Bill Gabriel

A∞ 0000 Gabriel∞ ○○ exceptional

exceptional∞ 00000

Uniqueness of exact Borel subalgebras and bocses (joint work with Vanessa Miemietz)

Julian Külshammer

Department of Mathematics Uppsala University

September 9, 2021

Bill	Gabriel	A_{∞}	Gabriel∞	exceptiona
•	00	0000	00	00000

exceptional∞

Bill in July 2009

Bill	Gabriel	A∞	Gabriel∞	exceptional	exceptional∞
0	•0	0000	00	00000	00000

Quivers and relations

Theorem (Morita '58)

For every finite dimensional algebra \wedge there is a basic algebra \wedge^{b} such that $\operatorname{mod} \Lambda \cong \operatorname{mod} \Lambda^{b}$. If \wedge is Morita equivalent to Γ , then $\Lambda^{b} \cong \Gamma^{b}$.

Theorem (Gabriel's structure theorem '73)

Over $\Bbbk = \overline{\Bbbk}$, every basic algebra is isomorphic to $\Bbbk Q/I$ for Q a finite quiver and I an admissible ideal.

Lemma (Govorov '73, Butler, cf. Bongartz	'83)
$\mathbb{D}\operatorname{Ext}^{1}(L(\mathrm{i}),L(\mathrm{j}))\cong \boldsymbol{e}_{\mathrm{j}}\boldsymbol{Q}_{+}/\boldsymbol{Q}_{+}^{2}\boldsymbol{e}_{\mathrm{i}}$	arrows
$\mathbb{D}\operatorname{Ext}^2(L(i),L(j))\cong e_jI/(IQ_++Q_+I)e_i$	relations

Bill	Gabriel	A	Gabriel∞	exceptional	exceptional∞
0	0●	0000	00	00000	00000

Koszul algebras

How to reconstruct the relations from Ext² between simples?

Definition

Let $A = \Bbbk Q/I$ be a graded algebra, deg $\alpha = 1$ for $\alpha \in Q_1$. Then A is **Koszul** if $\operatorname{Ext}_A^{*,\bullet}(\mathbb{L},\mathbb{L})$ is generated by degree (1,1) as an algebra.

Theorem (Beilinson–Ginzburg–Soergel '96)

If A is a basic Koszul algebra, then A is isomorphic to the quadratic dual of $\operatorname{Ext}_{A}^{*}(\mathbb{L},\mathbb{L})$. In fact, this uses only Ext^{1} and Ext^{2} .

What about the general case? Most algebras are not Koszul!

Bill	Gabriel	<i>A</i> ∞	Gabriel∞	exceptional	exceptional∞
o	oo	●○○○	○○	00000	○○○○○
<i>A</i> ∞-a	algebras				

Definition (Stasheff '63)

An A_{∞} -algebra is a graded vector space \mathscr{E} together with graded linear maps $m_n : \mathscr{E}^{\otimes n} \to \mathscr{E}$ of degree 2 - n such that for all $n \ge 1$:

$$\sum_{r+s+t=n} (-1)^{r+st} m_{r+1+t} (\mathrm{id}^{\otimes r} \otimes m_s \otimes \mathrm{id}^{\otimes t}) = 0$$

- n = 1: $m_1 m_1 = 0$, cochain complex;
- ▶ n = 2: $m_1 m_2 m_2(id \otimes m_1 + m_1 \otimes id) = 0$, graded Leibniz rule;
- ► n = 3: $m_1 m_3 + m_3 m_1^{\otimes} + m_2 (m_2 \otimes id id \otimes m_2) = 0$, associative up to homotopy, etc.

Bill	Gabriel	<i>A</i> ∞	Gabriel∞	exceptional	exceptional∞
o	oo	○●○○	○○		○○○○○
-					

A_{∞} -morphisms

Definition

Given A_{∞} -algebras \mathscr{E} and \mathscr{E}' , an A_{∞} -morphism $\mathscr{E} \to \mathscr{E}'$ is given by graded linear maps $f_n \colon \mathscr{E}^{\otimes n} \to \mathscr{E}'$ of degree 1 - n such that for all $n \ge 1$:

$$\sum_{\substack{r+s+t=n\\\sum j_{\ell}=n}} (-1)^{r+st} f_{r+1+t} (\mathrm{id}^{\otimes r} \otimes m_s \otimes \mathrm{id}^{\otimes t})$$
$$= \sum_{\sum j_{\ell}=n} (-1)^{\sum (\ell-i)(j_{\ell}-1)} m_k (f_{j_1} \otimes \cdots \otimes f_{j_k})$$

Lemma

f is an isomorphism iff f_1 is an isomorphism.

Definition

f is an A_{∞} -quasi-isomorphism if f_1 is a quasi-isomorphism.

Relation to dg algebras

There are two important cases in which an A_{∞} -algebra happens to be associative. We will only deal with such cases.

Definition

An A_{∞} -algebra is called a **dg algebra** if $m_n = 0$ for all $n \ge 3$. An A_{∞} -algebra is called **minimal** if $m_1 = 0$.

Lemma

If \mathscr{E} and \mathscr{E}' are minimal A_{∞} -algebras, then every A_{∞} -quasi-isomorphism between \mathscr{E} and \mathscr{E}' is an isomorphisms.

Bill	Gabriel	A.	Gabriel∞	exceptional	exceptional∞
0	00	0000	00	00000	00000

Kadeishvili's theorem

Theorem (Kadeishvili '83)

Let \mathscr{D} be a dg algebra. Then there exists an A_{∞} -structure on $H^*(\mathscr{D})$ together with an A_{∞} -quasi-isomorphism $H^*(\mathscr{D}) \to \mathscr{D}$. This structure is unique up to (non-unique) isomorphism.

We apply this to

$$\mathscr{D} = \operatorname{Hom}_{\mathcal{A}}^*(\mathcal{P}_{\mathcal{M}}^{\bullet}, \mathcal{P}_{\mathcal{M}}^{\bullet})$$

and its homology

$$\mathscr{E} = \mathsf{Ext}^*(M, M).$$

Call an A_{∞} -structure arising this way **canonical**.

Bill	Gabriel	A	Gabriel∞	exceptional	exceptional∞
0	00	0000	•0	00000	00000

Construction of quiver and relations

Theorem (Keller '99)

Let $A = \Bbbk Q/I$, then A is quasi-isomorphic to the dual bar construction, i.e. A_{∞} -Koszul dual, of $Ext^*(\mathbb{L},\mathbb{L})$.

Theorem (Keller '01)

Given a presentation $A = \Bbbk Q/I$, then there is a canonical A_{∞} -structure on $\operatorname{Ext}^*_A(\mathbb{L},\mathbb{L})$ and a splitting $I/(IQ_+ + Q_+I) \to I \hookrightarrow \Bbbk Q$ which can be identified with the dual of the map

$$(m_n)_{n\in\mathbb{N}}\colon \bigoplus_n \operatorname{Ext}^1_A(\mathbb{L},\mathbb{L})^{\otimes n} \to \operatorname{Ext}^2_A(\mathbb{L},\mathbb{L}).$$

Uniqueness of the basic algebra follows from uniqueness in Kadeishvili's theorem.

Bill	Gabriel	A	Gabriel∞	exceptional	exceptional∞
0	00	0000	0•	00000	00000

Let
$$A = \mathbb{k}(1 \xrightarrow{\gamma} 2 \xrightarrow{\beta} 3 \xrightarrow{\alpha} 4)/(\alpha\beta\gamma)$$
.
Then $\operatorname{Ext}_{A}^{*}(\mathbb{L},\mathbb{L}) \cong \mathbb{k}(1 \xrightarrow{c} 2 \xrightarrow{b} 3 \xrightarrow{a} 4)/(cb,ba)$
with $m_{3}(a,b,c) = r$.

Bill	Gabriel	A	Gabriel∞	exceptional	exceptional∞
0	00	0000	00	0000	00000

Exceptional collections and quasi-hereditary algebras

Definition (Beilinson '78, Bondal '89)

 $\Delta(\texttt{1}), \dots, \Delta(\texttt{n})$ form an exceptional collection if

▶ $\operatorname{End}(\Delta(i)) \cong \Bbbk$, and $\operatorname{Ext}^k(\Delta(i), \Delta(i)) = 0$ for $k \neq 0$;

•
$$\operatorname{Ext}^k(\Delta(i),\Delta(j)) = 0$$
 for $i > j$ and all k .

Bill investigated these for path algebras of quivers in '93.

Definition (Cline–Parshall–Scott '88)

An algebra Λ is **quasi-hereditary** if there is an exceptional collection of modules such that Λ has a filtration with subquotients isomorphic to Δ .

Example

(11)

Blocks of BGG category O, Schur algebras, gldim <2.

Bill	Gabriel	A	Gabriel _∞	exceptional	exceptional∞
0	00	0000	00	0000	00000

Short summary of the rest of the talk

- Everything that could be done before for Ext^{*}_A(L,L) can be done for quasi-hereditary algebras for Ext^{*}_A(Δ,Δ) as well.
- The only difference is that everything gets much more technical because Hom_Λ(Δ,Δ) ≠ 0.
- At the moment, we don't know of a different route to prove uniqueness.

Bill	Gabriel	A	Gabriel∞	exceptional	exceptional∞
0	00	0000	00	00000	00000

Regular exact Borel subalgebras

Definition (Koenig '95, Kleiner-Roiter '75)

Let *R* be a quasi-hereditary algebra. A subalgebra $B \subseteq R$ is called an **exact Borel subalgebra** if

- B has the same indexing set of simple modules;
- ▶ *B* is quasi-hereditary with simple standard modules;
- $R \otimes_B \text{ is exact};$
- ► $R \otimes_B L_B(i) \cong \Delta_R(i)$.

It is called regular (resp. basic) if in addition

► $\operatorname{Ext}_{B}^{\geq 1}(L(i), L(j)) \to \operatorname{Ext}_{R}^{\geq 1}(\Delta(i), \Delta(j))$ is an isomorphism for all i, j (and *B* is basic).

Bill	Gabriel	A	Gabriel∞	exceptional	exceptional∞
0	00	0000	00	00000	00000

Analogue of Gabriel's structure theorem

Theorem (Koenig-K-Ovsienko '14)

For every quasi-hereditary algebra Λ , there is a Morita equivalent algebra R which has a regular basic exact Borel subalgebra.

Theorem (K–Miemietz '21, cf. Conde '20)

This algebra extension is unique up to isomorphism, i.e. if R and S are Morita equivalent quasi-hereditary algebras with regular basic exact Borel subalgebras A and B, respectively, then there exists an algebra isomorphism from R to S sending A to B.

Conde has an inductive combinatorial formula computing R from Λ .

Bill	Gabriel	A∞	Gabriel∞	exceptional	exceptional∞
0	00	0000	00	00000	00000

Analogue of the Govorov, Butler–Bongartz

It is convenient to work with $V = \text{Hom}_{B^{\text{op}}}(R, B)$.

Lemma (Ovsienko (unpublished), cf. K-Miemietz '21)

Let R be a quasi-hereditary algebra with regular basic exact Borel subalgebra $B \cong \Bbbk Q/I$, then

 $\mathbb{D}\operatorname{Ext}_{R}^{1}(\Delta(i),\Delta(j)) \cong \boldsymbol{e}_{j} \boldsymbol{Q}_{+} / \boldsymbol{Q}_{+}^{2} \boldsymbol{e}_{i}$ $\mathbb{D}\operatorname{Ext}_{R}^{2}(\Delta(i),\Delta(j)) \cong \boldsymbol{e}_{j} I / (I\boldsymbol{Q}_{+} + \boldsymbol{Q}_{+} I) \boldsymbol{e}_{i}$ $\mathbb{D}\operatorname{Hom}_{R}(\Delta(i),\Delta(j)) \cong \boldsymbol{e}_{j} V / (V J_{B} + J_{B} V) \boldsymbol{e}_{i}$

Bill	Gabriel	A	Gabriel∞	exceptional	exceptional∞
0	00	0000	00	00000	00000

Uniqueness of regular exact Borel subalgebras

Uniqueness of B up to isomorphism follows from

Theorem (K–Miemietz '21)

Let R be a quasi-hereditary algebra with basic regular exact Borel subalgebra B, then

$$\mathsf{Ext}^{\geq 1}_B(\mathbb{L},\mathbb{L})\cong\mathsf{Ext}^{\geq 1}_B(\Delta,\Delta)$$

as (non-unital) A_{∞} -algebras (for a certain compatible choice of canonical A_{∞} -structures).

Bill	Gabriel	A	Gabriel∞	exceptional	exceptional∞
0	00	0000	00	00000	00000

Construction via A_{∞} -Koszul duality

By results of Sweedler, Kleiner, Burt–Butler, Roiter, Brzeziński–Koenig–K, and K–Miemietz it suffices to construct a dg algebra since

regular exact Borel subalgebras

 \leftrightarrow regular directed corings (*B*, *V*)

 \leftrightarrow semifree directed dg algebras $(T_B(\overline{V}), \partial)$

Theorem (Koenig–K–Ovsienko '14)

The semifree dg algebra needed is the quotient of the dual bar construction of $\operatorname{Ext}^*_{\Lambda}(\Delta, \Delta)$ by the differential ideal generated by the negative degree part.

Bill	Gabriel	A	Gabriel∞	exceptional	exceptional∞
0	00	0000	00	00000	00000

An inverse construction

Theorem (K–Miemietz '21)

Let $B \subseteq R$ be a regular basic exact Borel subalgebra and let $V = \operatorname{Hom}_{B^{\operatorname{op}}}(R, B)$ and \overline{V} be the kernel of the counit. Then given a presentation $B = \Bbbk Q/I$, there is a canonical A_{∞} -structure and a splitting $I/(IQ_+ + Q_+I) \to \Bbbk Q$ which can be identified with the dual of the map

$$(m_n)_{n\in\mathbb{N}}$$
: $\bigoplus_n \operatorname{Ext}^1_R(\Delta,\Delta)^{\otimes n} \to \operatorname{Ext}^2_R(\Delta,\Delta)$

Bill	Gabriel	<i>A</i> ∞	Gabriel∞	exceptional	exceptional∞
o	oo	0000	○○	00000	000●0

. . .

contd.

and a splitting $A \rightarrow \Bbbk Q$ such that

$$(m_n)_{n\in\mathbb{N}}\colon \bigoplus_{i+j=n-1} (\operatorname{Ext}^1_R)^{\otimes i}\otimes \operatorname{rad}\otimes (\operatorname{Ext}^1_R)^{\otimes j} \to \operatorname{Ext}^1$$

can be identified with the dual of

$$Q_+/Q_+^2 \to B \stackrel{\partial_0}{\to} \overline{V} \cong B \otimes \Phi \otimes B \to \Bbbk Q \otimes \Phi \otimes \Bbbk Q$$
, and

$$\bigoplus_{i+j+k=n-2} (\operatorname{Ext}_R^1)^{\otimes i} \otimes \operatorname{rad} \otimes (\operatorname{Ext}_R^1)^{\otimes j} \otimes \operatorname{rad} \otimes (\operatorname{Ext}_1^R)^{\otimes k} \stackrel{(m_n)_{n \in \mathbb{N}}}{\longrightarrow} \operatorname{rad}$$

can be identified with the dual of

$$\Phi \to \overline{V} \stackrel{\partial_1}{\to} \overline{V} \otimes_B \overline{V} \cong B \otimes \Phi \otimes B \otimes \Phi \otimes B \to \Bbbk Q \otimes \Phi \otimes \Bbbk Q \otimes \Phi \otimes \Bbbk Q$$

Bill	Gabriel	A∞	Gabriel∞	exceptional	exceptional∞
0	00	0000	00	00000	00000

Dual extension algebra [Xi '95, Thuresson '20]

$$\begin{split} &\Lambda = \\ &\Bbbk(1 \xrightarrow{\gamma} 2 \xrightarrow{\beta} 3 \xrightarrow{\alpha} 4)/(\alpha\beta\gamma, \gamma'\beta'\alpha', \gamma\gamma', \beta\beta', \alpha\alpha') \\ &\text{Then} \\ &\text{Ext}^*_{\Lambda}(\Delta, \Delta) \cong \Bbbk(1 \xrightarrow{a} 2 \xrightarrow{a} 2 \xrightarrow{a} 3 \xrightarrow{a} 4)/(a^2, \varphi^3, \varphi a). \\ &\text{The unique regular basic exact Borel subalgebra is} \\ &B = \Bbbk(1 \xrightarrow{a} 2 \xrightarrow{a} 3 \xrightarrow{a} 4)/(a^3) \text{ as a subalgebra of } \\ &R \cong \operatorname{End}_{\Lambda}(P(1) \oplus P(2) \oplus 2P(3) \oplus 4P(4))^{\operatorname{op}}. \end{split}$$