Uniqueness of exact Borel subalgebras and

 bocses
(joint work with Vanessa Miemietz)

Julian Külshammer

Department of Mathematics
Uppsala University

September 9, 2021

Bill in July 2009

(2) Sep 9, 2021 | Uniqueness of exact Borel subalgebras and bocses ((joint work with Vanessa Miemietz))

Quivers and relations

Theorem (Morita '58)

For every finite dimensional algebra \wedge there is a basic algebra Λ^{b} such that $\bmod \Lambda \cong \bmod \Lambda^{b}$. If \wedge is Morita equivalent to Γ, then $\Lambda^{b} \cong \Gamma^{b}$.

Theorem (Gabriel's structure theorem '73)

Over $\mathbb{k}=\overline{\mathbb{k}}$, every basic algebra is isomorphic to $\mathfrak{k} Q / I$ for Q a finite quiver and I an admissible ideal.

Lemma (Govorov '73, Butler, cf. Bongartz '83)
$\mathbb{D} \operatorname{Ext}{ }^{1}(L(i), L(j)) \cong e_{j} Q_{+} / Q_{+}^{2} e_{i}$ arrows
$\mathbb{D} \operatorname{Ext}^{2}(L(i), L(j)) \cong e_{j} I /\left(I Q_{+}+Q_{+} I\right) e_{i} \quad$ relations

Koszul algebras

How to reconstruct the relations from Ext ${ }^{2}$ between simples?

Definition

Let $A=\mathbb{k} Q / /$ be a graded algebra, $\operatorname{deg} \alpha=1$ for $\alpha \in Q_{1}$. Then A is Koszul if $\mathrm{Ext}_{A}^{* \bullet \bullet}(\mathbb{L}, \mathbb{L})$ is generated by degree $(1,1)$ as an algebra.

Theorem (Beilinson-Ginzburg-Soergel '96)

If A is a basic Koszul algebra, then A is isomorphic to the quadratic dual of $\mathrm{Ext}_{A}^{*}(\mathbb{L}, \mathbb{L})$. In fact, this uses only Ext^{1} and Ext ${ }^{2}$.

What about the general case? Most algebras are not Koszul!

A_{∞}-algebras

Definition (Stasheff '63)

An A_{∞}-algebra is a graded vector space \mathscr{E} together with graded linear maps $m_{n}: \mathscr{E}^{\otimes n} \rightarrow \mathscr{E}$ of degree $2-n$ such that for all $n \geq 1$:

$$
\sum_{r+s+t=n}(-1)^{r+s t} m_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t}\right)=0
$$

- $n=1: m_{1} m_{1}=0$, cochain complex;
- $n=2: m_{1} m_{2}-m_{2}\left(\mathrm{id} \otimes m_{1}+m_{1} \otimes \mathrm{id}\right)=0$, graded Leibniz rule;
- $n=3: m_{1} m_{3}+m_{3} m_{1}^{\otimes}+m_{2}\left(m_{2} \otimes \mathrm{id}-\mathrm{id} \otimes m_{2}\right)=0$, associative up to homotopy, etc.
(5) Sep 9, 2021 | Uniqueness of exact Borel subalgebras and bocses ((joint work with Vanessa Miemietz))

A_{∞}-morphisms

Definition

Given A_{∞}-algebras \mathscr{E} and \mathscr{E}^{\prime}, an A_{∞}-morphism $\mathscr{E} \rightarrow \mathscr{E}^{\prime}$ is given by graded linear maps $f_{n}: \mathscr{E}^{\otimes n} \rightarrow \mathscr{E}^{\prime}$ of degree $1-n$ such that for all $n \geq 1$:

$$
\begin{aligned}
& \sum_{r+t=n}(-1)^{r+s t} f_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t}\right) \\
= & \sum_{\sum j_{\ell}=n}(-1)^{\sum(\ell-i)\left(j_{i}-1\right)} m_{k}\left(f_{j_{1}} \otimes \cdots \otimes f_{j_{k}}\right)
\end{aligned}
$$

Lemma
f is an isomorphism iff f_{1} is an isomorphism.

Definition

f is an A_{∞}-quasi-isomorphism if f_{1} is a quasi-isomorphism.
(6) Sep 9, 2021 | Uniqueness of exact Borel subalgebras and bocses ((joint work with Vanessa Miemietz))

Relation to dg algebras

There are two important cases in which an A_{∞}-algebra happens to be associative. We will only deal with such cases.

Definition

An A_{∞}-algebra is called a dg algebra if $m_{n}=0$ for all $n \geq 3$. An A_{∞}-algebra is called minimal if $m_{1}=0$.

Lemma

If \mathscr{E} and \mathscr{E}° are minimal A_{∞}-algebras, then every A_{∞}-quasi-isomorphism between \mathscr{E} and \mathscr{E}^{\prime} is an isomorphisms.

Kadeishvili's theorem

Theorem (Kadeishvili '83)

Let \mathscr{D} be a dg algebra. Then there exists an A_{∞}-structure on $H^{*}(\mathscr{D})$ together with an A_{∞}-quasi-isomorphism $H^{*}(\mathscr{D}) \rightarrow \mathscr{D}$. This structure is unique up to (non-unique) isomorphism.

We apply this to

$$
\mathscr{D}=\operatorname{Hom}_{A}^{*}\left(P_{M}^{\bullet}, P_{M}^{\bullet}\right)
$$

and its homology

$$
\mathscr{E}=\operatorname{Ext}^{*}(M, M)
$$

Call an A_{∞}-structure arising this way canonical.

Construction of quiver and relations

Theorem (Keller '99)

Let $A=\mathbb{k} Q / I$, then A is quasi-isomorphic to the dual bar construction, i.e. A_{∞}-Koszul dual, of Ext* (\mathbb{L}, \mathbb{L}).

Theorem (Keller '01)

Given a presentation $A=\mathbb{k} Q / I$, then there is a canonical A_{∞}-structure on $\mathrm{Ext}_{A}^{*}(\mathbb{L}, \mathbb{L})$ and a splitting $I /\left(I Q_{+}+Q_{+} I\right) \rightarrow I \hookrightarrow \mathbb{k} Q$ which can be identified with the dual of the map

$$
\left(m_{n}\right)_{n \in \mathbb{N}}: \bigoplus_{n} \operatorname{Ext}_{A}^{1}(\mathbb{L}, \mathbb{L})^{\otimes n} \rightarrow \operatorname{Ext}_{A}^{2}(\mathbb{L}, \mathbb{L})
$$

Uniqueness of the basic algebra follows from uniqueness in Kadeishvili's theorem.
(9) Sep 9, 2021 | Uniqueness of exact Borel subalgebras and bocses ((joint work with Vanessa Miemietz))

Example

Let $A=\mathbb{k}(1 \xrightarrow{\gamma} 2 \xrightarrow{\beta} 3 \xrightarrow{\alpha} 4) /(\alpha \beta \gamma)$.
Then $\operatorname{Ext}_{A}^{*}(\mathbb{L}, \mathbb{L}) \cong \mathbb{k}(1 \xrightarrow{c} 2 \xrightarrow{b} 3 \xrightarrow{a} 4) /(c b, b a)$
with $m_{3}(a, b, c)=r$.

Exceptional collections and quasi-hereditary algebras

Definition (Beilinson '78, Bondal '89)

$\Delta(1), \ldots, \Delta(\mathrm{n})$ form an exceptional collection if

- $\operatorname{End}(\Delta(i)) \cong \mathbb{k}$, and $E x t^{k}(\Delta(i), \Delta(i))=0$ for $k \neq 0$;
- $\operatorname{Ext}^{k}(\Delta(\mathrm{i}), \Delta(\mathrm{j}))=0$ for $\mathrm{i}>\mathrm{j}$ and all k.

Bill investigated these for path algebras of quivers in '93.

Definition (Cline-Parshall-Scott '88)

An algebra \wedge is quasi-hereditary if there is an exceptional collection of modules such that \wedge has a filtration with subquotients isomorphic to Δ.

Example

Blocks of BGG category \mathscr{O}, Schur algebras, gldim ≤ 2.

Short summary of the rest of the talk

- Everything that could be done before for $\operatorname{Ext}_{A}^{*}(\mathbb{L}, \mathbb{L})$ can be done for quasi-hereditary algebras for $\operatorname{Ext}_{\Lambda}^{*}(\Delta, \Delta)$ as well.
- The only difference is that everything gets much more technical because $\operatorname{Hom}_{\wedge}(\Delta, \Delta) \neq 0$.
- At the moment, we don't know of a different route to prove uniqueness.

Regular exact Borel subalgebras

Definition (Koenig '95, Kleiner-Roiter '75)

Let R be a quasi-hereditary algebra. A subalgebra $B \subseteq R$ is called an exact Borel subalgebra if

- B has the same indexing set of simple modules;
- B is quasi-hereditary with simple standard modules;
- $R \otimes_{B}$ - is exact;
- $R \otimes_{B} L_{B}(\mathrm{i}) \cong \Delta_{R}(\mathrm{i})$.

It is called regular (resp. basic) if in addition

- $\operatorname{Ext}_{B}^{\geq 1}(L(i), L(j)) \rightarrow \operatorname{Ext}_{R}^{\lambda^{-1}}(\Delta(\mathrm{i}), \Delta(\mathrm{j}))$ is an isomorphism for all i, j (and B is basic).

Analogue of Gabriel's structure theorem

$$
\begin{aligned}
& \text { Theorem (Koenig-K-Ovsienko '14) } \\
& \text { For every quasi-hereditary algebra } \wedge \text {, there is a Morita } \\
& \text { equivalent algebra } R \text { which has a regular basic exact Borel } \\
& \text { subalgebra. }
\end{aligned}
$$

> Theorem (K-Miemietz '21, cf. Conde '20)
> This algebra extension is unique up to isomorphism, i.e. if R and S are Morita equivalent quasi-hereditary algebras with regular basic exact Borel subalgebras A and B, respectively, then there exists an algebra isomorphism from R to S sending A to B.

Conde has an inductive combinatorial formula computing R from \wedge.

Analogue of the Govorov, Butler-Bongartz

It is convenient to work with $V=\operatorname{Hom}_{B^{\circ p}}(R, B)$.
Lemma (Ovsienko (unpublished), cf. K-Miemietz '21)
Let R be a quasi-hereditary algebra with regular basic exact Borel subalgebra $B \cong \mathbb{k} Q / I$, then

$$
\begin{aligned}
\mathbb{D} \operatorname{Ext}_{R}^{1}(\Delta(\mathrm{i}), \Delta(\mathrm{j})) & \cong e_{\mathrm{j}} Q_{+} / Q_{+}^{2} e_{\mathrm{i}} \\
\mathbb{D} \operatorname{Ext}_{R}^{2}(\Delta(\mathrm{i}), \Delta(\mathrm{j})) & \cong e_{j} / /\left(I Q_{+}+Q_{+} l\right) e_{\mathrm{i}} \\
\mathbb{D} \operatorname{Hom}_{R}(\Delta(\mathrm{i}), \Delta(\mathrm{j})) & \cong e_{\mathrm{j}} V /\left(V J_{B}+J_{B} V\right) e_{\mathrm{i}}
\end{aligned}
$$

Uniqueness of regular exact Borel subalgebras

Uniqueness of B up to isomorphism follows from

Theorem (K-Miemietz '21)

Let R be a quasi-hereditary algebra with basic regular exact Borel subalgebra B, then

$$
\operatorname{Ext}_{B}^{\geq 1}(\mathbb{L}, \mathbb{L}) \cong \operatorname{Ext}_{R}^{\geq 1}(\Delta, \Delta)
$$

as (non-unital) A_{∞}-algebras (for a certain compatible choice of canonical A_{∞}-structures).

Construction via A_{∞}-Koszul duality

By results of Sweedler, Kleiner, Burt-Butler, Roiter, Brzeziński-Koenig-K, and K-Miemietz it suffices to construct a dg algebra since
regular exact Borel subalgebras
\leftrightarrow regular directed corings (B, V)
\leftrightarrow semifree directed dg algebras ($T_{B}(\bar{V}), \partial$)

Theorem (Koenig-K-Ovsienko '14)

The semifree $d g$ algebra needed is the quotient of the dual bar construction of $\operatorname{Ext}_{\wedge}^{*}(\Delta, \Delta)$ by the differential ideal generated by the negative degree part.

An inverse construction

Theorem (K-Miemietz '21)

Let $B \subseteq R$ be a regular basic exact Borel subalgebra and let $V=\operatorname{Hom}_{B^{\circ \mathrm{p}}}(R, B)$ and \bar{V} be the kernel of the counit. Then given a presentation $B=\mathbb{k} Q / I$, there is a canonical A_{∞}-structure and a splitting $I /\left(I Q_{+}+Q_{+} I\right) \rightarrow \mathbb{k} Q$ which can be identified with the dual of the map

$$
\left(m_{n}\right)_{n \in \mathbb{N}}: \bigoplus_{n} \operatorname{Ext}_{R}^{1}(\Delta, \Delta)^{\otimes n} \rightarrow \operatorname{Ext}_{R}^{2}(\Delta, \Delta)
$$

contd.

and a splitting $A \rightarrow \mathbb{k} Q$ such that

$$
\left(m_{n}\right)_{n \in \mathbb{N}}: \bigoplus_{i+j=n-1}\left(\mathrm{Ext}_{R}^{1}\right)^{\otimes i} \otimes \operatorname{rad} \otimes\left(\mathrm{Ext}_{R}^{1}\right)^{\otimes j} \rightarrow \mathrm{Ext}^{1}
$$

can be identified with the dual of

$$
Q_{+} / Q_{+}^{2} \rightarrow B \xrightarrow{\partial_{Q}} \bar{V} \cong B \otimes \Phi \otimes B \rightarrow \mathbb{k} Q \otimes \Phi \otimes \mathbb{k} Q, \text { and }
$$

$\bigoplus\left(\mathrm{Ext}_{R}^{1}\right)^{\otimes i} \otimes \operatorname{rad} \otimes\left(\mathrm{Ext}_{R}^{1}\right)^{\otimes j} \otimes \mathrm{rad} \otimes\left(\mathrm{Ext}_{1}^{R}\right)^{\otimes k} \xrightarrow{\left(m_{n}\right)_{n \in \mathbb{N}}} \mathrm{rad}$

$$
i+j+k=n-2
$$

can be identified with the dual of

$$
\Phi \rightarrow \bar{V} \xrightarrow{\partial_{1}} \bar{V} \otimes_{B} \bar{V} \cong B \otimes \Phi \otimes B \otimes \Phi \otimes B \rightarrow \mathbb{k} Q \otimes \Phi \otimes \mathbb{k} Q \otimes \Phi \otimes \mathbb{k} Q
$$

Dual extension algebra [Xi '95, Thuresson '20]

$$
\begin{aligned}
& \Lambda= \\
& \mathbb{k}\left(1 \underset{\gamma}{\stackrel{\gamma}{\rightleftarrows}} 2 \underset{\beta^{\prime}}{\stackrel{\beta}{\rightleftarrows}} 3 \underset{\alpha^{\prime}}{\stackrel{\alpha}{\rightleftarrows}} 4\right) /\left(\alpha \beta \gamma, \gamma^{\prime} \beta^{\prime} \alpha^{\prime}, \gamma \gamma^{\prime}, \beta \beta^{\prime}, \alpha \alpha^{\prime}\right)
\end{aligned}
$$

Then

The unique regular basic exact Borel subalgebra is

$R \cong \operatorname{End}_{\Lambda}(P(1) \oplus P(2) \oplus 2 P(3) \oplus 4 P(4))^{\circ \rho}$.

