm{D}^{\mathrm{b}}(\bmod \Lambda)$ it holds that

$$
N^{*} \in \text { silt } \Lambda \quad \Leftrightarrow \quad N_{\mathfrak{p}}^{*} \in \text { silt } \Lambda_{\mathfrak{p}} \text { for any prime ideal } \mathfrak{p} \text { of } \mathrm{S} \text {. }
$$

3.4 A variation of the silting bijection for skew-central quotients

As before, Λ is a Noetherian R-algebra. Let $s \in \operatorname{rad} \Lambda$ be regular and normal, that is:

$$
\Lambda \stackrel{\cdot s}{\longleftrightarrow} \Lambda, \quad \Lambda \xrightarrow{s \cdot} \Lambda, \quad s \Lambda=\Lambda s
$$

- There is an automorphism $\sigma=\sigma_{s}$ of Λ such that $s a=\sigma(a) s$ for any $a \in \Lambda$.
- Redefine $\bar{\Lambda}$ by $\Lambda / s \Lambda$. The automorphism σ induces an automorphism $\alpha=\bar{\sigma}$ of $\bar{\Lambda}$.

Theorem 10

In the setup above, the functor \mathbb{F} induces bijections

- If s is central, then $\operatorname{silt}^{\sigma} \Lambda=$ silt Λ and silt $^{\alpha} \bar{\Lambda}=$ silt $\bar{\Lambda}$.
- The converse is not true, fortunately!

3.5 Ribbon graph orders and Brauer graph algebras

Definition of Λ and $\bar{\Lambda}$:

$\boldsymbol{\Lambda}$: Let (Q, I) be 2-regular gentle, that is, at any $i \in Q_{0}$:

The arrow ideal completion Λ of its path algebra $\mathbb{k} Q / I$ is a ribbon graph order.
Remark: The ring Λ has a central element

$$
x=\text { sum of repetition-free cycles }=\sum_{\substack{\{a, b\} \subseteq Q_{1} \\ s(a)=s(b)}} c_{a}+c_{b}
$$

$\overline{\boldsymbol{\Lambda}}$: Choose positive integers $m=\left(m_{a}\right)_{a \in Q_{1}}$ which do not differ along cycles.
This yields a normal element:

$$
s_{m}=\sum_{\substack{\{a, b\} \subseteq Q_{1} \\ s(a)=s(b)}} c_{a}^{m_{a}}-c_{b}^{m_{b}}
$$

Then $\bar{\Lambda}=\Lambda / s_{m} \Lambda$ is a Brauer graph algebra.

Example:

$$
x=a_{2} b_{2}+b_{1} a_{1}+\ldots
$$

Choose $m_{1}, \ldots, m_{5} \in \mathbb{N}$ and add relations:

$$
\begin{aligned}
& \left(a_{2} b_{2}\right)^{m_{2}}=\left(b_{1} a_{1}\right)^{m_{1}} \\
& \left(a_{1} b_{1}\right)^{m_{1}}=\left(b_{4} a_{4}\right)^{m_{4}}
\end{aligned}
$$

$$
\left(a_{3} b_{3}\right)^{m_{3}}=\left(b_{2} a_{2}\right)^{m_{2}}
$$

3.6 Silting bijections between Brauer graph algebras and ribbon graph orders

Corollary 11

Let B be a Brauer graph algebra, so $\mathrm{B} \cong \Lambda / s \Lambda$ for a ribbon graph order Λ and normal regular element $s \in \operatorname{rad} \Lambda$. Then there are bijections

Proof. s induces an involution σ of $\Lambda \cong \widehat{\mathbb{k} Q / I}$ such that

$$
e_{i} \mapsto e_{i} \text { for any } i \in Q_{0}, \quad a \mapsto \varepsilon_{a} a= \pm a \quad \text { for any } a \in Q_{1}
$$

and an involution $\alpha=\bar{\sigma}$ of B . Theorem 10 yields f_{s}^{σ} and f_{t}^{σ}.
Burban and Drozd (2004) gave a description of ind[per Λ].
It can be shown that $L_{\sigma}^{+} \cong L^{*}$ for any $L^{*} \in \operatorname{ind}[\operatorname{per} \Lambda]$, and that $[\alpha] \in \operatorname{Out}_{0} \mathrm{~B}$.
The latter implies $P_{\alpha}^{*} \cong P^{\bullet}$ for any $P^{*} \in \operatorname{per} \Lambda$ with $\operatorname{Hom}_{\mathrm{D}(\mathrm{B})}\left(P^{\boldsymbol{*}}, P^{\bullet}[1]\right)=0$ by a result of Huisgen-Zimmermann and Saorin (2003).

Thank You for listening!

Happy birthday, Bill!

