Quiver Heisenberg algebras and radⁿ-approximations (a joint work with M. Herschend)

at a conference in celebration of the work of Bill Crawley-Boevey

Hiroyuki Minamoto (源 泰幸)

1. INTRODUCTION

Setup.

- \bullet k : an algebraically closed field of arbitrary characteristic.
- Q: a finite acyclic quiver.

1.1. The preprojective algebras $\Pi(Q)$ of Q.

We denote by \overline{Q} the double of Q.

Recall that for a vertex $i \in Q_0$, the mesh relation ρ_i is defined by

$$ho_i:=\sum_{lpha\in Q_1:t(lpha)=i}lphalpha^*-\sum_{lpha\in Q_1:h(lpha)=i}lpha^*lpha.$$

The following is also called the mesh relation:

$$ho:=\sum_{i\in Q_0}
ho_i.$$

The preprojective algebra is defined to be

the path of the double quiver \overline{Q} with the mesh relations:

$$\Pi(Q) = rac{\mathrm{k}\overline{Q}}{(
ho)} = rac{\mathrm{k}\overline{Q}}{(
ho_i \mid i \in Q_0)}$$

We equip $\overline{\boldsymbol{Q}}$ with the grading (*-grading)

$$\deg^* \alpha := 0, \ \deg^* \alpha^* := 1 \text{ for } \alpha \in Q_1.$$

Then $\deg^* \rho_i = 1$ and $\Pi(Q)$ is a *-graded algebra. We have $\Pi(Q)_0 = \mathbf{k}Q$.

1.2. Quiver Heisenberg Algebras ${}^{v}\Lambda(Q)$.

The quiver Heisenberg algebra ${}^{v}\Lambda(Q)$ has a parameter $v \in \mathbf{k}^{\times}Q_{0}$, i.e., a collection $v = (v_{i})_{i \in Q_{0}}$ of non-zero element of \mathbf{k} indexed by Q_{0} .

Definition . Let $v \in \mathbf{k}^{\times} Q_0$.

(1) For $i \in Q_0$, we set

$${^varrho_i}:=v_i^{-1}
ho_i, \ \ {^varrho}:=\sum_{i\in Q_0}{^varrho_i}=\sum_{i\in Q_0}v_i^{-1}
ho_i.$$

(2) For $a \in \overline{Q}_1$, the quiver Heisenberg relation ${}^v\eta_a$ is defined to be

$${}^v\eta_a:=[a,{}^varrho]=a{}^varrho-{}^varrho a=v_{h(a)}^{-1}a
ho_{h(a)}-v_{t(a)}^{-1}
ho_{t(a)}a.$$

(3) We define the quiver Heisenberg algebra ${}^{v}\Lambda(Q)$ to be the path algebra of \overline{Q} with the quiver Heisenberg relations: ${}^{v}\Lambda(Q) := \frac{k\overline{Q}}{({}^{v}\eta_{a}|a \in \overline{Q}_{1})}.$

The QH-relations ^vη_a are homogeneous w.r.t *-grading.
Hence ^vΛ(Q) is a *-graded algebra. We have ^vΛ(Q)₀ = kQ.
The element ^vρ is central in ^vΛ(Q) and Π(Q) = ^vΛ(Q)/(^vρ).
Hence there is an exact seq of *-graded ^vΛ-bimdoules:

$${}^{v}\Lambda(-1) \xrightarrow{{}^{v}\varrho} {}^{v}\Lambda \xrightarrow{{}^{v}\pi} \Pi \longrightarrow 0$$

where (-1) denote the shift of *-degree by -1.

Remark. Originally, I and Martin studied the case $v = (1, 1, \dots, 1)$. In that case, the quiver Heisenberg relation ${}^{v}\eta_{a} = [a, \rho]$ can be looked as a quiver version of the Heisenberg relations [x, [x, y]], [y, [x, y]]. Hence the name quiver Heisenberg algebras.

1.3. Related algebras and preceding results.

We point out the following isomorphism of algebras:

$$^v\Lambda(Q)\cong rac{\mathrm{k}[z]\overline{Q}}{(
ho_i-(v_iz)e_i\mid i\in Q_0)},$$

(where e_i is the idempotent element corresponding to $i \in Q_0$) from which we see that ${}^{v}\Lambda(Q)$ is a special case of

• The central extension of the preprojective algebras by Etingof-Rains (2006)

$$\Pi(Q)_{\lambda,\mu}:=rac{\mathrm{k}[z]\overline{Q}}{(
ho_i-(\lambda_iz+\mu_i)e_i\mid i\in Q_0)}$$

where $\lambda_i, \mu_i \in \mathbf{k}$ for each $i \in Q_0$.

This algebra is a special case of the following algebra.

• The N = 1-quiver algebra by Cachazo-Katz-Vafa (2001)

$$\Pi(Q)_P := rac{\mathrm{k}[z]\overline{Q}}{(
ho_i - P_i(z)e_i \mid i \in Q_0)}$$

where $P_i(z) \in \mathbf{k}[z]$ for each $i \in Q_0$.

This algebra is obtained as a pull-back of

• The deformation family of the preprojective algebras by Crawley-Boevey-Holland (1998)

$$\Pi(Q)_ullet:=rac{\mathrm{k}[oldsymbol{z}_1,\cdots,oldsymbol{z}_r]\overline{Q}}{(
ho_i-oldsymbol{z}_i e_i \mid i\in Q_0)}$$

where $r = \#Q_0$.

Theorem (Etingof-Rains). Assume char k = 0.

If Q is a Dynkin quiver with the Coxeter number h and $r := \#Q_0$, then for generic $v \in k^{\times}Q$,

$$\dim {^v\Lambda}(Q) = \sum_{M\in \operatorname{ind} Q} (\dim M)^2 = rac{rh^2(h+1)}{12}.$$

Theorem (Herschend-M). Assume char $\mathbf{k} = \mathbf{0}$ and $\mathbf{v} = (1, 1, \dots, 1)$. Then as $\mathbf{k}Q$ -modules,

 ${}^{v}\Lambda(Q)e_{i}\cong \bigoplus_{M\in \mathrm{ind}\,\mathscr{P}(Q)}M^{\oplus\dim e_{i}M}$ (\,)

where $\mathfrak{P}(Q)$ denotes the set of the preprojective modules of $\mathbf{k}Q$.

Corollary . Assume char $\mathbf{k} = \mathbf{0}$ and $\mathbf{v} = (1, 1, \cdots, 1)$. (1) ${}^{(1)} \qquad {}^{\mathbf{v}} \Lambda(Q) \cong \bigoplus_{M \in \operatorname{ind} \mathfrak{P}(Q)} M^{\bigoplus \dim M}.$

(2) If Q is a Dynkin quiver, then

$${}^v\Lambda(Q)\cong igoplus_{M\in \operatorname{ind} Q} M^{igodot \dim M}$$

The aims of this talk are

(1) to remove the assumptions

char $\mathbf{k} = 0$ and $v = (1, 1, \dots, 1)$ and

(2) to give an understanding of the above theorem. 1.4. Example: A_3 -quiver. Let Q be a directed A_3 -quiver.

$$Q: \ 1 \stackrel{lpha}{\longrightarrow} 2 \stackrel{eta}{\longrightarrow} 3 \ , \ \ \overline{Q}: \ 1 \stackrel{lpha}{\longleftarrow} 2 \stackrel{eta}{\longrightarrow} 3 \ .$$

The mesh relations are

$$ho_1=lphalpha^*,\;
ho_2=-lpha^*lpha+etaeta^*,\;
ho_3=-eta^*eta.$$

Let $v = (v_1, v_2, v_3) \in \mathbf{k}^{\times} Q_0$.

The quiver Heisenberg relations are

$${}^v\eta_lpha = [lpha, {}^varrho] = v_2^{-1}lpha
ho_2 - v_1^{-1}
holpha = v_2^{-1}lphaetaeta^* - (v_2^{-1} + v_1^{-1})lphalpha^*lpha \ {}^v\eta_eta = -(v_2^{-1} + v_3^{-1})etaeta^*eta + v_2^{-1}lpha^*lphaeta, \ {}^v\eta_{lpha^*} = (v_1^{-1} + v_2^{-1})lpha^*lphalpha^* - v_2^{-1}etaeta^*lpha^*, \ {}^v\eta_{eta^*} = (v_2^{-1} + v_3^{-1})eta^*etaeta^* - v_2^{-1}eta^*lpha^*lpha.$$

Assume v = (1, 1, 1), char k = 0. Then the isomorphism (\clubsuit) tells, for example, that

Then, looking homogeneous part w.r.t *-grading,

$${}^{v}\Lambda_{0}e_{2}=\,{}^{1}{}^{2}\;,\;{}^{v}\Lambda_{1}e_{2}=\,{}_{1}\;\,{}^{2\oplus 2}{}^{3},\;{}^{v}\Lambda_{2}e_{2}=\,{}_{2}\;{}_{3}\,.$$

Since ${}^{v}\Lambda_{0} = \mathbf{k}Q$, we see

$$^v\Lambda_0 e_2 = \mathrm{k} Q e_2 =: P_2.$$

Observe that

$$^v\Lambda_1e_2={\scriptstyle_1}{\scriptstyle_2^{\oplus 2}}^3$$

is the middle term of Auslander-Reiten sequence stating from P_2 . (not a coincidence, but a consequence of "universal AR-sequence".)

What about $^{v}\Lambda_{2}e_{2}$?

Rough statement of the main theorem

Let $M \in \operatorname{ind} Q$.

Assume $n \in \mathbb{N}$ and v satisfy some conditions.

Then, the module ${}^{v}\Lambda_{n} \otimes_{\mathbf{k}Q} M$ provides a minimal left \mathbf{rad}^{n} -approximation of M.

Thus, in the above case ${}^{v}\Lambda_{2}e_{2} = {}^{v}\Lambda_{2} \otimes_{\mathbf{k}Q} P_{2}$ provides a minimal left \mathbf{rad}^{2} -approximation of P_{2} .

As a consequence, we can deduce

$${^v}\Lambda_2 e_2 \cong I_2$$

where $I_2 := D(e_2 \mathbf{k} Q)$.

2. rad^n -Approximations

We discuss \mathbf{rad}^n -approximations in $\mathsf{D}^{\mathrm{b}}(\mathbf{R} \operatorname{mod})$

where \boldsymbol{R} is a finite dimensional algebra of finite global dimension.

2.0.1. The radical rad and n-th power radⁿ.

Let $M, N \in \mathsf{D}^{\mathrm{b}}(R \operatorname{mod})$.

Recall that the radical $\operatorname{rad}(M, N)$ is defined to be a subspace of $\operatorname{Hom}_{\mathsf{D}^{\mathsf{b}}(R \mod)}(M, N)$ consisting of such morphisms $f: M \to N$ that satisfy the following property:

for any $L \in \operatorname{ind} \mathsf{D}^{\mathrm{b}}(R \operatorname{mod})$ and any morphisms

 $s:L
ightarrow M, \ t:N
ightarrow L,$

the composition $tfs: L \to L$ is not an isomorphism.

The radicals $\{ \operatorname{rad}(M, N) \}_{M,N}$ form an ideal rad of $\mathsf{D}^{\mathsf{b}}(R \mod)$ (an k-linear additive sub-bi-functor of $\operatorname{Hom}_{\mathsf{D}^{\mathsf{b}}(R \mod)}$).

For $n \geq 2$, we denote the *n*-th power of rad by rad^{*n*}.

In other words, $\operatorname{rad}^{n}(M, N)$ is a subspace of $\operatorname{Hom}_{\mathsf{D}^{\mathsf{b}}(R \mod)}(M, N)$ consisting of those morphisms $f : M \to N$ that are obtained as n-times compositions of morphisms in rad .

$$f: M \xrightarrow{g_1} L_1 \xrightarrow{g_2} L_2 \xrightarrow{g_3} \cdots \xrightarrow{g_{n-1}} L_{n-1} \xrightarrow{g_n} N$$

where $g_1, \cdots, g_n \in \operatorname{rad}$.

2.0.2. \mathbf{rad}^{n} -approximations.

Definition . Let $n \geq 1$.

(1) A morphism $f : M \to N$ is called a left approximation of Mwith respect to rad^n (or, left rad^n -approximation of M) if (i) f belongs to $rad^n(M, N)$ and (ii) any morphism $g : M \to L$ belonging to $rad^n(M, L)$ factors through f, i.e.,

there exists $h: N \to L$ such that g = hf.

(2) A morphism $f: M \to N$ is called a left minimal

if $h: N \to N$ satisfies hf = f, then it is an isomorphism.

- (3) A morphism $f : M \to N$ is called a minimal left rad^n -approximation if it is both left minimal and a left rad^n -approximation.
- **Remark**. (1) We define a (minimal) right rad^{n} -approximation of M, which is a morphism $N \to M$, in a dual way.
- (2) More generally, we can define (minimal) left or right approximations with respect to an ideal.

Lemma . Let $M \in \text{ind } D^{\mathrm{b}}(R \mod)$.

Then a morphism $f : M \to N$ is minimal left almost split if and only if it is a minimal left rad-approximation.

A point here is that if M is a domain of a left almost split morphism $f: M \to N$, it must be indecomposable. But the notion of minimal left rad-approximation makes sense for a non-indecomposable object.

Since any $M \in \operatorname{ind} D^{\mathrm{b}}(R \mod)$ admits a minimal left almost split morphism $f: M \to N$,

Corollary . For $M \in \mathsf{D}^{\mathrm{b}}(R \mod)$ and $n \geq 1$,

a (minimal) left \mathbf{rad}^n -approximation $\mathbf{M} \to \mathbf{N}$ of \mathbf{M} exists.

A minimal left \mathbf{rad}^n -approximation of M is unique up to isomorphism under M.

2.0.3. A description of rad^n -approximations.

We give \mathbf{rad}^{n} -versions of well-know description of \mathbf{rad} -approximations.

Theorem . Let $n \geq 1$ and $M \in \operatorname{ind} \mathsf{D}^{\mathrm{b}}(R \operatorname{mod})$.

Let $\lambda_n: M \to L_n$ be a minimal left rad^n -approximation of M. Then

$$L_n\cong igoplus K^{\oplus d_K^n}$$

 $K \in \operatorname{ind} \mathsf{D}^{\mathrm{b}}(R \operatorname{mod})$

where

$$d_K^n:=\dimrac{\mathrm{rad}^n(M,K)}{\mathrm{rad}^{n+1}(M,K)}.$$

3. rad^{n} -APPROXIMATIONS IN $D^{b}(kQ \mod)$

Let $M \in \operatorname{ind} \mathsf{D}^{\mathrm{b}}(\mathrm{k}Q \operatorname{mod})$ and

- $\lambda_n: M \to L_n$ a minimal left rad^n -approximation of M for $n \ge 0$.
 - If Q is non-Dynkin, then, $L_n \neq 0$ for $n \geq 0$.

Theorem . Let Q be a Dynkin quiver with the Coxeter number h. Then,

(1) $L_n \neq 0$ if and only if $0 \leq n \leq h - 2$.

(2) $L_{h-2} = S(M)$ where S denotes a Serre functor of $D^{b}(kQ \mod)$.

Example . In the case $M = P_i = \mathbf{k} Q e_i$, we have

$$L_{h-2} = \mathsf{S}(P_i) = I_i = \mathbb{D}(e_i \mathrm{k} Q)$$

and a minimal left rad^{h-2} -approximation is a non-zero morphism

 $f: P_i \longrightarrow I_i.$

3.1. Description of $\bigoplus_n L_n$.

We exclude the case where Q is wild and M is a shift of a regular module. Let \mathscr{C}_M be the connected component of AR-quiver that contains M. Then for each $K \in \operatorname{ind} \mathscr{C}_M$, the radical filtration terminates

 $\operatorname{Hom}_{kQ}(M,K) \supset \operatorname{rad}(M,K) \supset \cdots \supset \operatorname{rad}^{n}(M,K) \supset \cdots$

Consequently,

Theorem . In the above setting,

$$igoplus_{n\geq 0} L_n = igoplus_{K\in \mathrm{ind}\, \mathfrak{C}_M} K^{\oplus \dim \mathrm{Hom}(M,K)}.$$

4.1. For a moment assume char $\mathbf{k} \neq \mathbf{2}$.

Lemma . The QHA ${}^{v}\Lambda(Q)$ is the Jacobi algebra:

$${^v}\Lambda(Q) = \mathfrak{P}\left(\overline{Q}, -rac{1}{2}{^v}arrho
ight).$$

Definition . The derived quiver Heisenberg algebra ${}^v\widetilde{\Lambda}(Q)$ is defined to be the Ginzburg dg-algebra

$${^v}\widetilde{\Lambda}(Q)= {\mathfrak G}\left(\overline{Q},-rac{1}{2}{^varrho}
ho
ight).$$

Explicitly,

The values of \boldsymbol{d} are defined as:

$$egin{aligned} &d(lpha):=0, \ d(lpha^*):=0, \ &d(lpha^\circ):=-^v\eta_{lpha^*}, \ d(lpha^\circledast):=^v\eta_{lpha}, \ &d(t_i):=\sum_{lpha:t(lpha)=i}lphalpha^\circ-\sum_{lpha:h(lpha)=i}lpha^\circlpha+\sum_{lpha:h(lpha)=i}lpha^*lpha^\circledast-\sum_{lpha:t(lpha)=i}lpha^stlpha^s$$

The point here is that

Although the potential $-\frac{1}{2}{}^{v}\rho\rho$ contains the fraction $\frac{1}{2}$, but the differential of $\mathfrak{G}(\overline{Q}, -\frac{1}{2}{}^{v}\rho\rho)$ does not. Therefore, the explicit definition of ${}^{v}\widetilde{\Lambda}(Q)$ even works for the case **char** $\mathbf{k} = 2$.

4.2. From now chark is arbitrary, again.

Definition. We define the derived quiver Heisenberg algebra ${}^{v}\widetilde{\Lambda}(Q)$ as a DG-algebra given by the above cohomological graded quiver and the differentials.

We may equip ${}^{v}\widetilde{\Lambda}(Q)$ with the *-grading as below:

	e_i	lpha	$lpha^*$	$lpha^{st}$	$lpha^{\circ}$	t_i
$\mathrm{ch}\mathrm{deg}$	0	0	0	-1	-1	-2
\deg^*	0	0	1	1	2	2

Lemma .

$$\mathrm{H}^0(^v\widetilde{\Lambda}(Q))\cong {^v\Lambda}(Q).$$

• Recall that ${}^{v}\varrho \in {}^{v}\Lambda$ is central and there is an exact seq of *-graded ${}^{v}\Lambda$ -bimdoules:

$${}^{v}\Lambda(-1) \xrightarrow{{}^{v}\varrho} {}^{v}\Lambda \xrightarrow{{}^{v}\pi} \Pi \longrightarrow 0$$

Lemma. (1) The element ${}^{v}\varrho \in {}^{v}\widetilde{\Lambda}(Q)$ is "homotopical central". (2) The right multiplication

$$\cdot^{v} \varrho : {}^{v} \widetilde{\Lambda}(Q) \to {}^{v} \widetilde{\Lambda}(Q)$$

can be regraded as a morphism of *-graded $DG^{-v}\widetilde{\Lambda}$ -bimdoules.

Let $\widetilde{\Pi} = \widetilde{\Pi}(Q)$ be the derived preprojective algebra:

$$\Pi(Q) := \mathsf{T}_{\mathrm{k}Q}\,\Theta[1],$$

 $\Theta := \mathbb{R}\operatorname{Hom}_{kQ}(\mathbb{D}(kQ), kQ).$

We call the tensor degree of $\widetilde{\Pi}(Q)$, the *-grading. Thus, in particular

$$\widetilde{\Pi}_1=\Theta[1].$$

Note we have $\operatorname{H}^{0}(\widetilde{\Pi}(Q)) = \Pi(Q)$.

Theorem . There exists a *-graded DG-algebra homomorphism

$${^v} ilde{\pi}:{^v} ilde{\Lambda}(Q) o \widetilde{\Pi}(Q)$$

such that $\mathrm{H}^{0}(^{v}\tilde{\pi}) = {}^{v}\pi$.

The above morphisms constitute an exact triangle

$${}^{v}\widetilde{\Lambda}(-1) \xrightarrow{.{}^{v}\varrho} {}^{v}\widetilde{\Lambda} \xrightarrow{~{}^{v}\tilde{\pi}} {}^{\widetilde{\pi}} \longrightarrow \widetilde{\Pi} \rightarrow$$

in the derived category of *-graded DG- ${}^{v}\widetilde{\Lambda}$ -bimdoules.

We denote the *-degree **1**-part of the exact triangle by ${}^{v}\mathbf{AR}$, which is an exact triangle of DG-**k**Q-bimodules:

$${}^{v}\mathsf{AR}:\mathrm{k}Q \xrightarrow{\cdot^{v}arrho}{v} \widetilde{\Lambda}_{1} \xrightarrow{v ilde{\pi}_{1}} \widetilde{\Pi}_{1} \xrightarrow{-^{v} ilde{ heta}[1]}
ightarrow$$

where we set the co-connecting morphism of ${}^{v}\mathbf{AR}$ by

$${^v ilde{ heta}}:\Theta=\widetilde{\Pi}_1[-1]\longrightarrow \mathrm{k}Q.$$

5. Universal Auslander-Reiten triangle

5.1. Weighted trace.

Let $U \in \mathsf{D}^{\mathsf{b}}(\mathsf{k} \operatorname{mod})$. The trace of $\phi : U \to U$ is defined to be

$$\mathrm{Tr}_{\mathrm{k}}(\phi):=\sum_{n\in\mathbb{Z}}(-1)^{n}\,\mathrm{Tr}_{\mathrm{k}}[\mathrm{H}^{n}(\phi):\mathrm{H}^{n}(U)
ightarrow\mathrm{H}^{n}(U)].$$

Definition . Let $v \in \mathbf{k}^{\times} Q_0$.

For $M \in \mathsf{D}^{\mathrm{b}}(\mathrm{k}Q \mod)$ and $f: M \to M$, we define

$$^v\operatorname{Tr}(f):=\sum_{i\in Q_0}v_i\operatorname{Tr}_{\mathrm{k}}(e_if).$$

where $e_i f : e_i M \to e_i M \in \mathsf{D}^{\mathrm{b}}(\mathrm{k} \operatorname{mod})$.

Example . If $M \in kQ \mod$, then

$${}^v\operatorname{Tr}(\operatorname{id}_M) = \sum_{i\in Q_0} v_i\dim(e_iM) = v\cdot \operatorname{\underline{dim}}(M)$$

5.2. Trace formula.

The endofunctor $\mathbf{S}^{-1} := \Theta \otimes_{\mathbf{k}Q}^{\mathbb{L}} - \text{ of } \mathbf{D}^{\mathbf{b}}(\mathbf{k}Q \mod)$ is the inverse of a Serre functor \mathbf{S} . So, ${}^{v}\tilde{\theta}_{M} := {}^{v}\tilde{\theta} \otimes^{\mathbb{L}} M$ is

$${}^{v}\theta_{M}: \mathbf{S}^{-1}M \longrightarrow M.$$

Theorem . Let $M \in \mathsf{D}^{\mathrm{b}}(\mathrm{k}Q \mod)$ and $f \in \mathrm{Hom}_{\mathrm{k}Q}(M, M)$. Then,

$$\langle f, {^v} ilde{ heta}_M
angle_{\mathsf{S}^{-1}} = {^v}\operatorname{Tr}(f)$$

where $\langle -, + \rangle_{S^{-1}}$ denotes the paring of Serre duality

 $\langle -,+ \rangle_{\mathsf{S}^{-1}} : \operatorname{Hom}_{\mathrm{k}Q}(M,M) \otimes_{\mathrm{k}} \operatorname{Hom}_{\mathrm{k}Q}(\mathsf{S}^{-1}M,M) \longrightarrow \mathrm{k}.$

5.3. Universal Auslander-Reiten triangle.

Definition . An element $v \in \mathbf{k}^{\times} Q_0$ is said to have the property (I) if for all $M \in \operatorname{ind} Q$ we have

$$0 \neq v \cdot \underline{\dim}(M) = {}^v \operatorname{Tr}(\operatorname{id}_M) = \langle \operatorname{id}_M, {}^v \tilde{ heta}_M
angle_{\mathsf{S}^{-1}} ext{ in } \mathsf{k}.$$

Example . (1) Assume that char k = 0.

If $v_1, v_2, \cdots, v_r > 0$, then $v \in \mathbf{k}^{\times} Q$ has the property (I).

(2) If
$$v_1, v_2, \dots, v_r \in \mathbf{k}$$
 are linearly independent over
the prime field \mathbb{P} of \mathbf{k} , then $v \in \mathbf{k}^{\times} Q_0$ has the property (I).

Using Happel's criterion for AR-triangle, we deduce

Theorem (Universal Auslander-Reiten triangle). Assume that $v \in \mathbf{k}^{\times} Q_0$ has the property (I). Then for any $M \in \mathsf{D}^{\mathrm{b}}(\mathbf{k}Q \mod)$ the exact triangle ${}^{v}\mathsf{A}\mathsf{R}_{M} := {}^{v}\mathsf{A}\mathsf{R} \otimes^{\mathbb{L}} M$ is a direct sum of AR-triangles starting from indec. summand of M

$${}^{v}\mathsf{AR}_{M}: M \xrightarrow{{}^{v}\tilde{\varrho}_{M}} \widetilde{\Lambda}_{1} \otimes_{\mathrm{k}Q}^{\mathbb{L}} M \xrightarrow{{}^{v}\tilde{\pi}_{1,M}} \widetilde{\Pi}_{1} \otimes_{\mathrm{k}Q}^{\mathbb{L}} M \xrightarrow{{}^{-v\tilde{\theta}_{M}[1]}}$$

In other words, the morphism ${}^{v}\tilde{\varrho}_{M}: M \to {}^{v}\tilde{\Lambda}_{1} \otimes_{kQ}^{\mathbb{L}} M$ is a minimal left rad-approximation of M and the morphism ${}^{v}\tilde{\pi}_{1,M}: {}^{v}\tilde{\Lambda}_{1} \otimes_{kQ}^{\mathbb{L}} M \to \widetilde{\Pi}_{1} \otimes_{kQ}^{\mathbb{L}} M$ is a minimal right rad-approximation of $\widetilde{\Pi}_{1} \otimes_{kQ}^{\mathbb{L}} M$.

Remark. If we fix M first, then we can weakened the assumption on v to " $v \cdot \underline{\dim} N \neq 0$ for each indec. summand N of M".

Recall there is a $\ast\-$ graded DG-algebra morphism

$${}^v ilde{\pi}:{}^v ilde{\Lambda}
ightarrow \widetilde{\Pi}$$

Let ${}^{v}\tilde{\pi}_{n}: {}^{v}\tilde{\Lambda}_{n} \to \widetilde{\Pi}_{n}$ be the *-degree *n*-part and ${}^{v}\tilde{\pi}_{n,M} = {}^{v}\tilde{\pi}_{n} \otimes^{\mathbb{L}} M$.

Theorem . Assume that $v \in \mathbf{k}^{\times} Q_0$ has the property (I). Let $M \in \mathsf{D}^{\mathrm{b}}(\mathbf{k} Q \mod)$.

Then the morphism

$${}^v ilde{\pi}_{n,M}:{}^v ilde{\Lambda}_n\otimes^{\mathbb{L}}_{\mathrm{k}Q}M o \widetilde{\Pi}_n\otimes^{\mathbb{L}}_{\mathrm{k}Q}M$$

is a minimal right rad^n -approximation of $\widetilde{\Pi}_n \otimes_{\mathbf{k}Q}^{\mathbb{L}} M$ for

$$n ext{ belonging to } egin{cases} 0 \leq n \leq h-2 & (Q ext{ is Dynkin }), \ 0 \leq n & (Q ext{ is non-Dynkin }). \end{cases}$$
 (\blacklozenge)

Taking \mathbb{R} Hom_k $_{Q^{OP}}(-, \widetilde{\Pi}_n)$ of the right modules version of this theorem, inductively, we can deduce

Theorem . Assume that $v \in \mathbf{k}^{\times} Q_0$ has the property (I).

Let $M \in \mathsf{D}^{\mathrm{b}}(\mathrm{k}Q \operatorname{mod})$.

Then ${}^{v}\widetilde{\Lambda}_{n} \otimes_{kQ}^{\mathbb{L}} M$ provides a minimal left rad^{n} -approximation of M for n belonging to (\clubsuit) .

I.e., there exists a minimal left \mathbf{rad}^n -approximation morphism

$${^veta}_M^{(n)}:M o {^v}\widetilde{\Lambda}_n\otimes^{\mathbb{L}}_{\mathrm{k}Q}M$$

for n belonging to (\spadesuit) .

Theorem . Assume that $v \in \mathbf{k}^{\times} Q_0$ has the property (1).

Let $M \in \operatorname{ind} \mathsf{D}^{\mathrm{b}}(\mathrm{k}Q \operatorname{mod})$.

Except the case where Q is wild and M is a shift of a regular module,

we have the following isomorphism

$$igoplus_n {}^v \widetilde{\Lambda}_n \otimes^{\mathbb{L}}_{\mathrm{k}Q} M \cong igoplus_{K \in \mathrm{ind}\, \mathscr{C}_M} K^{\oplus \dim \mathrm{Hom}(M,K)}.$$

where in LHS, \boldsymbol{n} runs through (\spadesuit) .

Corollary . Assume that $v \in \mathbf{k}^{\times} Q_0$ has the property (I).

Then as $\mathbf{k}\mathbf{Q}$ -modules

7. What is a minimal left rad^n -approximation morphism

We have shown that

there exists a minimal left \mathbf{rad}^n -approximation morphism

$${^veta}_M^{(n)}: M o {^v}\widetilde{\Lambda}_n \otimes^{\mathbb{L}}_{\mathrm{k}Q} M.$$

A natural candidate is the multiplication of the \boldsymbol{n} -th power ${}^{\boldsymbol{v}}\boldsymbol{\varrho}^{\boldsymbol{n}}$ of ${}^{\boldsymbol{v}}\boldsymbol{\varrho}$

Question: Is

$${^varrho}^n_M: M o {^v}\widetilde{\Lambda}_n \otimes^{\mathbb{L}}_{\mathrm{k}Q} M$$
 .

a minimal left radⁿ-approximation of M?

Example . Let Q be a directed A_3 -quiver.

$$egin{aligned} Q: & 1 \stackrel{lpha}{\longrightarrow} 2 \stackrel{eta}{\longrightarrow} 3 \ , \ \ \overline{Q}: & 1 \stackrel{lpha}{\longleftarrow} 2 \stackrel{eta}{\xleftarrow} 3 \ , \end{aligned}$$
 The property (I) precisely says that v satisfies the followings $v_1
eq 0, v_2
eq 0, v_3
eq 0, v_1 + v_2 + v_3
eq 0, v_1 + v_2 + v_3
eq 0. \end{aligned}$

Proposition . Assume that $v \in \mathbf{k}^{\times} Q_0$ has the property (I). Then, the morphism

$${^varrho}_{P_2}^2:P_2 o {^v}\widetilde{\Lambda}_2\otimes^{\mathbb{L}}_{\mathrm{k}Q}P_2$$

is a minimal left rad^2 -approximation if and only if

$$v_1+2v_2+v_3\neq 0.$$

We note

$$v_1+2v_2+v_3=v\cdot \operatorname{\underline{dim}}({^v}\widetilde{\Lambda}_1\otimes^{\mathbb{L}}_{\mathrm{k}Q}P_2).$$

7.1. Minimal left rad²-approximation.

Theorem. Assume that $v \in \mathbf{k}^{\times} Q_0$ has the property (I). Let $M \in \operatorname{ind} D^{\mathrm{b}}(\mathbf{k} Q \operatorname{mod})$. Assume that

$$v \cdot \operatorname{\underline{dim}}({^v}\widetilde{\Lambda}_1 \otimes^{\mathbb{L}}_{\mathrm{k}Q} M)
eq 0.$$

Then the morphism

$${^varrho}_M^2:M\longrightarrow {^v}\widetilde{\Lambda}_2\otimes^{\mathbb{L}}_{\mathrm{k}Q}M$$

is a minimal left \mathbf{rad}^2 -approximation of M.

7.2. Minimal left radⁿ-approx (char k = 0).

Theorem . Assume $\operatorname{char} \mathbf{k} = \mathbf{0}$.

Let $M \in \text{ind } \mathsf{D}^{\mathsf{b}}(\mathsf{k}Q \mod)$ and n belongs to (\spadesuit) .

Then for a generic parameter $v \in \mathbf{k}^{\times} Q_0$, the morphism

$${^varrho}^n_M:M o {^v}\widetilde{\Lambda}_n\otimes^{\mathbb{L}}_{\mathrm{k}Q}M$$

is a minimal left \mathbf{rad}^n -approximation of M.

Corollary . Assume $\operatorname{char} \mathbf{k} = \mathbf{0}$.

Let Q be a Dynkin quiver with the Coxeter number h. Then for a generic parameter $v \in \mathbf{k}^{\times}Q_0$ the morphism

$${^v \varrho}^n_M : M o {^v \Lambda}_n \otimes^{\mathbb{L}}_{\mathrm{k}Q} M$$

is a minimal left rad^n -approximation of Mfor all $M \in \mathsf{D}^{\mathrm{b}}(\mathrm{k}Q \mod)$ and $n = 1, 2, \cdots, h - 2$,

7.3. Minimal left radⁿ-approx ($Q = A_N$ -quiver).

Theorem . Let $N \ge 1$ and Q an A_N -quiver (note h = N + 1). Assume that \mathbf{k} has a primitive h-th root of unity. Then for a generic $v \in \mathbf{k}^{\times}Q_0$, the morphism

$${^varrho}^n_M:M o \widetilde{\Lambda}_n\otimes^{\mathbb{L}}_{\mathrm{k}Q}M$$

is a minimal left rad^n -approximation of Mfor all $M \in \mathsf{D}^{\mathrm{b}}(\mathrm{k}Q \mod)$ and $n = 1, 2, \cdots, h - 2$. Thank you