Silting theory under change of rings

Wassilij Gnedin

Ruhr University Bochum, Germany

A conference in celebration of the work of Crawley-Boevey

September, 8th 2021

Setup and question

Main setup:

- R commutative Noetherian complete local ring, $\mathfrak{a} \subseteq \mathfrak{m} \subset R$.
- Λ Noetherian R-algebra, that is, $\Lambda_R \in \text{mod } R$. Set $\overline{\Lambda} = \Lambda/\mathfrak{a}\Lambda$.

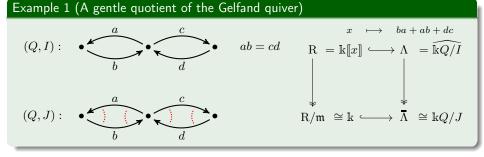
$$\begin{array}{cccc} \mathrm{R} & \longrightarrow \Lambda & & \mathrm{D}^{-}(\mathrm{mod}\,\Lambda) & & M^{\star} \\ \downarrow & & \downarrow & & \downarrow \mathbb{F} & & \downarrow \\ \mathrm{R}/\mathfrak{a} & \longrightarrow \overline{\Lambda} & \cong \Lambda \underset{\mathrm{R}}{\otimes} \mathrm{R}/\mathfrak{a} & & \mathrm{D}^{-}(\mathrm{mod}\,\overline{\Lambda}) & & \overline{M^{\star}} = M^{\star} \underset{\Lambda}{\otimes} \overset{\mathbb{L}}{\overline{\Lambda}} \end{array}$$

Motivating question:

How is the derived representation theory of Λ different from that of $\overline{\Lambda}$? General problem:

Usually, the functor ${\rm I\!F}$ is not dense and does not respect isomorphism classes. Main assumption:

$$\operatorname{Tor}_{+}^{\mathrm{R}}(\Lambda, \mathrm{R}/\mathfrak{a}) = 0$$
, that is, $\operatorname{Tor}_{n}^{\mathrm{R}}(\Lambda, \mathrm{R}/\mathfrak{a}) = 0$ for any $n > 0$. (*



• $(P_1 \xrightarrow{a \cdot} P_2 \xrightarrow{b \cdot} P_1)$ has no lift to $D^-(mod \Lambda)$.

• Set $B'_{\lambda} = (L_1 \oplus L_3 \longrightarrow L_1 \oplus L_3)$. Then $B'_{\lambda} \not\cong B'_0$ but $\overline{B'_{\lambda}} \cong \overline{B'_0}$ for any $\lambda \neq 0$.

• Λ is skew-gentle, while $\overline{\Lambda}$ is gentle.

- Lifting problems
- Silting bijections
- Applications and variations

1.1 An incomplete history of lifting problems

Derived lifting problem: Does P^* lift to L^* ?

Abelian lifting problem: Does a proj. resolution P' lift to a proj. resolution L'?

setup	abelian lifting problem	derived lifting problem
"representation theory	R regular, dim R = 1, $\Lambda = RG$	$\Lambda_{ m R}$ is free
of finite groups"	$\mathfrak{a} = \mathfrak{m}$	$\mathfrak{a}=\mathfrak{m}$
	[J.A. Green (1959)]	[Rickard (1991a)]
commutative algebra	$\mathbf{R} = \Lambda, \ \mathfrak{a} = (\underbrace{x_1, x_2, \dots, x_\ell}_{\text{R-regular}})$	
	[Eisenbud (1980)]	[Yoshino (1997)]
non-commutative	$\mathfrak{a} = (x_1, x_2, \dots, x_{\ell})$	common denominator
generalizations	R- and A-regular [Auslander-Ding-Solberg (1990)]	of setups?

1.2 A criterion to lift complexes

Next goal: lift $P' \in D^{-}(\text{mod }\overline{\Lambda})K^{-}(\text{proj }\overline{\Lambda})$

Basic observations: For any n > 0 set $\Lambda_n = \Lambda/\mathfrak{a}^n \Lambda$. Then

$$\Lambda \cong \varprojlim \left(\ \dots \Lambda_{n+1} \longrightarrow \Lambda_n \longrightarrow \dots \Lambda_2 \longrightarrow \Lambda_1 = \overline{\Lambda} \right)$$

For any n > 0 set $C_n = K^-(\operatorname{proj} \Lambda_n)$. Try to lift by induction:

$$\dots \mathcal{C}_{n+1} \longrightarrow \mathcal{C}_n \longrightarrow \dots \mathcal{C}_2 \longrightarrow \mathcal{C}_1$$
$$\dots \exists L_{n+1}^{i} : \longmapsto \exists L_n^{i} : \longmapsto \dots \exists L_2^{i} : \longmapsto L_1^{i} = P^{i}$$

If there is a sequence of iterated lifts, then $L^{\bullet} = \varprojlim L_{n}^{\bullet}$ yields a lift of P^{\bullet} . *n*-th lifting step: Assume that P^{\bullet} has a lift L_{n}^{\bullet} for n > 0.

A construction of Eisenbud yields a certain morphism

$$\Delta_n: P^{\bullet} \longrightarrow P^{\bullet} \bigotimes_{\mathbf{R}/\mathfrak{a}} \mathfrak{a}^n/\mathfrak{a}^{n+1}[2] = \alpha_n(P^{\bullet})[2]$$

It holds that: $\triangle_n \sim 0 \implies P^{\bullet}$ has a lift L_{n+1}^{\bullet} .

Proposition 1

If $\operatorname{Hom}_{D(\bar{\Lambda})}(P^{\bullet}, \alpha_n(P^{\bullet})[2]) = 0$ for any n > 0, then P^{\bullet} has a lift $L^{\bullet} \in D^{-}(\operatorname{mod} \Lambda)$.

1.3 Lifting complexes without higher self-extensions

Proposition 1

If $\operatorname{Hom}(P^{\text{\tiny \bullet}}, \alpha_n(P^{\text{\tiny \bullet}})[2]) = 0$ for any n > 0, then $P^{\text{\tiny \bullet}}$ has a lift $L^{\text{\tiny \bullet}} \in D^{-}(\operatorname{mod} \Lambda)$.

Lemma 2

Let $(\mathfrak{a}^n/\mathfrak{a}^{n+1})_{\mathrm{R}/\mathfrak{a}}$ be free for any n > 0. Then $\alpha_n(P^{\boldsymbol{\cdot}}) = P^{\boldsymbol{\cdot}} \underset{\mathrm{R}/\mathfrak{a}}{\otimes} \mathfrak{a}^n/\mathfrak{a}^{n+1} \cong P^{\boldsymbol{\cdot}}$ and

$$\operatorname{Tor}_{+}^{\mathrm{R}}(\Lambda, \mathrm{R}/\mathfrak{a}^{n}) = 0$$
 for any $n > 0$.

(**)

In particular, P^{\bullet} lifts if $\operatorname{Hom}(P^{\bullet}, P^{\bullet}[2]) = 0$.

For any $Q^{{\boldsymbol{\cdot}}} \in \mathrm{D}^{-}(\mathrm{mod}\,\overline{\Lambda})$ denote

$$P^{{\boldsymbol{\cdot}}} \geq Q^{{\boldsymbol{\cdot}}} \quad \text{ if } \operatorname{Hom}(P^{{\boldsymbol{\cdot}}},Q^{{\boldsymbol{\cdot}}}[n]) = 0 \text{ for any } n > 0.$$

Proposition 3

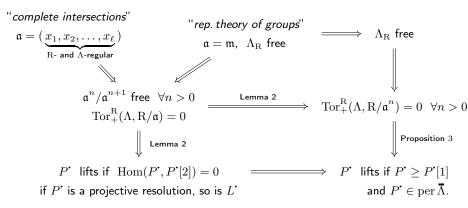
Assume (**) and $P' \in \text{per }\overline{\Lambda}$ such that $P' \geq Q'$. Then $P' \geq \alpha_n(Q')$ for any n > 0. In particular, P' lifts if $P' \geq P'[1]$.

The idea of the proof is inspired by recent work of Nasseh, Ono and Yoshino (2021).

1.4 Summary on lifting problems

Recall of main setup and derived lifting problem:

Common denominators of setups:



2.1 Recall of silting and tilting complexes

Notation for $L^{\bullet}, M^{\bullet}, T^{\bullet} \in \text{per } \Lambda$:

 $L^{\boldsymbol{\cdot}} \geq M^{\boldsymbol{\cdot}}$ if $\operatorname{Hom}(L^{\boldsymbol{\cdot}}, M^{\boldsymbol{\cdot}}[n]) = 0$ for any n > 0

 $T^{{\scriptscriptstyle \bullet}} \trianglerighteq T^{{\scriptscriptstyle \bullet}} \quad \text{ if } \operatorname{Hom}(T^{{\scriptscriptstyle \bullet}},T^{{\scriptscriptstyle \bullet}}[i]) = 0 \text{ for any } i \in \mathbb{Z} \backslash \{0\}$

Definition (Keller and Vossieck (1988), Rickard (1988))

• L' is silting if $\langle L' \rangle = \operatorname{per} \Lambda$ and L' is presilting, that is, $L' \ge L'$. • T' is tilting if $\langle T' \rangle = \operatorname{per} \Lambda$ and T' is pretilting, that is, $T' \ge T'$.

• silt $\Lambda =$ isomorphism classes of basic silting complexes of Λ .

Theorem (Aihara and Iyama (2012))

- (silt Λ, \geq) is a partially ordered set.
- **2** For any $L^{\cdot} \in \operatorname{silt} \Lambda$ and any $D^{\cdot} \in \operatorname{smd} L^{\cdot}$ there exists $\mu_{D^{\cdot}}(L^{\cdot}) \in \operatorname{silt} \Lambda$.

Theorem (Rickard (1988))

 Λ is derived equivalent to a ring $\Gamma \quad \Leftrightarrow \quad \text{there exists } T' \in \text{tilt } \Lambda : \quad \text{End}_{D(\Lambda)}(T') \cong \Gamma.$

In this case:

$$(\operatorname{silt} \Lambda, \geq) \xrightarrow{\sim} (\operatorname{silt} \Gamma, \geq)$$

2.2 Presilting complexes under change of rings

Proposition 4 (G.; cf. [lyama and Kimura (2021)])

Any $L^{\bullet}, M^{\bullet} \in \text{per } \Lambda$ satisfy:

 $L^{\bullet} \geq M^{\bullet} \quad \Leftrightarrow \quad \overline{L^{\bullet}} \geq \overline{M^{\bullet}} \quad \Rightarrow \quad \operatorname{Hom}(L^{\bullet}, M^{\bullet}) \stackrel{\mathbb{F}}{\longrightarrow} \operatorname{Hom}(\overline{L^{\bullet}}, \overline{M^{\bullet}})$

Proof. (of first " \Rightarrow ", based on Rickard [1991b]): Set $K^{\bullet} = \mathbb{R} \operatorname{Hom}_{\Lambda}(L^{\bullet}, M^{\bullet})$.

$$\operatorname{Tor}_{+}(\Lambda, \mathbf{R}/\mathfrak{a}) = 0 \quad \Rightarrow \quad \overline{K} = K \overset{\mathbb{L}}{\underset{\mathbf{R}}{\otimes}} \mathbf{R}/\mathfrak{a} \cong \mathbb{R} \operatorname{Hom}_{\bar{\Lambda}}(\overline{L}, \overline{M})$$

Using the Künneth spectral sequence

$$E_2^{pq} = \operatorname{Tor}_{-p}^{\mathcal{R}}(\mathcal{H}^{q}(K^{\bullet}), \mathbb{R}/\mathfrak{a}) \Rightarrow E^{p+q} = \mathcal{H}^{p+q}(\overline{K^{\bullet}})$$

it follows that

$$L^{\text{\tiny \bullet}} \geq M^{\text{\tiny \bullet}} \Leftrightarrow \mathrm{H}^+(K^{\text{\tiny \bullet}}) = 0 \Rightarrow E^{+q} = E^{p+} = 0 \Rightarrow E^+ = 0 \Leftrightarrow \mathrm{H}^+(\overline{K^{\text{\tiny \bullet}}}) = 0 \Leftrightarrow \overline{L^{\text{\tiny \bullet}}} \geq \overline{M^{\text{\tiny \bullet}}}$$

Corollary 5

There are embeddings f_{ps} : presilt $\Lambda \longrightarrow$ presilt $\overline{\Lambda}$ and f_s : silt $\Lambda \longrightarrow$ silt $\overline{\Lambda}$.

Proposition (Rickard (1991b))

For any $T' \in \text{per } \Lambda$ such that $T' \ge T'$: $\text{Tor}^{R}_{+}(\text{End}(T'), R/\mathfrak{a}) = 0 \Rightarrow \overline{T'} \ge \overline{T'}$.

So the embedding f_s restricts:

$$f_t \colon \mathsf{tilt}^{\mathbf{R}/\mathfrak{a}} \Lambda = \{ T^{\boldsymbol{\cdot}} \in \mathsf{tilt} \Lambda \mid \operatorname{Tor}_+^{\mathbf{R}}(\operatorname{End}(T^{\boldsymbol{\cdot}}), \mathbf{R}/\mathfrak{a}) = 0 \} \longleftrightarrow \mathsf{tilt} \overline{\Lambda}$$

Next question: Are lifts of pretilting complexes pretilting?

Definition

 R/\mathfrak{a} is Tor-rigid if for any $M\in \operatorname{mod} R:$

$$\operatorname{Tor}_{1}^{\mathrm{R}}(M, \mathrm{R}/\mathfrak{a}) = 0 \quad \Rightarrow \quad \operatorname{Tor}_{+}^{\mathrm{R}}(M, \mathrm{R}/\mathfrak{a}) = 0.$$

Proposition 6

Let R/\mathfrak{a} be Tor-rigid. For any $T' \in per \Lambda$, $L' \in D^{-}(mod \Lambda)$ and $i \in \mathbb{Z}$:

$$\operatorname{Hom}(\overline{T}, \overline{L}[i]) = 0 \quad \Rightarrow \quad \operatorname{Hom}(T, L[i]) = 0$$

In particular:

(a) If
$$\overline{T} \ge \overline{T}$$
, then $T \ge T$. (b) If \overline{L} is a projective resolution, so is L .

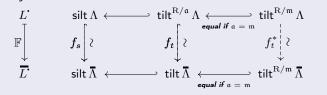
2.4 Main result: silting and tilting bijections

Recall: Λ Noetherian R-algebra, R complete local, $\mathfrak{a} \subseteq \mathfrak{m} \subset R$ and $\overline{\Lambda} = \Lambda/\mathfrak{a}\Lambda$.

Theorem 7

Assume that R/\mathfrak{a} be Tor-rigid and $\operatorname{Tor}^{R}_{+}(\Lambda, R/\mathfrak{a}^{n}) = 0$ for any n > 0, for example,

Then there are bijections:



$$\begin{aligned} \operatorname{tilt}^{\mathbf{R}/\mathfrak{a}}\Lambda &= \{T^{\star}\in\operatorname{tilt}\Lambda \mid \operatorname{Tor}_{+}^{\mathbf{R}}(\operatorname{End}(T^{\star}), \mathbf{R}/\mathfrak{a}) = 0\}\\ \operatorname{tilt}^{\mathbf{R}/\mathfrak{m}}\Lambda &= \{ \quad " \mid \operatorname{End}(T^{\star})_{\mathbf{R}} \text{ free}\}\\ \operatorname{tilt}^{\mathbf{R}/\mathfrak{m}}\overline{\Lambda} &= \{P^{\star}\in\operatorname{tilt}\overline{\Lambda} \mid \operatorname{End}(P^{\star})_{\mathbf{R}/\mathfrak{a}} \text{ free}\}\end{aligned}$$

2.5 Remarks on silting bijections

$$\begin{array}{c|c} \operatorname{silt} \Lambda & \longleftrightarrow & \operatorname{tilt}^{\mathbf{R}/\mathfrak{a}} \Lambda & \longleftrightarrow & \operatorname{tilt}^{\mathbf{R}/\mathfrak{a}} \Lambda \\ f_s & \downarrow \zeta & & f_t & \downarrow \zeta & & f_t^* & \downarrow \zeta \\ \vdots & & & & & \\ \operatorname{silt} \overline{\Lambda} & \longleftrightarrow & & \operatorname{tilt} \overline{\Lambda} & \longleftrightarrow & & \operatorname{tilt}^{\mathbf{R}/\mathfrak{m}} \overline{\Lambda} \end{array}$$

• In case $\mathfrak{a} = \mathfrak{m}$ and Λ_R is free, $f_t = f_t^*$ is bijective by [Rickard (1991a)].

• To show that " $\overline{T} \in \operatorname{tilt} \overline{\Lambda} \Rightarrow T \in \operatorname{tilt} \Lambda$ " Rickard proved that:

$$\langle T' \rangle = \operatorname{per} \Lambda \quad \underset{T' \succeq T'}{\Leftrightarrow} \langle T' \rangle^{\perp} \cap \mathrm{D}^{-}(\operatorname{mod} \Lambda) = 0.$$
 (1)

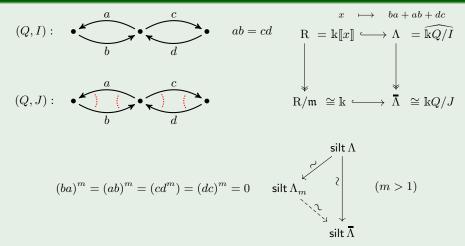
Interproof of Theorem 7 follows Rickard's approach.

• Main difficulty: to extend characterization (1) assuming $T' \ge T'$.

This extension uses dg-categorical arguments due to Keller.

Eisele showed independently that f_s is bijective if Λ and Λ are quotients of a common k[x]-order [Eisele (2021)].
 In this context, Eisele studied also derived Picard groups.

Example 2 (A gentle quotient of the Gelfand quiver)



Although a quotient Λ_m is derived-wild and the order Λ is skew-gentle, both have "gentle silting theory".

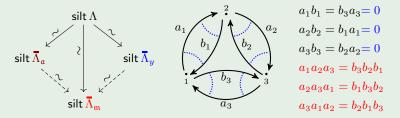
3.2 Quotients of a preprojective algebra of type $\widetilde{\mathbb{A}}$

Example 3

Let
$$\Lambda = \prod_{Q}$$
 with $Q = \widetilde{\mathbb{A}}_2$. Then Λ_{R} is free via:

$$\mathfrak{m} \subset \mathrm{R} = \Bbbk \llbracket x, y \rrbracket \longrightarrow \Lambda \qquad x \longmapsto \mathsf{sum of all } 3\text{-cycles} \qquad y \longmapsto \sum_{i=1}^3 a_i b_i$$

Theorem 7 yields bijections for the family of quotients $(\overline{\Lambda}_{\mathfrak{a}})_{\mathfrak{a}\subseteq\mathfrak{m}}$ with $\overline{\Lambda}_{\mathfrak{a}} = \Lambda/\mathfrak{a}\Lambda$:



 \Rightarrow the $\mathbb{R}[x]$ -order $\overline{\Lambda}_y$ is nodal, and thus derived-tame by [Burban, Drozd (2004)] \Rightarrow there is hope to classify silting complexes over derived-wild quotients $\overline{\Lambda}_{\mathfrak{a}}$ and Λ

3.3 Silting embeddings and descent in a more general setup

Proposition 8

Let S be a commutative ring, Λ a Noetherian S-algebra and Γ an S-algebra such that: • $\operatorname{Tor}^{+}_{+}(\Lambda, \Gamma) = 0$,

• for any $M \in \text{mod } S$: $M \otimes \Gamma \cong 0 \Rightarrow M = 0$.

Then there are well-defined injective maps, and for any $L \in per \Lambda$ it holds that:

$$\begin{array}{ccc} \operatorname{add} L^{\star} & \operatorname{silt}_{\mathcal{C}} \Lambda & \longleftarrow & \operatorname{tilt}_{\mathcal{C}}^{\Gamma} \Lambda & L^{\star} \in \operatorname{silt} \Lambda & L^{\star} \in \operatorname{tilt}^{\Gamma} \Lambda \\ \mathbb{F} & & & & \\ \mathbb{F} & & & & \\ f_{s} & & & \\ f_{s} & & & \\ f_{t} & & & \\ f_{t} & & & \\ f_{s} \Gamma \in \operatorname{mod} S \stackrel{\wedge}{\underset{\Omega}{\cap}} & & & \\ f_{s} \Gamma \text{ is } \operatorname{Tor-rigid} \stackrel{\wedge}{\underset{\Omega}{\cap}} \\ \operatorname{add} \mathbb{F}(L^{\star}) & & & \\ \operatorname{silt}_{\mathcal{C}} \Lambda \otimes \Gamma & \longleftarrow & \operatorname{tilt}_{\mathcal{C}} \Lambda \otimes \Gamma & \mathbb{F}(L^{\star}) \in \operatorname{silt} \Lambda \otimes \Gamma & \mathbb{F}(L^{\star}) \in \operatorname{tilt} \Lambda \otimes \Gamma \end{array}$$

Corollary 9

If $_{\rm S}\Gamma$ is faithfully flat, the maps f_s and f_t are well-defined and injective.

Theorem (Iyama and Kimura (2021))

For any $N^{{\boldsymbol{\cdot}}} \in \operatorname{D^b}(\operatorname{mod}\Lambda)$ it holds that

 $N^{\bullet} \in \operatorname{silt} \Lambda \quad \Leftrightarrow \quad N_{\mathfrak{p}}^{\bullet} \in \operatorname{silt} \Lambda_{\mathfrak{p}} \text{ for any prime ideal } \mathfrak{p} \text{ of } S.$

3.4 A variation of the silting bijection for skew-central quotients

As before, Λ is a Noetherian R-algebra. Let $s \in \operatorname{rad} \Lambda$ be *regular* and *normal*, that is:

$$\Lambda \stackrel{\cdot \cdot s}{\longrightarrow} \Lambda, \qquad \Lambda \stackrel{s \cdot \cdot}{\longrightarrow} \Lambda, \qquad s \Lambda = \Lambda s.$$

- There is an automorphism $\sigma = \sigma_s$ of Λ such that $sa = \sigma(a)s$ for any $a \in \Lambda$.
- Redefine $\overline{\Lambda}$ by $\Lambda/s\Lambda$. The automorphism σ induces an automorphism $\alpha = \overline{\sigma}$ of $\overline{\Lambda}$.

Theorem 10

In the setup above, the functor $\mathbb F$ induces bijections

$$\begin{array}{c} \operatorname{tilt}^{\sigma,s}\Lambda = \{T^{\boldsymbol{\cdot}} \in \operatorname{tilt}^{\sigma}\Lambda \mid \operatorname{Hom}_{\operatorname{D}(\bar{\Lambda})}(\overline{T}^{\boldsymbol{\cdot}},\overline{T}^{\boldsymbol{\cdot}}[-1]) = 0\} \\ f_{t}^{\sigma} \middle| \downarrow \\ & \\ \\ \operatorname{silt}^{\sigma}\Lambda = \{L^{\boldsymbol{\cdot}} \in \operatorname{silt}\Lambda \mid L_{\sigma}^{\boldsymbol{\cdot}} = L^{\boldsymbol{\cdot}} \bigotimes_{\Lambda}^{\mathbb{L}}\Lambda_{\sigma} \cong L^{\boldsymbol{\cdot}}\} \\ \\ \operatorname{tilt}^{\alpha}\overline{\Lambda} \qquad \qquad \\ & \\ \\ & \\ \\ \operatorname{silt}^{\alpha}\overline{\Lambda} \end{array}$$

• If s is central, then $\operatorname{silt}^{\sigma} \Lambda = \operatorname{silt} \Lambda$ and $\operatorname{silt}^{\alpha} \overline{\Lambda} = \operatorname{silt} \overline{\Lambda}$.

• The converse is not true, fortunately!

3.5 Ribbon graph orders and Brauer graph algebras

Definition of Λ and $\overline{\Lambda}$:

 $\mathbf{\Lambda}$: Let (Q, I) be 2-regular gentle, that is, at any $i \in Q_0$:

The arrow ideal completion Λ of its path algebra $\mathbb{k}Q/I$ is a *ribbon graph order*.

Remark: The ring Λ has a *central* element

 $x = \mathsf{sum}$ of repetition-free cycles $= \sum_{\substack{\{a,b\} \subseteq Q_1 \\ s(a) = s(b)}} c_a + c_b$

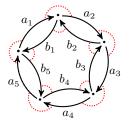
 $\overline{\Lambda}$: Choose positive integers $m = (m_a)_{a \in Q_1}$ which do not differ along cycles.

This yields a *normal* element:

$$s_m = \sum\limits_{\substack{\{a,b\}\subseteq Q_1\\s(a)=s(b)}} c_a^{m_a} - c_b^{m_b}$$

Then $\overline{\Lambda} = \Lambda / s_m \Lambda$ is a Brauer graph algebra.

Example:



$$x = a_2b_2 + b_1a_1 + \dots$$

Choose $m_1, \ldots, m_5 \in \mathbb{N}$ and add relations:

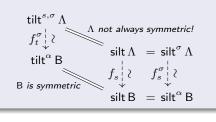
$$(a_2b_2)^{m_2} = (b_1a_1)^{m_1} (a_1b_1)^{m_1} = (b_4a_4)^{m_4}$$

 $(a_3b_3)^{m_3} = (b_2a_2)^{m_2}$

3.6 Silting bijections between Brauer graph algebras and ribbon graph orders

Corollary 11

Let B be a Brauer graph algebra, so $B \cong \Lambda/s\Lambda$ for a ribbon graph order Λ and normal regular element $s \in \operatorname{rad} \Lambda$. Then there are bijections



Proof. s induces an involution σ of $\Lambda\cong\widehat{\Bbbk Q/I}$ such that

$$e_i\mapsto e_i \text{ for any } i\in Q_0, \quad a\mapsto arepsilon_a a=\pm a \quad \text{ for any } a\in Q_1.$$

and an involution $\alpha = \overline{\sigma}$ of B. Theorem 10 yields f_s^{σ} and f_t^{σ} .

Burban and Drozd (2004) gave a description of $ind[per \Lambda]$.

It can be shown that $L_{\sigma} \cong L$ for any $L \in \operatorname{ind}[\operatorname{per} \Lambda]$, and that $[\alpha] \in \operatorname{Out}_0 B$.

The latter implies $P'_{\alpha} \cong P'$ for any $P' \in \text{per } \Lambda$ with $\text{Hom}_{D(B)}(P', P'[1]) = 0$ by a result of Huisgen-Zimmermann and Saorin (2003).

Thank You for listening!

Happy birthday, Bill !