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The Deligne – Simpson Problem

The Deligne – Simpson Problem

Given conjugacy classes Ci in GLn(C) (i = 1, . . . , k),

can we find matrices Mi ∈ Ci such that

M1 · · ·Mk = 1?

A solution is called irreducible provided the Mi have no common invariant
subspace.

Can we find an irreducible solution?
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The Deligne – Simpson Problem

Motivation

Fix distinct points D = (a1, . . . , ak) in P1.

The fundamental group of the complement is

π1 := π1(P1 − D) = 〈g1, . . . , gk | g1 · · · gk = 1〉.

The Riemann – Hilbert Correspondence says that taking monodromy yields
an equivalence between

π1-representations (of dimension n), and

locally-free sheaves E (of rank n) on P1 equipped with a logarithmic
connection

∇ : E → E ⊗ Ω1(D) ∼= E (k − 2)

so a morphism of sheaves of C-modules satisfying a Leibniz-type rule, e.g.

∇(fs) = f∇(s) + (x − a1) · · · (x − ak)df s on A1
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The Deligne – Simpson Problem

Motivation

Let U be affine open, intersecting D at aj = 0.

Assume E is trivial over U, with fibre V .

Then we have a holomorphic map N : U → End(V ), such that flat
connections (∇(s) = 0) correspond to functions

s : U − {0} → V , s(u)′ = −N(u)(s(u))/u.

Moreover, all flat connections are meromorphic at the origin.

The residue is N(0), and the monodromy is conjugate to exp(−2πiN(0)).

Thus, given some conjugacy classes, the DSP asks whether there exists a
sheaf with logarithmic connection (regular system of ODEs) having these
monodromies.

Survey: http://math.stanford.edu/~conrad/papers/rhtalk.pdf
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Conjugacy classes of matrices

Conjugacy classes of matrices

Let C be a conjugacy class in Mn(C). For a judicious choice of

scalars ξ1, . . . , ξw and

integers n = d0, d1, . . . , dw = 0, we have

M ∈ C ⇐⇒ rank(M − ξ1) · · · (M − ξt) = dt ∀t.
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Conjugacy classes of matrices

Conjugacy classes of matrices

Proposition

Fix C, corresponding to (ξt , dt). T.f.a.e.

1 M ∈ C̄ M ∈ C

2 there exists a flag Cn = V0 ⊃ V1 ⊃ · · · ⊃ Vw = 0 with
dimVt = dt and
(M − ξt)(Vt−1) ⊆ Vt (M − ξt)(Vt−1) = Vt

3 there exist vector spaces and maps

Cn = V0 V1 V2 Vw−1 Vw = 0
b1

a1

b2

a2

bw

aw

with dimVt = dt , at injective, bt surjective and

M − a1b1 = ξ1, at+1bt+1 − atbt = ξt − ξt+1
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Conjugacy classes of matrices Star-shaped quiver

Star-shaped quiver

Given conjugacy classes C1, . . . , Ck in Mn(C).

Let Ci correspond to scalars ξit and integers dit (t ≤ wi )

We define the star quiver Q

(1, 1) (1, 2) (1,w1 − 1)

0 (2, 1) (2, 2) (2,w2 − 1)

(k , 1) (k, 2) (k ,wk − 1)

This comes with an associated lattice ZQ0 , root system Φ, and symmetric
bilinear form (−,−).

We set p(f ) = 1− 1
2(f , f ) for f ∈ ZQ0 .
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The additive DSP

Additive DSP

The additive DSP asks whether, given Ci , there exist Mi ∈ Ci with

M1 + · · ·+ Mk = 0.

Again, a solution is irreducible provided the Mi have no common
invariant subspace.

Can we find an irreducible solution?

We define λ ∈ CQ0 via

λ0 =
∑
i

ξi1, λit = ξit − ξit+1.
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The additive DSP Deformed preprojective algebra

Deformed preprojective algebra

The deformed preprojective algebra ΠλQ is the path algebra of the
doubled quiver

(1, 1) (1, 2) (1,w1 − 1)

0 (2, 1) (2, 2) (2,w2 − 1)

(k , 1) (k, 2) (k ,wk − 1)

a11 b12

a12

b11

b21

bk1

a21

b21

a22

ak1

bk2

ak2

modulo the relations∑
i

ai1bi1 = λ0e0, ait+1bit+1 − bitait = λiteit .
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The additive DSP Deformed preprojective algebra

Translating the problem

Theorem

∃ solution M1 + · · ·+ Mk = 0
with Mi ∈ C̄i

⇔ ∃ Πλ-module
of dimension vector d

∃ solution with Mi ∈ Ci ⇔ ∃ strict Πλ-module, dim d

∃ irred. solution with Mi ∈ Ci ⇔ ∃ simple Πλ-module, dim d

All simple Πλ-modules N with N0 6= 0 are strict.

WCB. On matrices in prescribed conjugacy classes with no common invariant subspace
and sum zero, Duke Math. J. 118 (2003) 339–352.
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The additive DSP Deformed preprojective algebra

Forgetful functor

There is a forgetful functor

mod Πλ −→ modCQ.

Theorem

A CQ-module N lies in the image if and only if λ · dimN ′ = 0 for all
indecomposable direct summands N ′ of N.

Here λ · f = λ0f0 +
∑

it λit fit .

Kac’s Theorem says the dimension vectors of indecomposable CQ-modules
is precisely Φ+.

Write Φ+
λ := {f ∈ Φ+ | λ · f = 0}. Then there is a Πλ-module of

dimension vector f if and only if f ∈ NΦ+
λ .
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The additive DSP Deformed preprojective algebra

Reflection functors

For each vertex v ∈ Q0 with λv 6= 0 there is a reflection functor

Rv : mod Πλ −→ mod Πs∗v (λ)

acting as the usual reflection sv on dimension vectors.

We have
s∗v (λ) · f = λ · sv (f ).

Define Σλ to be those f ∈ Φ+
λ such that, for every non-trivial

decomposition
f = g1 + · · ·+ gr , gi ∈ Φ+

λ

we have
p(f ) > p(g1) + · · ·+ p(gr ).

The reflection sv sends Σλ to Σs∗v (λ)
.
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The additive DSP Deformed preprojective algebra

Dimension vectors of simples

Theorem

If f ∈ Σλ, then the Πλ-modules of dimension vector f form an irreducible
affine variety, and the simple modules form a dense open subset.

WCB. Geometry of the moment map for representations of quivers, Compositio Math.,

126 (2001) 257–293.

13 / 42



The additive DSP Deformed preprojective algebra

Reduction step

What about the converse?

Lemma

Suppose there exists a simple Πλ-module of dimension vector f .
If v is a vertex with λv = 0, then either f = ev or (f , ev ) ≤ 0.

Thus we can apply reflections and assume f is minimal (so either f = ev ,
or f is in the fundamental region).

Suppose there exists a simple Πλ-module of dimension vector f in the
fundamental region. If f 6∈ Σλ, then the lemma puts severe restrictions on
the quiver and the parameter λ.
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The additive DSP Deformed preprojective algebra

Non-existence of simples

We are reduced to showing that there are no simple modules in the
following three cases.

(I) Q is extended Dynkin, with minimal positive root δ, λ · δ = 0 and
f = mδ with m ≥ 2.
Arm lengths are (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6).

(II) Q has arm lengths (2, 2, 2, 3), (3, 3, 4), (2, 4, 5) or (2, 3, 7). This is an
extended Dynkin subquiver Q ′ together with an extra vertex v .
We have λv = 0, fv = 1, and f |Q′ = mδ with m ≥ 2.

(III) f has two consecutive 1s on some arm. If we remove the connecting
edge to get the quiver Q ′ q Q ′′, then λ · f |Q′ = 0.

The first and third are relatively straightforward. The second is more
involved.
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The additive DSP Summary

Additive DSP: Summary

Theorem

There is a solution to the additive DSP with Mi ∈ C̄i if and only if
d ∈ NΦ+

λ .

Theorem

There is an irreducible solution with Mi ∈ Ci if and only if d ∈ Σλ.

WCB. On matrices in prescribed conjugacy classes with no common invariant subspace

and sum zero, Duke Math. J. 118 (2003) 339–352.
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The multiplicative DSP

The Deligne – Simpson Problem

Given conjugacy classes Ci , can we solve M1 · · ·Mk = 1 with Mi ∈ Ci? Are
there irreducible solutions?

We can try and emulate the proof of the additive case.

Recall that we have the data ξit and dit , and the quiver Q.

Define q ∈ CQ0 via

q0 =
∏
i

ξi1, qit = ξit/ξit+1.

Compare with

λ0 =
∑
i

ξi1, λit = ξit − ξit+1.
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The multiplicative DSP The multiplicative preprojective algebra

The multiplicative preprojective algebra

The multiplicative preprojective algebra Λq is the path algebra of

(1, 1) (1, 2) (1,w1 − 1)

0 (2, 1) (2, 2) (2,w2 − 1)

(k , 1) (k, 2) (k ,wk − 1)

a11 b12

a12

b11

b21

bk1

a21

b21

a22

ak1

bk2

ak2

modulo the relations 1 + aitbit , 1 + bitait invertible, and

(e0 + a11b11) · · · (e0 + ak1bk1) = q0e0

(eit + ait+1bit+1)(eit + bitait)
−1 = qiteit

c.f. a11b11 + · · ·+ ak1bk1 = λ0e0, ait+1bit+1 − bitait = λiteit .

18 / 42



The multiplicative DSP The multiplicative preprojective algebra

Translating the problem

Theorem

∃ solution M1 · · ·Mk = 1
with Mi ∈ C̄i

⇔ ∃ Λq-module
of dimension vector d

∃ solution with Mi ∈ Ci ⇔ ∃ strict Λq-module, dim d

∃ irred. solution with Mi ∈ Ci ⇔ ∃ simple Λq-module, dim d

All simple Λq-modules N with N0 6= 0 are strict

WCB, P. Shaw. Multiplicative preprojective algebras, middle convolution and the

Deligne – Simpson problem, Adv. Math. 201 (2006) 180–208.
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The multiplicative DSP The multiplicative preprojective algebra

No forgetful functor

Unfortunately, for the multiplicative preprojective algebra, there is no
analogue of the forgetful functor

mod Πλ −→ modCQ

and there is no description of the set of dimension vectors of Λq-modules.

We do have, though, that if there is a Λq-module of dimension vector f ,
then

1 = qf :=
∏
v

qfvv .

We therefore write Φ+
q := {f ∈ Φ+ | qf = 1}.
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The multiplicative DSP The multiplicative preprojective algebra

Reflection functors

Let v be a vertex with qv 6= 1. Then there is a reflection functor

Rv : mod Λq −→ mod Λs∗v (q)

acting as the usual reflection sv on dimension vectors.

We have
s∗v (q)f = qsv (f ).

Define Σ′q to be those f ∈ Φ+
q such that, for every non-trivial

decomposition
f = g1 + · · ·+ gr , gi ∈ Φ+

q

we have
p(f ) > p(g1) + · · ·+ p(gr ).

The reflection sends Σ′q to Σ′s∗v (q)
.
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The multiplicative DSP The multiplicative preprojective algebra

Dimension vectors of simples

Theorem

If f ∈ Σ′q, then the Λq-modules of dim f , if non-empty, form an
equidimensional variety, and the simple modules form a dense open subset.

WCB, P. Shaw. Multiplicative preprojective algebras, middle convolution and the

Deligne – Simpson problem, Adv. Math. 201 (2006) 180–208.
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The multiplicative DSP The multiplicative preprojective algebra

Reduction step

What about the converse?

Lemma

Suppose there exists a simple Λq-module of dimension vector f .
If v is a vertex with qv = 1, then either f = ev or (f , ev ) ≤ 0.

Thus we can again apply reflections and assume that f is minimal (so
either f = ev , or f is in the fundamental region).

To show that the dimension vectors of the simple Λq-modules all lie in Σ′q,
we would again have to show that there are no simples in the same three
cases as before.

Unclear how to proceed using multiplicative preprojective algebras.
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The multiplicative DSP

A second approach

By introducing multiplicative preprojective algebras, WCB and Peter Shaw
managed to emulate some, but not all, of the proof of the additive DSP.

We therefore need a complementary approach to the problem. This comes
via the Riemann – Hilbert correspondence, relating the DSP to the
category of sheaves on P1 equipped with a logarithmic connection.
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The multiplicative DSP The RH Correspondence

Logarithmic connections

Fix distinct points D = (a1, . . . , ak) in P1. Assume for convenience that
aj ∈ C = A1.

Let E be a locally-free sheaf of rank n on P1. A logarithmic connection
on E is a map

∇ : E → E ⊗ Ω1(D) ∼= E (k − 2)

of sheaves of C-modules satisfying the Leibniz-type rule

∇(fs) = f∇(s) + (x − a1) · · · (x − ak)df s f ∈ C[x ], s ∈ E (A1).
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The multiplicative DSP The RH Correspondence

Residues

For each point aj there is a residue map

Resaj ∇ ∈ End(Eaj )

Eaj is the fibre of E at aj , so a C-vector space.

The monodromy around ajis conjugate to exp(−2πi Resaj ∇).

If we are to fix the conjugacy classes of the monodromies, then we need to
fix the conjugacy classes of the residues.

We fix a transversal T to Z in C, and write

connD,T P1

for the category of sheaves equipped with a logarithmic connection, all of
whose eigenvalues lie in T .
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The multiplicative DSP The RH Correspondence

The Riemann – Hilbert Correspondence

We have the fundamental group

π1 = π1(P1 − D) = 〈g1, . . . , gk | g1 · · · gk = 1〉

and the Riemann – Hilbert Correspondence says that taking monodromy
yields an equivalence of categories

connD,T P1 ∼= modπ1.

In particular, connD,T P1 is an abelian category.

Take ζjt ∈ T such that ξjt = exp(−2πiζjt). The data ζjt , djt for fixed j
determines a conjugacy class C′j .
So we can reformulate the DSP as trying to construct logarithmic
connections on locally-free sheaves such that Resaj ∇ ∈ C′j .
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The multiplicative DSP Logarithmic connections

Atiyah and Mihai

There is a functorial morphism (tubular mutation) φD : E (−k) −→ E .

Theorem

There is a functorial exact commutative diagram in cohP1

0 E (−2) A(E ) E 0

0 E (k − 2) MD(E ) E 0

φD

The sections of the top row are in bijection with connections on E.
The sections of the bottom row are in bijection with log. conn. on E.

The top row is due to Atiyah. The bottom row to Mihai.

M.F. Atiyah. Complex analytic connections in fibre bundles,TAMS 85 (1957) 181–207.

A. Mihai. Sur le résidue et la monodromie d’une connexion méromorphe, C.R. Acad. Sc.

Paris Sér. A 281 (1975) 435–438.
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The multiplicative DSP Logarithmic connections

Residues again

The cokernel of φD can be identified with
⊕

j Eaj .

If E has a logarithmic connection ∇, then the composite

E (−k) E E (k − 2)
φD ∇

factors through φD : E (−k)→ E (k − 2), so we have an induced morphism
between the cokernels. This map is the direct sum of the residues

Resaj ∇ ∈ End(Eaj ).
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The multiplicative DSP Parabolic bundles

Parabolic bundles

We want to fix the conjugacy classes of the residues. One way to do this is
to equip each fibre Eai with a flag

Eai = Ei0 ⊃ Ei1 ⊃ · · · ⊃ Eiwi
= 0.

In other words, we have a parabolic bundle (E ,Eit).

We set dim(E ,Eit) = (rankE , dimEit) in ZQ0 .

A ζ-connection on the parabolic bundle (E ,Eit) is a logarithmic
connection ∇ on E such that

(Resai ∇− ζit)(Eit−1) ⊆ Eit .
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The multiplicative DSP Parabolic bundles

First translation

There is a forgetful functor

parbunD,ζ P1 → connD,T P1

where parbunD,ζ P1 is the category of parabolic bundles equipped with a
ζ-connection.

Its image is an abelian subcategory, and we have fully faithful left and a
right adjoints from the image.

So we almost have a recollement,

but parbunD,ζ P1 is only exact, not abelian.
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The multiplicative DSP Weighted projective lines

Weighted projective lines

Following Lenzing, there is an equivalence between the category of
parabolic bundles and the category of locally free sheaves on the weighted
projective line X (of type D,w).

The category cohX of all coherent sheaves on X is an hereditary abelian
category, with finite dimensional homs and exts, and Serre functor

E 7→ E (ω).

There is also a forgetful functor

cohX −→ cohP1, E 7→ E0

with fully faithful left and right adjoints (so a recollement).
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The multiplicative DSP Weighted projective lines

Zeta connections

Theorem

There is a functorial short exact sequence in cohX

0 −→ E (ω) −→ Bζ(E ) −→ E −→ 0.

If E is locally free, then sections are in bijection with ζ-connections on the
corresponding parabolic bundle (E0,Eit).

We write cohζ X for the abelian category of pairs (E , σ) where σ is section
for E .

WCB. Connections for weighted projective lines, J. Pure Appl. Alg. 215 (2011) 35–43.
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The multiplicative DSP Weighted projective lines

Second translation

Theorem

∃ solution M1 · · ·Mk = 1
with Mi ∈ C̄i

⇔ ∃ (E , σ) ∈ cohζ X, locally free,
dimE = d

∃ solution with Mi ∈ Ci ⇔ ∃ strict (E , σ), dimE = d

∃ irred. solution with Mi ∈ Ci ⇔ ∃ simple (E , σ), dimE = d

All simple (E , σ) of positive rank are strict.
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The multiplicative DSP Weighted projective lines

Existence of sections

The Grothendieck group of X can be identified with Z⊕ ZQ0 , where

[E ] = (deg E0, dimE ).

We can then use Serre Duality to obtain

Theorem

There exists a section for E if and only if deg E ′0 + ζ ∗ dimE ′ = 0 for all
indecomposable direct summands E ′ of E .

Here
ζ ∗ f =

∑
it

ζit(fit−1 − fit).
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The multiplicative DSP Weighted projective lines

A simple computation

Recall that
ξjt = exp(−2πiζjt)

and
q0 =

∏
j

ξj1, qjt = ξjt/ξjt+1.

Thus
ζ ∗ f ∈ Z ⇐⇒ qf = 1.
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The multiplicative DSP Weighted projective lines

Classes of indecomposable sheaves

The next result is an analogue of Kac’s Theorem.

Theorem

There exists an indecomposable E ∈ cohX with [E ] = (m, f )
if and only if f ∈ Φ+ (or f ∈ Φ−, f0 = 0, and m > 0).

WCB. Kac’s Theorem for weighted projective lines, Journal E.M.S. 12 (2010),

1331–1345.
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The multiplicative DSP Weighted projective lines

Existence of solutions

Combining these results gives

Theorem

There is a solution to the DSP if and only if d ∈ NΦ+
q .

We can also combine with the results using multiplicative preprojective
algebras to get

Theorem

If d ∈ Σ′q, then there exists an irreducible solution to the DSP.
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The multiplicative DSP Weighted projective lines

Non-existence of simples

For the converse,

if there is an irreducible solution, then d ∈ Σq,

we can use the reflection functors (as defined for the multiplicative
preprojective algebra) and follow the proof of the additive DSP.

We are reduced to showing that there are no simple objects
(E , σ) ∈ cohζ X with dimE = f in the same three cases (I), (II), (III)
described earlier.
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The multiplicative DSP Weighted projective lines

Non-existence of simples

(I) Here Q is extended Dynkin, so cohX is of tubular type. Let h ≥ 1 be
minimal such that qhδ = 1.

We need to show that if (E , σ) ∈ cohζ X has dimE = mhδ with m ≥ 2,
then (E , σ) is not simple.

We can reduce to the case when all indecomposable summands of E lie in
a single tube. Passing to a suitable perpendicular category, the result then
follows from the deformed preprojective algebra case.
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The multiplicative DSP Weighted projective lines

Non-existence of simples

(II) Here cohX is of extended tubular type. We can shorten one of the
arms by one to obtain cohX′ of tubular type. These categories are related
by a recollement.

This case is much more involved, and again relies on the corresponding
deformed preprojective case.

(III) Here f has consecutive 1s on some arm, and is relatively easy.

WCB, A. Hubery. A new approach to simple modules for preprojective algebras, Alg.
Rep. Th. 23 (2020) 1849–1860.

WCB, A. Hubery. The Deligne Simpson Problem, preprint.
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The multiplicative DSP Summary

DSP: Summary

Theorem

There is a solution to the DSP with Mi ∈ C̄i if and only if d ∈ NΦ+
q .

Theorem

There is an irreducible solution with Mi ∈ Ci if and only if d ∈ Σ′q.

Happy Birthday, Bill !
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