The Deligne - Simpson Problem A guide to the work of WCB.

Andrew Hubery

Universität Bielefeld
3 September 2021

The Deligne - Simpson Problem

Given conjugacy classes \mathcal{C}_{i} in $\mathrm{GL}_{n}(\mathbb{C})(i=1, \ldots, k)$,
can we find matrices $M_{i} \in \mathcal{C}_{i}$ such that

$$
M_{1} \cdots M_{k}=1 ?
$$

The Deligne - Simpson Problem

Given conjugacy classes \mathcal{C}_{i} in $\mathrm{GL}_{n}(\mathbb{C})(i=1, \ldots, k)$,
can we find matrices $M_{i} \in \mathcal{C}_{i}$ such that

$$
M_{1} \cdots M_{k}=1 ?
$$

A solution is called irreducible provided the M_{i} have no common invariant subspace.

Can we find an irreducible solution?

Motivation

Fix distinct points $D=\left(a_{1}, \ldots, a_{k}\right)$ in \mathbb{P}^{1}.
The fundamental group of the complement is

$$
\pi_{1}:=\pi_{1}\left(\mathbb{P}^{1}-D\right)=\left\langle g_{1}, \ldots, g_{k} \mid g_{1} \cdots g_{k}=1\right\rangle
$$

Motivation

Fix distinct points $D=\left(a_{1}, \ldots, a_{k}\right)$ in \mathbb{P}^{1}.
The fundamental group of the complement is

$$
\pi_{1}:=\pi_{1}\left(\mathbb{P}^{1}-D\right)=\left\langle g_{1}, \ldots, g_{k} \mid g_{1} \cdots g_{k}=1\right\rangle
$$

The Riemann - Hilbert Correspondence says that taking monodromy yields an equivalence between
π_{1}-representations (of dimension n), and
locally-free sheaves E (of rank n) on \mathbb{P}^{1} equipped with a logarithmic connection

$$
\nabla: E \rightarrow E \otimes \Omega^{1}(D) \cong E(k-2)
$$

so a morphism of sheaves of \mathbb{C}-modules satisfying a Leibniz-type rule, e.g.

$$
\nabla(f s)=f \nabla(s)+\left(x-a_{1}\right) \cdots\left(x-a_{k}\right) d f s \quad \text { on } \mathbb{A}^{1}
$$

Motivation

Let U be affine open, intersecting D at $a_{j}=0$.
Assume E is trivial over U, with fibre V.
Then we have a holomorphic map $N: U \rightarrow \operatorname{End}(V)$, such that flat connections $(\nabla(s)=0)$ correspond to functions

$$
s: U-\{0\} \rightarrow V, \quad s(u)^{\prime}=-N(u)(s(u)) / u
$$

Moreover, all flat connections are meromorphic at the origin.

Motivation

Let U be affine open, intersecting D at $a_{j}=0$.
Assume E is trivial over U, with fibre V.
Then we have a holomorphic map $N: U \rightarrow \operatorname{End}(V)$, such that flat connections $(\nabla(s)=0)$ correspond to functions

$$
s: U-\{0\} \rightarrow V, \quad s(u)^{\prime}=-N(u)(s(u)) / u
$$

Moreover, all flat connections are meromorphic at the origin.
The residue is $N(0)$, and the monodromy is conjugate to $\exp (-2 \pi i N(0))$.
Thus, given some conjugacy classes, the DSP asks whether there exists a sheaf with logarithmic connection (regular system of ODEs) having these monodromies.

Survey: http://math.stanford.edu/~conrad/papers/rhtalk.pdf

Conjugacy classes of matrices

Let \mathcal{C} be a conjugacy class in $M_{n}(\mathbb{C})$. For a judicious choice of scalars ξ_{1}, \ldots, ξ_{w} and integers $n=d_{0}, d_{1}, \ldots, d_{w}=0$, we have

$$
M \in \mathcal{C} \Longleftrightarrow \operatorname{rank}\left(M-\xi_{1}\right) \cdots\left(M-\xi_{t}\right)=d_{t} \quad \forall t .
$$

Conjugacy classes of matrices

Proposition

Fix \mathcal{C}, corresponding to $\left(\xi_{t}, d_{t}\right)$. T.f.a.e.
(1) $M \in \overline{\mathcal{C}} \quad M \in \mathcal{C}$

Conjugacy classes of matrices

Proposition

Fix \mathcal{C}, corresponding to $\left(\xi_{t}, d_{t}\right)$. T.f.a.e.
(1) $M \in \overline{\mathcal{C}} \quad M \in \mathcal{C}$
(2) there exists a flag $\mathbb{C}^{n}=V_{0} \supset V_{1} \supset \cdots \supset V_{w}=0$ with $\operatorname{dim} V_{t}=d_{t}$ and

$$
\left(M-\xi_{t}\right)\left(V_{t-1}\right) \subseteq V_{t} \quad\left(M-\xi_{t}\right)\left(V_{t-1}\right)=V_{t}
$$

Conjugacy classes of matrices

Proposition

Fix \mathcal{C}, corresponding to $\left(\xi_{t}, d_{t}\right)$. T.f.a.e.
(1) $M \in \overline{\mathcal{C}} \quad M \in \mathcal{C}$
(2) there exists a flag $\mathbb{C}^{n}=V_{0} \supset V_{1} \supset \cdots \supset V_{w}=0$ with $\operatorname{dim} V_{t}=d_{t}$ and
$\left(M-\xi_{t}\right)\left(V_{t-1}\right) \subseteq V_{t} \quad\left(M-\xi_{t}\right)\left(V_{t-1}\right)=V_{t}$
(3) there exist vector spaces and maps

$$
\mathbb{C}^{n}=V_{0} \underset{b_{1}}{\stackrel{a_{1}}{\leftrightarrows}} V_{1} \underset{b_{2}}{\stackrel{a_{2}}{\leftrightarrows}} V_{2} \ldots-\ldots V_{w-1} \underset{b_{w}}{\stackrel{a_{w}}{\leftrightarrows}} V_{w}=0
$$

with $\operatorname{dim} V_{t}=d_{t}$, at injective, b_{t} surjective and

$$
M-a_{1} b_{1}=\xi_{1}, \quad a_{t+1} b_{t+1}-a_{t} b_{t}=\xi_{t}-\xi_{t+1}
$$

Star-shaped quiver

Given conjugacy classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ in $M_{n}(\mathbb{C})$.
Let \mathcal{C}_{i} correspond to scalars $\xi_{i t}$ and integers $d_{i t}\left(t \leq w_{i}\right)$
We define the star quiver Q

This comes with an associated lattice $\mathbb{Z}^{Q_{0}}$, root system Φ, and symmetric bilinear form $(-,-)$.
We set $p(f)=1-\frac{1}{2}(f, f)$ for $f \in \mathbb{Z}^{Q_{0}}$.

Additive DSP

The additive DSP asks whether, given \mathcal{C}_{i}, there exist $M_{i} \in \mathcal{C}_{i}$ with

$$
M_{1}+\cdots+M_{k}=0
$$

Additive DSP

The additive DSP asks whether, given \mathcal{C}_{i}, there exist $M_{i} \in \mathcal{C}_{i}$ with

$$
M_{1}+\cdots+M_{k}=0 .
$$

Again, a solution is irreducible provided the M_{i} have no common invariant subspace.

Can we find an irreducible solution?

Additive DSP

The additive DSP asks whether, given \mathcal{C}_{i}, there exist $M_{i} \in \mathcal{C}_{i}$ with

$$
M_{1}+\cdots+M_{k}=0
$$

Again, a solution is irreducible provided the M_{i} have no common invariant subspace.
Can we find an irreducible solution?
We define $\lambda \in \mathbb{C}^{Q_{0}}$ via

$$
\lambda_{0}=\sum_{i} \xi_{i 1}, \quad \lambda_{i t}=\xi_{i t}-\xi_{i t+1}
$$

Deformed preprojective algebra

The deformed preprojective algebra $\Pi^{\lambda} Q$ is the path algebra of the doubled quiver
modulo the relations

$$
\sum_{i} a_{i 1} b_{i 1}=\lambda_{0} e_{0}, \quad a_{i t+1} b_{i t+1}-b_{i t} a_{i t}=\lambda_{i t} e_{i t}
$$

Translating the problem

Theorem

\exists solution $M_{1}+\cdots+M_{k}=0$
$\Leftrightarrow \quad \begin{aligned} & \exists \Pi^{\lambda} \text {-module } \\ & \text { of dimension vector } d\end{aligned}$

Translating the problem

Theorem
\exists solution $M_{1}+\cdots+M_{k}=0$
$\Leftrightarrow \quad \exists \begin{aligned} & \exists \Pi^{\lambda} \text { _module } \\ & \text { of dimension vector } d\end{aligned}$
\exists solution with $M_{i} \in \mathcal{C}_{i}$
$\Leftrightarrow \exists$ strict Π^{λ}-module, dim d

We call a Π^{λ}-module strict provided the linear maps $A_{i t}$ are all injective, and the $B_{i t}$ are all surjective.

Translating the problem

Theorem
\exists solution $M_{1}+\cdots+M_{k}=0$
$\Leftrightarrow \quad \begin{aligned} & \exists \Pi^{\lambda} \text {-module } \\ & \text { of dimension vector } d\end{aligned}$
\exists solution with $M_{i} \in \mathcal{C}_{i} \quad \Leftrightarrow \exists$ strict Π^{λ}-module, dim d
\exists irred. solution with $M_{i} \in \mathcal{C}_{i} \Leftrightarrow \exists$ simple Π^{λ}-module, $\operatorname{dim} d$

All simple Π^{λ}-modules N with $N_{0} \neq 0$ are strict.

WCB. On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J. 118 (2003) 339-352.

Forgetful functor

There is a forgetful functor

$$
\bmod \Pi^{\lambda} \longrightarrow \bmod \mathbb{C} Q
$$

> Theorem
> A $\mathbb{C} Q$-module N lies in the image if and only if $\lambda \cdot \operatorname{dim} N^{\prime}=0$ for all indecomposable direct summands N^{\prime} of N.

Here $\lambda \cdot f=\lambda_{0} f_{0}+\sum_{i t} \lambda_{i t} f_{i t}$.

Forgetful functor

There is a forgetful functor

$$
\bmod \Pi^{\lambda} \longrightarrow \bmod \mathbb{C} Q
$$

Theorem

A $\mathbb{C} Q$-module N lies in the image if and only if $\lambda \cdot \operatorname{dim} N^{\prime}=0$ for all indecomposable direct summands N^{\prime} of N.

Here $\lambda \cdot f=\lambda_{0} f_{0}+\sum_{i t} \lambda_{i t} f_{i t}$.
Kac's Theorem says the dimension vectors of indecomposable $\mathbb{C} Q$-modules is precisely Φ^{+}.

Write $\Phi_{\lambda}^{+}:=\left\{f \in \Phi^{+} \mid \lambda \cdot f=0\right\}$. Then there is a Π^{λ}-module of dimension vector f if and only if $f \in \mathbb{N} \Phi_{\lambda}^{+}$.

Reflection functors

For each vertex $v \in Q_{0}$ with $\lambda_{v} \neq 0$ there is a reflection functor

$$
R_{v}: \bmod \Pi^{\lambda} \longrightarrow \bmod \Pi^{s_{v}^{*}(\lambda)}
$$

acting as the usual reflection s_{v} on dimension vectors.
We have

$$
s_{v}^{*}(\lambda) \cdot f=\lambda \cdot s_{v}(f)
$$

Reflection functors

For each vertex $v \in Q_{0}$ with $\lambda_{v} \neq 0$ there is a reflection functor

$$
R_{v}: \bmod \Pi^{\lambda} \longrightarrow \bmod \Pi^{s_{v}^{*}(\lambda)}
$$

acting as the usual reflection s_{v} on dimension vectors.
We have

$$
s_{v}^{*}(\lambda) \cdot f=\lambda \cdot s_{v}(f)
$$

Define Σ_{λ} to be those $f \in \Phi_{\lambda}^{+}$such that, for every non-trivial decomposition

$$
f=g_{1}+\cdots+g_{r}, \quad g_{i} \in \Phi_{\lambda}^{+}
$$

we have

$$
p(f)>p\left(g_{1}\right)+\cdots+p\left(g_{r}\right) .
$$

The reflection s_{v} sends Σ_{λ} to $\Sigma_{s_{v}^{*}(\lambda)}$.

Dimension vectors of simples

Theorem
If $f \in \Sigma_{\lambda}$, then the Π^{λ}-modules of dimension vector f form an irreducible affine variety, and the simple modules form a dense open subset.

WCB. Geometry of the moment map for representations of quivers, Compositio Math., 126 (2001) 257-293.

Reduction step

What about the converse?

Lemma

Suppose there exists a simple Π^{λ}-module of dimension vector f.
If v is a vertex with $\lambda_{v}=0$, then either $f=e_{v}$ or $\left(f, e_{v}\right) \leq 0$.

Thus we can apply reflections and assume f is minimal (so either $f=e_{v}$, or f is in the fundamental region).

Reduction step

What about the converse?

Lemma

Suppose there exists a simple Π^{λ}-module of dimension vector f.
If v is a vertex with $\lambda_{v}=0$, then either $f=e_{v}$ or $\left(f, e_{v}\right) \leq 0$.

Thus we can apply reflections and assume f is minimal (so either $f=e_{v}$, or f is in the fundamental region).
Suppose there exists a simple Π^{λ}-module of dimension vector f in the fundamental region. If $f \notin \Sigma_{\lambda}$, then the lemma puts severe restrictions on the quiver and the parameter λ.

Non-existence of simples

We are reduced to showing that there are no simple modules in the following three cases.
(I) Q is extended Dynkin, with minimal positive root $\delta, \lambda \cdot \delta=0$ and $f=m \delta$ with $m \geq 2$.
Arm lengths are $(2,2,2,2),(3,3,3),(2,4,4)$ or $(2,3,6)$.
(II) Q has arm lengths $(2,2,2,3),(3,3,4),(2,4,5)$ or $(2,3,7)$. This is an extended Dynkin subquiver Q^{\prime} together with an extra vertex v. We have $\lambda_{v}=0, f_{v}=1$, and $\left.f\right|_{Q^{\prime}}=m \delta$ with $m \geq 2$.
(III) f has two consecutive 1 s on some arm. If we remove the connecting edge to get the quiver $Q^{\prime} \amalg Q^{\prime \prime}$, then $\left.\lambda \cdot f\right|_{Q^{\prime}}=0$.

The first and third are relatively straightforward. The second is more involved.

Additive DSP: Summary

Theorem

There is a solution to the additive DSP with $M_{i} \in \overline{\mathcal{C}}_{i}$ if and only if $d \in \mathbb{N} \Phi_{\lambda}^{+}$.

Additive DSP: Summary

Theorem

There is a solution to the additive DSP with $M_{i} \in \overline{\mathcal{C}}_{i}$ if and only if $d \in \mathbb{N} \Phi_{\lambda}^{+}$.

Theorem
There is an irreducible solution with $M_{i} \in \mathcal{C}_{i}$ if and only if $d \in \Sigma_{\lambda}$.

WCB. On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J. 118 (2003) 339-352.

The Deligne - Simpson Problem

Given conjugacy classes \mathcal{C}_{i}, can we solve $M_{1} \cdots M_{k}=1$ with $M_{i} \in \mathcal{C}_{i}$? Are there irreducible solutions?

We can try and emulate the proof of the additive case.

The Deligne - Simpson Problem

Given conjugacy classes \mathcal{C}_{i}, can we solve $M_{1} \cdots M_{k}=1$ with $M_{i} \in \mathcal{C}_{i}$? Are there irreducible solutions?

We can try and emulate the proof of the additive case.
Recall that we have the data $\xi_{i t}$ and $d_{i t}$, and the quiver Q.
Define $q \in \mathbb{C}^{Q_{0}}$ via

$$
q_{0}=\prod_{i} \xi_{i 1}, \quad q_{i t}=\xi_{i t} / \xi_{i t+1}
$$

Compare with

$$
\lambda_{0}=\sum_{i} \xi_{i 1}, \quad \lambda_{i t}=\xi_{i t}-\xi_{i t+1}
$$

The multiplicative preprojective algebra

The multiplicative preprojective algebra Λ^{q} is the path algebra of
modulo the relations $1+a_{i t} b_{i t}, 1+b_{i t} a_{i t}$ invertible, and

$$
\begin{aligned}
\left(e_{0}+a_{11} b_{11}\right) \cdots\left(e_{0}+a_{k 1} b_{k 1}\right) & =q_{0} e_{0} \\
\left(e_{i t}+a_{i t+1} b_{i t+1}\right)\left(e_{i t}+b_{i t} a_{i t}\right)^{-1} & =q_{i t} e_{i t}
\end{aligned}
$$

c.f. $\quad a_{11} b_{11}+\cdots+a_{k 1} b_{k 1}=\lambda_{0} e_{0}, \quad a_{i t+1} b_{i t+1}-b_{i t} a_{i t}=\lambda_{i t} e_{i t}$.

Translating the problem

Theorem
\exists solution $M_{1} \cdots M_{k}=1$ with $M_{i} \in \overline{\mathcal{C}}_{i}$

Translating the problem

Theorem
\exists solution $M_{1} \cdots M_{k}=1$ with $M_{i} \in \overline{\mathcal{C}}_{i}$
\exists solution with $M_{i} \in \mathcal{C}_{i}$

$$
\begin{aligned}
& \Leftrightarrow \quad \exists \Lambda^{q} \text {-module } \\
& \text { of dimension vector } d \\
& \Leftrightarrow \quad \exists \text { strict } \Lambda^{q} \text {-module, } \operatorname{dim} d
\end{aligned}
$$

We call a Λ^{q}-module strict provided the linear maps $A_{i p}$ are all injective, and the $B_{i p}$ are all surjective.

Translating the problem

Theorem
\exists solution $M_{1} \cdots M_{k}=1$ with $M_{i} \in \overline{\mathcal{C}}_{i}$
\exists solution with $M_{i} \in \mathcal{C}_{i} \quad \Leftrightarrow \quad \exists$ strict Λ^{q}-module, dimd
\exists irred. solution with $M_{i} \in \mathcal{C}_{i} \Leftrightarrow \exists$ simple Λ^{q}-module, $\operatorname{dim} d$

All simple Λ^{q}-modules N with $N_{0} \neq 0$ are strict

WCB, P. Shaw. Multiplicative preprojective algebras, middle convolution and the Deligne - Simpson problem, Adv. Math. 201 (2006) 180-208.

No forgetful functor

Unfortunately, for the multiplicative preprojective algebra, there is no analogue of the forgetful functor

$$
\bmod \Pi^{\lambda} \longrightarrow \bmod \mathbb{C} Q
$$

and there is no description of the set of dimension vectors of Λ^{q}-modules.

No forgetful functor

Unfortunately, for the multiplicative preprojective algebra, there is no analogue of the forgetful functor

$$
\bmod \Pi^{\lambda} \longrightarrow \bmod \mathbb{C} Q
$$

and there is no description of the set of dimension vectors of Λ^{q}-modules.
We do have, though, that if there is a Λ^{q}-module of dimension vector f, then

$$
1=q^{f}:=\prod_{v} q_{v}^{f_{v}} .
$$

We therefore write $\Phi_{q}^{+}:=\left\{f \in \Phi^{+} \mid q^{f}=1\right\}$.

Reflection functors

Let v be a vertex with $q_{v} \neq 1$. Then there is a reflection functor

$$
R_{v}: \bmod \Lambda^{q} \longrightarrow \bmod \Lambda^{s_{v}^{*}(q)}
$$

acting as the usual reflection s_{v} on dimension vectors.
We have

$$
s_{v}^{*}(q)^{f}=q^{s_{v}(f)}
$$

Reflection functors

Let v be a vertex with $q_{v} \neq 1$. Then there is a reflection functor

$$
R_{v}: \bmod \Lambda^{q} \longrightarrow \bmod \Lambda^{s_{v}^{*}(q)}
$$

acting as the usual reflection s_{v} on dimension vectors.
We have

$$
s_{v}^{*}(q)^{f}=q^{s_{v}(f)}
$$

Define Σ_{q}^{\prime} to be those $f \in \Phi_{q}^{+}$such that, for every non-trivial decomposition

$$
f=g_{1}+\cdots+g_{r}, \quad g_{i} \in \Phi_{q}^{+}
$$

we have

$$
p(f)>p\left(g_{1}\right)+\cdots+p\left(g_{r}\right) .
$$

The reflection sends Σ_{q}^{\prime} to $\Sigma_{s_{v}^{*}(q)}^{\prime}$.

Dimension vectors of simples

Theorem
If $f \in \Sigma_{q}^{\prime}$, then the Λ^{q}-modules of $\operatorname{dim} f$, if non-empty, form an equidimensional variety, and the simple modules form a dense open subset.

WCB, P. Shaw. Multiplicative preprojective algebras, middle convolution and the Deligne - Simpson problem, Adv. Math. 201 (2006) 180-208.

Reduction step

What about the converse?

Lemma

Suppose there exists a simple \wedge^{q}-module of dimension vector f. If v is a vertex with $q_{v}=1$, then either $f=e_{v}$ or $\left(f, e_{v}\right) \leq 0$.

Thus we can again apply reflections and assume that f is minimal (so either $f=e_{v}$, or f is in the fundamental region).

Reduction step

What about the converse?
Lemma
Suppose there exists a simple \wedge^{q}-module of dimension vector f. If v is a vertex with $q_{v}=1$, then either $f=e_{v}$ or $\left(f, e_{v}\right) \leq 0$.

Thus we can again apply reflections and assume that f is minimal (so either $f=e_{v}$, or f is in the fundamental region).

To show that the dimension vectors of the simple Λ_{q}-modules all lie in Σ_{q}^{\prime}, we would again have to show that there are no simples in the same three cases as before.

Unclear how to proceed using multiplicative preprojective algebras.

A second approach

By introducing multiplicative preprojective algebras, WCB and Peter Shaw managed to emulate some, but not all, of the proof of the additive DSP.

We therefore need a complementary approach to the problem. This comes via the Riemann - Hilbert correspondence, relating the DSP to the category of sheaves on \mathbb{P}^{1} equipped with a logarithmic connection.

Logarithmic connections

Fix distinct points $D=\left(a_{1}, \ldots, a_{k}\right)$ in \mathbb{P}^{1}. Assume for convenience that $a_{j} \in \mathbb{C}=\mathbb{A}^{1}$.
Let E be a locally-free sheaf of rank n on \mathbb{P}^{1}. A logarithmic connection on E is a map

$$
\nabla: E \rightarrow E \otimes \Omega^{1}(D) \cong E(k-2)
$$

of sheaves of \mathbb{C}-modules satisfying the Leibniz-type rule

$$
\nabla(f s)=f \nabla(s)+\left(x-a_{1}\right) \cdots\left(x-a_{k}\right) d f s \quad f \in \mathbb{C}[x], \quad s \in E\left(\mathbb{A}^{1}\right)
$$

Residues

For each point a_{j} there is a residue map

$$
\operatorname{Res}_{a_{j}} \nabla \in \operatorname{End}\left(E_{a_{j}}\right)
$$

$E_{a_{j}}$ is the fibre of E at a_{j}, so a \mathbb{C}-vector space.

Residues

For each point a_{j} there is a residue map

$$
\operatorname{Res}_{a_{j}} \nabla \in \operatorname{End}\left(E_{a_{j}}\right)
$$

The monodromy around a_{j} is conjugate to $\exp \left(-2 \pi i \operatorname{Res}_{a_{j}} \nabla\right)$.
If we are to fix the conjugacy classes of the monodromies, then we need to fix the conjugacy classes of the residues.

We fix a transversal T to \mathbb{Z} in \mathbb{C}, and write

$$
\operatorname{conn}_{D, T} \mathbb{P}^{1}
$$

for the category of sheaves equipped with a logarithmic connection, all of whose eigenvalues lie in T.

The Riemann - Hilbert Correspondence

We have the fundamental group

$$
\pi_{1}=\pi_{1}\left(\mathbb{P}^{1}-D\right)=\left\langle g_{1}, \ldots, g_{k} \mid g_{1} \cdots g_{k}=1\right\rangle
$$

and the Riemann - Hilbert Correspondence says that taking monodromy yields an equivalence of categories

$$
\operatorname{conn}_{D, T} \mathbb{P}^{1} \cong \bmod \pi_{1}
$$

In particular, conn ${ }_{D, T} \mathbb{P}^{1}$ is an abelian category.

The Riemann - Hilbert Correspondence

We have the fundamental group

$$
\pi_{1}=\pi_{1}\left(\mathbb{P}^{1}-D\right)=\left\langle g_{1}, \ldots, g_{k} \mid g_{1} \cdots g_{k}=1\right\rangle
$$

and the Riemann - Hilbert Correspondence says that taking monodromy yields an equivalence of categories

$$
\operatorname{conn}_{D, T} \mathbb{P}^{1} \cong \bmod \pi_{1}
$$

In particular, conn ${ }_{D, T} \mathbb{P}^{1}$ is an abelian category.
Take $\zeta_{j t} \in T$ such that $\xi_{j t}=\exp \left(-2 \pi i \zeta_{j t}\right)$. The data $\zeta_{j t}, d_{j t}$ for fixed j determines a conjugacy class \mathcal{C}_{j}^{\prime}.
So we can reformulate the DSP as trying to construct logarithmic connections on locally-free sheaves such that $\operatorname{Res}_{a_{j}} \nabla \in \mathcal{C}_{j}^{\prime}$.

Atiyah and Mihai

There is a functorial morphism (tubular mutation) $\phi_{D}: E(-k) \longrightarrow E$.

Theorem

There is a functorial exact commutative diagram in coh \mathbb{P}^{1}

The sections of the top row are in bijection with connections on E. The sections of the bottom row are in bijection with log. conn. on E.

The top row is due to Atiyah. The bottom row to Mihai.

Atiyah and Mihai

There is a functorial morphism (tubular mutation) $\phi_{D}: E(-k) \longrightarrow E$.

Theorem

There is a functorial exact commutative diagram in coh \mathbb{P}^{1}

The sections of the top row are in bijection with connections on E. The sections of the bottom row are in bijection with log. conn. on E.
M.F. Atiyah. Complex analytic connections in fibre bundles,TAMS 85 (1957) 181-207.
A. Mihai. Sur le résidue et la monodromie d'une connexion méromorphe, C.R. Acad. Sc.

Paris Sér. A 281 (1975) 435-438.

Residues again

The cokernel of ϕ_{D} can be identified with $\bigoplus_{j} E_{a_{j}}$.
If E has a logarithmic connection ∇, then the composite

$$
E(-k) \xrightarrow{\phi_{D}} E \xrightarrow{\nabla} E(k-2)
$$

factors through $\phi_{D}: E(-k) \rightarrow E(k-2)$, so we have an induced morphism between the cokernels. This map is the direct sum of the residues

$$
\operatorname{Res}_{a_{j}} \nabla \in \operatorname{End}\left(E_{a_{j}}\right) .
$$

Parabolic bundles

We want to fix the conjugacy classes of the residues. One way to do this is to equip each fibre $E_{a_{i}}$ with a flag

$$
E_{a_{i}}=E_{i 0} \supset E_{i 1} \supset \cdots \supset E_{i w_{i}}=0
$$

In other words, we have a parabolic bundle $\left(E, E_{i t}\right)$.
We set $\underline{\operatorname{dim}}\left(E, E_{i t}\right)=\left(\operatorname{rank} E, \operatorname{dim} E_{i t}\right)$ in $\mathbb{Z}^{Q_{0}}$.

Parabolic bundles

We want to fix the conjugacy classes of the residues. One way to do this is to equip each fibre $E_{a_{i}}$ with a flag

$$
E_{a_{i}}=E_{i 0} \supset E_{i 1} \supset \cdots \supset E_{i w_{i}}=0
$$

In other words, we have a parabolic bundle $\left(E, E_{i t}\right)$.
We set $\underline{\operatorname{dim}}\left(E, E_{i t}\right)=\left(\operatorname{rank} E, \operatorname{dim} E_{i t}\right)$ in $\mathbb{Z}^{Q_{0}}$.
A ζ-connection on the parabolic bundle $\left(E, E_{i t}\right)$ is a logarithmic connection ∇ on E such that

$$
\left(\operatorname{Res}_{a_{i}} \nabla-\zeta_{i t}\right)\left(E_{i t-1}\right) \subseteq E_{i t} .
$$

First translation

There is a forgetful functor

$$
\operatorname{parbun}_{D, \zeta} \mathbb{P}^{1} \rightarrow \operatorname{conn}_{D, T} \mathbb{P}^{1}
$$

where parbun ${ }_{D, \zeta} \mathbb{P}^{1}$ is the category of parabolic bundles equipped with a ζ-connection.

First translation

There is a forgetful functor

$$
\operatorname{parbun}_{D, \zeta} \mathbb{P}^{1} \rightarrow \operatorname{conn}_{D, T} \mathbb{P}^{1}
$$

where parbun ${ }_{D, \zeta} \mathbb{P}^{1}$ is the category of parabolic bundles equipped with a ζ-connection.

Its image is an abelian subcategory, and we have fully faithful left and a right adjoints from the image.
So we almost have a recollement, but parbun ${ }_{D, \zeta} \mathbb{P}^{1}$ is only exact, not abelian.

Weighted projective lines

Following Lenzing, there is an equivalence between the category of parabolic bundles and the category of locally free sheaves on the weighted projective line \mathbb{X} (of type D, w).
The category coh \mathbb{X} of all coherent sheaves on \mathbb{X} is an hereditary abelian category, with finite dimensional homs and exts, and Serre functor

$$
E \mapsto E(\omega) .
$$

Weighted projective lines

Following Lenzing, there is an equivalence between the category of parabolic bundles and the category of locally free sheaves on the weighted projective line \mathbb{X} (of type D, w).
The category coh \mathbb{X} of all coherent sheaves on \mathbb{X} is an hereditary abelian category, with finite dimensional homs and exts, and Serre functor

$$
E \mapsto E(\omega) .
$$

There is also a forgetful functor

$$
\operatorname{coh} \mathbb{X} \longrightarrow \operatorname{coh} \mathbb{P}^{1}, \quad E \mapsto E_{0}
$$

with fully faithful left and right adjoints (so a recollement).

Zeta connections

Theorem
There is a functorial short exact sequence in coh \mathbb{X}

$$
0 \longrightarrow E(\omega) \longrightarrow B_{\zeta}(E) \longrightarrow E \longrightarrow 0 .
$$

If E is locally free, then sections are in bijection with ζ-connections on the corresponding parabolic bundle $\left(E_{0}, E_{i t}\right)$.

We write $\operatorname{coh}_{\zeta} \mathbb{X}$ for the abelian category of pairs (E, σ) where σ is section for E.

WCB. Connections for weighted projective lines, J. Pure Appl. Alg. 215 (2011) 35-43.

Second translation

Theorem

\exists solution $M_{1} \cdots M_{k}=1$ with $M_{i} \in \overline{\mathcal{C}}_{i}$

Second translation

Theorem

\exists solution $M_{1} \cdots M_{k}=1$ with $M_{i} \in \overline{\mathcal{C}}_{i}$
\exists solution with $M_{i} \in \mathcal{C}_{i}$
$\Leftrightarrow \begin{aligned} & \exists(E, \sigma) \in \operatorname{coh}_{\zeta} \mathbb{X} \text {, locally free, } \\ & \underline{\operatorname{dim} E=d}\end{aligned}$
$\Leftrightarrow \quad \exists \operatorname{strict}(E, \sigma), \underline{\operatorname{dim}} E=d$

We call $(E, \sigma) \in \operatorname{coh}_{\zeta} \mathbb{X}$ strict provided it is locally free and the counit $L(E, \sigma) \rightarrow(E, \sigma)$ is an isomorphism.

Second translation

Theorem

\exists solution $M_{1} \cdots M_{k}=1$ with $M_{i} \in \overline{\mathcal{C}}_{i}$
$\Leftrightarrow \begin{aligned} & \exists(E, \sigma) \in \operatorname{coh}_{\zeta} \mathbb{X}, \text { locally free, } \\ & \underline{\operatorname{dim} E=d}\end{aligned}$
\exists solution with $M_{i} \in \mathcal{C}_{i}$
$\Leftrightarrow \quad \exists \operatorname{strict}(E, \sigma), \underline{\operatorname{dim}} E=d$
\exists irred. solution with $M_{i} \in \mathcal{C}_{i} \Leftrightarrow \exists \operatorname{simple}(E, \sigma), \underline{\operatorname{dim} E} E d$

All simple (E, σ) of positive rank are strict.

Existence of sections

The Grothendieck group of \mathbb{X} can be identified with $\mathbb{Z} \oplus \mathbb{Z}^{Q_{0}}$, where

$$
[E]=\left(\operatorname{deg} E_{0}, \underline{\operatorname{dim}} E\right)
$$

We can then use Serre Duality to obtain
Theorem
There exists a section for E if and only if $\operatorname{deg} E_{0}^{\prime}+\zeta * \underline{\operatorname{dim}} E^{\prime}=0$ for all indecomposable direct summands E^{\prime} of E.

Here

$$
\zeta * f=\sum_{i t} \zeta_{i t}\left(f_{i t-1}-f_{i t}\right)
$$

A simple computation

Recall that

$$
\xi_{j t}=\exp \left(-2 \pi i \zeta_{j t}\right)
$$

and

$$
q_{0}=\prod_{j} \xi_{j 1}, \quad q_{j t}=\xi_{j t} / \xi_{j t+1}
$$

Thus

$$
\zeta * f \in \mathbb{Z} \quad \Longleftrightarrow \quad q^{f}=1
$$

Classes of indecomposable sheaves

The next result is an analogue of Kac's Theorem.

Theorem

There exists an indecomposable $E \in \operatorname{coh} \mathbb{X}$ with $[E]=(m, f)$ if and only if $f \in \Phi^{+}$(or $f \in \Phi^{-}, f_{0}=0$, and $m>0$).

WCB. Kac's Theorem for weighted projective lines, Journal E.M.S. 12 (2010), 1331-1345.

Existence of solutions

Combining these results gives
Theorem
There is a solution to the DSP if and only if $d \in \mathbb{N} \Phi_{q}^{+}$.

Existence of solutions

Combining these results gives

Theorem

There is a solution to the DSP if and only if $d \in \mathbb{N} \Phi_{q}^{+}$.

We can also combine with the results using multiplicative preprojective algebras to get

Theorem

If $d \in \Sigma_{q}^{\prime}$, then there exists an irreducible solution to the DSP.

Non-existence of simples

For the converse,

$$
\text { if there is an irreducible solution, then } d \in \Sigma_{q} \text {, }
$$

we can use the reflection functors (as defined for the multiplicative preprojective algebra) and follow the proof of the additive DSP.

We are reduced to showing that there are no simple objects $(E, \sigma) \in \operatorname{coh}_{\zeta} \mathbb{X}$ with $\underline{\operatorname{dim}} E=f$ in the same three cases (I), (II), (III) described earlier.

Non-existence of simples

(I) Here Q is extended Dynkin, so coh \mathbb{X} is of tubular type. Let $h \geq 1$ be minimal such that $q^{h \delta}=1$.
 then (E, σ) is not simple.

We can reduce to the case when all indecomposable summands of E lie in a single tube. Passing to a suitable perpendicular category, the result then follows from the deformed preprojective algebra case.

Non-existence of simples

(II) Here coh \mathbb{X} is of extended tubular type. We can shorten one of the arms by one to obtain coh \mathbb{X}^{\prime} of tubular type. These categories are related by a recollement.

This case is much more involved, and again relies on the corresponding deformed preprojective case.
(III) Here f has consecutive 1 s on some arm, and is relatively easy.

WCB, A. Hubery. A new approach to simple modules for preprojective algebras, Alg. Rep. Th. 23 (2020) 1849-1860.

WCB, A. Hubery. The Deligne Simpson Problem, preprint.

DSP: Summary

Theorem
There is a solution to the DSP with $M_{i} \in \overline{\mathcal{C}}_{i}$ if and only if $d \in \mathbb{N} \Phi_{q}^{+}$.

Theorem
There is an irreducible solution with $M_{i} \in \mathcal{C}_{i}$ if and only if $d \in \Sigma_{q}^{\prime}$.

Happy Birthday, Bill!

