Quiver Heisenberg algebras and rad^{n}－approximations

 （a joint work with M．Herschend）at a conference in celebration of the work of Bill Crawley－Boevey

Hiroyuki Minamoto（源 泰幸）

1. Introduction

Setup .

- \mathbf{k} : an algebraically closed field of arbitrary characteristic.
- \boldsymbol{Q} : a finite acyclic quiver.

1.1. The preprojective algebras $\Pi(Q)$ of Q.

We denote by $\overline{\boldsymbol{Q}}$ the double of \boldsymbol{Q}.

Recall that for a vertex $\boldsymbol{i} \in \boldsymbol{Q}_{\mathbf{0}}$, the mesh relation $\boldsymbol{\rho}_{\boldsymbol{i}}$ is defined by

$$
\rho_{i}:=\sum_{\alpha \in Q_{1}: t(\alpha)=i} \alpha \alpha^{*}-\sum_{\alpha \in Q_{1}: h(\alpha)=i} \alpha^{*} \alpha .
$$

The following is also called the mesh relation:

$$
\rho:=\sum_{i \in Q_{0}} \rho_{i}
$$

The preprojective algebra is defined to be the path of the double quiver $\overline{\boldsymbol{Q}}$ with the mesh relations:

$$
\Pi(Q)=\frac{\mathrm{k} \bar{Q}}{(\rho)}=\frac{\mathrm{k} \bar{Q}}{\left(\rho_{i} \mid i \in Q_{0}\right)}
$$

We equip $\overline{\boldsymbol{Q}}$ with the grading (*-grading)

$$
\operatorname{deg}^{*} \alpha:=0, \operatorname{deg}^{*} \alpha^{*}:=1 \text { for } \alpha \in Q_{1}
$$

Then $\operatorname{deg}^{*} \rho_{i}=1$ and $\boldsymbol{\Pi}(\boldsymbol{Q})$ is a $*$-graded algebra.
We have $\boldsymbol{\Pi}(\boldsymbol{Q})_{0}=\mathbf{k} \boldsymbol{Q}$.

1.2. Quiver Heisenberg Algebras ${ }^{v} \boldsymbol{\Lambda}(Q)$.

The quiver Heisenberg algebra ${ }^{\boldsymbol{v}} \boldsymbol{\Lambda}(\boldsymbol{Q})$ has a parameter $\boldsymbol{v} \in \mathrm{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$, i.e., a collection $\boldsymbol{v}=\left(\boldsymbol{v}_{i}\right)_{i \in Q_{0}}$ of non-zero element of \mathbf{k} indexed by $\boldsymbol{Q}_{\mathbf{0}}$.

Definition. Let $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$.
(1) For $\boldsymbol{i} \in \boldsymbol{Q}_{\mathbf{0}}$, we set

$$
{ }^{v} \varrho_{i}:=v_{i}^{-1} \rho_{i}, \quad{ }^{v} \varrho:=\sum_{i \in Q_{0}}{ }^{v} \varrho_{i}=\sum_{i \in Q_{0}} v_{i}^{-1} \rho_{i} .
$$

(2) For $\boldsymbol{a} \in \overline{\boldsymbol{Q}}_{\mathbf{1}}$, the quiver Heisenberg relation ${ }^{\boldsymbol{v}} \boldsymbol{\eta}_{\boldsymbol{a}}$ is defined to be

$$
{ }^{v} \eta_{a}:=\left[a,{ }^{v} \varrho\right]=a^{v} \varrho-{ }^{v} \varrho a=v_{h(a)}^{-1} a \rho_{h(a)}-v_{t(a)}^{-1} \rho_{t(a)} a .
$$

(3) We define the quiver Heisenberg algebra ${ }^{\boldsymbol{v}} \boldsymbol{\Lambda}(\boldsymbol{Q})$ to be the path algebra of $\overline{\boldsymbol{Q}}$ with the quiver Heisenberg relations:

$$
{ }^{v} \Lambda(Q):=\frac{\mathrm{k} \bar{Q}}{\left({ }^{v} \eta_{a} \mid a \in \bar{Q}_{1}\right)} .
$$

- The QH-relations ${ }^{v} \boldsymbol{\eta}_{a}$ are homogeneous w.r.t *-grading.

Hence ${ }^{\boldsymbol{v}} \boldsymbol{\Lambda}(\boldsymbol{Q})$ is a ${ }^{*}$-graded algebra. We have ${ }^{\boldsymbol{v}} \boldsymbol{\Lambda}(\boldsymbol{Q})_{0}=\mathrm{k} \boldsymbol{Q}$.

- The element ${ }^{v} \varrho$ is central in ${ }^{v} \boldsymbol{\Lambda}(\boldsymbol{Q})$ and $\boldsymbol{\Pi}(\boldsymbol{Q})={ }^{v} \boldsymbol{\Lambda}(\boldsymbol{Q}) /\left({ }^{v} \boldsymbol{\varrho}\right)$.

Hence there is an exact seq of $*$-graded ${ }^{\boldsymbol{v}} \boldsymbol{\Lambda}$-bimdoules:

$$
{ }^{v} \Lambda(-1) \xrightarrow{{ }^{v} \varrho}{ }^{v} \Lambda \xrightarrow{v_{\pi}} \Pi \longrightarrow 0
$$

where $(\mathbf{- 1})$ denote the shift of $*$-degree by $\mathbf{- 1}$.
Remark. Originally, I and Martin studied the case $\boldsymbol{v}=(1,1, \cdots, 1)$.
In that case, the quiver Heisenberg relation ${ }^{v} \eta_{a}=[\boldsymbol{a}, \boldsymbol{\rho}]$ can be looked as a quiver version of the Heisenberg relations $[\boldsymbol{x},[\boldsymbol{x}, \boldsymbol{y}]],[\boldsymbol{y},[\boldsymbol{x}, \boldsymbol{y}]]$.
Hence the name quiver Heisenberg algebras.

1.3. Related algebras and preceding results.

We point out the following isomorphism of algebras:

$$
{ }^{v} \Lambda(Q) \cong \frac{\mathrm{k}[z] \bar{Q}}{\left(\rho_{i}-\left(v_{i} z\right) e_{i} \mid i \in Q_{0}\right)}
$$

(where $\boldsymbol{e}_{\boldsymbol{i}}$ is the idempotent element corresponding to $\boldsymbol{i} \in \boldsymbol{Q}_{\mathbf{0}}$) from which we see that ${ }^{\boldsymbol{v}} \boldsymbol{\Lambda}(\boldsymbol{Q})$ is a special case of

- The central extension of the preprojective algebras by Etingof-Rains (2006)

$$
\Pi(Q)_{\lambda, \mu}:=\frac{\mathrm{k}[z] \bar{Q}}{\left(\rho_{i}-\left(\lambda_{i} z+\mu_{i}\right) e_{i} \mid i \in Q_{0}\right)}
$$

where $\boldsymbol{\lambda}_{\boldsymbol{i}}, \boldsymbol{\mu}_{\boldsymbol{i}} \in \mathbf{k}$ for each $\boldsymbol{i} \in \boldsymbol{Q}_{\mathbf{0}}$.

This algebra is a special case of the following algebra.

- The $\boldsymbol{N}=1$-quiver algebra by Cachazo-Katz-Vafa (2001)

$$
\Pi(Q)_{P}:=\frac{\mathrm{k}[z] \bar{Q}}{\left(\rho_{i}-P_{i}(z) e_{i} \mid i \in Q_{0}\right)}
$$

where $\boldsymbol{P}_{\boldsymbol{i}}(\boldsymbol{z}) \in \mathbf{k}[\boldsymbol{z}]$ for each $\boldsymbol{i} \in \boldsymbol{Q}_{\mathbf{0}}$.

This algebra is obtained as a pull-back of

- The deformation family of the preprojective algebras by Crawley-Boevey-Holland (1998)

$$
\Pi(Q)_{\bullet}:=\frac{\mathrm{k}\left[z_{1}, \cdots, z_{r}\right] \bar{Q}}{\left(\rho_{i}-z_{i} e_{i} \mid i \in Q_{0}\right)}
$$

where $\boldsymbol{r}=\# \boldsymbol{Q}_{0}$.

Theorem (Etingof-Rains). Assume char $\mathrm{k}=\mathbf{0}$.
If \boldsymbol{Q} is a Dynkin quiver with the Coxeter number \boldsymbol{h} and $\boldsymbol{r}:=\# \boldsymbol{Q}_{\mathbf{0}}$, then for generic $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}$,

$$
\operatorname{dim}^{v} \Lambda(Q)=\sum_{M \in \operatorname{ind} Q}(\operatorname{dim} M)^{2}=\frac{r h^{2}(h+1)}{12}
$$

Theorem (Herschend-M). Assume $\mathbf{c h a r} \mathbf{k}=\mathbf{0}$ and $\boldsymbol{v}=(1,1, \cdots, 1)$.
Then as $\mathbf{k} \boldsymbol{Q}$-modules,

$$
{ }^{v} \Lambda(Q) e_{i} \cong \bigoplus_{M \in \operatorname{ind} \mathscr{P}(Q)} M^{\oplus \operatorname{dim} e_{i} M}
$$

where $\mathscr{P}(\boldsymbol{Q})$ denotes the set of the preprojective modules of $\mathbf{k} \boldsymbol{Q}$.
Corollary . Assume char $\mathrm{k}=0$ and $\boldsymbol{v}=(1,1, \cdots, 1)$.

$$
\begin{equation*}
{ }^{v} \Lambda(Q) \cong \bigoplus_{M \in \operatorname{ind} \mathscr{P}(Q)} M^{\oplus \operatorname{dim} M} \tag{1}
\end{equation*}
$$

(2) If \boldsymbol{Q} is a Dynkin quiver, then

$$
{ }^{v} \Lambda(Q) \cong \bigoplus_{M \in \operatorname{ind} Q} M^{\oplus \operatorname{dim} M}
$$

The aims of this talk are
(1) to remove the assumptions
char $\mathrm{k}=0$ and $v=(1,1, \cdots, 1)$ and
(2) to give an understanding of the above theorem.
1.4. Example: \boldsymbol{A}_{3}-quiver. Let \boldsymbol{Q} be a directed \boldsymbol{A}_{3}-quiver.

$$
Q: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3, \bar{Q}: 1 \underset{\alpha^{*}}{\stackrel{\alpha}{\rightleftarrows}} 2 \underset{\beta^{*}}{\stackrel{\beta}{\rightleftarrows}} 3 .
$$

The mesh relations are

$$
\rho_{1}=\alpha \alpha^{*}, \rho_{2}=-\alpha^{*} \alpha+\beta \beta^{*}, \rho_{3}=-\beta^{*} \boldsymbol{\beta}
$$

Let $\boldsymbol{v}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}\right) \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$.
The quiver Heisenberg relations are
${ }^{v} \eta_{\alpha}=\left[\alpha,{ }^{v} \varrho\right]=v_{2}^{-1} \alpha \rho_{2}-v_{1}^{-1} \rho \alpha=v_{2}^{-1} \alpha \boldsymbol{\beta} \beta^{*}-\left(v_{2}^{-1}+v_{1}^{-1}\right) \alpha \alpha^{*} \alpha$
${ }^{v} \eta_{\beta}=-\left(v_{2}^{-1}+v_{3}^{-1}\right) \beta \beta^{*} \beta+v_{2}^{-1} \alpha^{*} \alpha \beta$,
${ }^{v} \eta_{\alpha^{*}}=\left(v_{1}^{-1}+v_{2}^{-1}\right) \alpha^{*} \alpha \alpha^{*}-v_{2}^{-1} \boldsymbol{\beta} \beta^{*} \alpha^{*}$,
${ }^{v} \eta_{\beta^{*}}=\left(v_{2}^{-1}+v_{3}^{-1}\right) \boldsymbol{\beta}^{*} \boldsymbol{\beta} \boldsymbol{\beta}^{*}-v_{2}^{-1} \boldsymbol{\beta}^{*} \alpha^{*} \alpha$.

Assume $\boldsymbol{v}=(\mathbf{1}, \mathbf{1}, \mathbf{1})$, char $\mathrm{k}=\mathbf{0}$.
Then the isomorphism (\&) tells, for example, that

Then, looking homogeneous part w.r.t *-grading,

$$
{ }^{v} \Lambda_{0} e_{2}=1^{2},{ }^{v} \Lambda_{1} e_{2}={ }_{1} 2^{\oplus 2^{3}},{ }^{v} \Lambda_{2} e_{2}={ }_{2}
$$

Since ${ }^{\boldsymbol{v}} \boldsymbol{\Lambda}_{\mathbf{0}}=\mathbf{k} \boldsymbol{Q}$, we see

$$
{ }^{v} \Lambda_{0} e_{2}=\mathrm{k} Q e_{2}=: P_{2}
$$

Observe that

$$
{ }^{v} \Lambda_{1} e_{2}={ }_{1} 2^{\oplus 2}{ }^{3}
$$

is the middle term of Auslander-Reiten sequence stating from $\boldsymbol{P}_{\mathbf{2}}$. (not a coincidence, but a consequence of "universal AR-sequence".)

What about ${ }^{v} \Lambda_{2} e_{2} ?$

Rough statement of the main theorem

Let $\boldsymbol{M} \in \operatorname{ind} \boldsymbol{Q}$.
Assume $\boldsymbol{n} \in \mathbb{N}$ and \boldsymbol{v} satisfy some conditions.
Then, the module ${ }^{v} \boldsymbol{\Lambda}_{n} \otimes_{\mathrm{k} \boldsymbol{Q}} \boldsymbol{M}$ provides
a minimal left rad^{n}-approximation of \boldsymbol{M}.

Thus, in the above case ${ }^{\boldsymbol{v}} \boldsymbol{\Lambda}_{2} \boldsymbol{e}_{\mathbf{2}}={ }^{\boldsymbol{v}} \boldsymbol{\Lambda}_{\mathbf{2}} \otimes_{\mathrm{k} Q} \boldsymbol{P}_{\mathbf{2}}$ provides a minimal left $\mathbf{r a d}^{2}$-approximation of $\boldsymbol{P}_{\mathbf{2}}$.

As a consequence, we can deduce

$$
{ }^{v} \Lambda_{2} e_{2} \cong I_{2}
$$

where $\boldsymbol{I}_{\mathbf{2}}:=\mathrm{D}\left(\boldsymbol{e}_{2} \mathbf{k} \boldsymbol{Q}\right)$.

We discuss $\mathbf{r a d}^{n}$-approximations in $\mathbf{D}^{\mathbf{b}}(\boldsymbol{R}$ mod) where \boldsymbol{R} is a finite dimensional algebra of finite global dimension.

2.0.1. The radical rad and \boldsymbol{n}-th power rad n.

Let $\boldsymbol{M}, \boldsymbol{N} \in \mathbf{D}^{\mathrm{b}}(\boldsymbol{R} \bmod)$.
Recall that the radical $\operatorname{rad}(\boldsymbol{M}, \boldsymbol{N})$ is defined to be a subspace of $\operatorname{Hom}_{\mathbf{D}^{\mathbf{b}}(\boldsymbol{R} \text { mod })}(\boldsymbol{M}, \boldsymbol{N})$ consisting of such morphisms $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{N}$ that satisfy the following property: for any $\boldsymbol{L} \in \operatorname{ind} \mathbf{D}^{\mathbf{b}}(\boldsymbol{R} \mathbf{m o d})$ and any morphisms

$$
s: L \rightarrow M, \quad t: N \rightarrow L
$$

the composition $\boldsymbol{t f} \boldsymbol{s}: \boldsymbol{L} \rightarrow \boldsymbol{L}$ is not an isomorphism.

The radicals $\{\operatorname{rad}(\boldsymbol{M}, \boldsymbol{N})\}_{M, N}$ form an ideal $\boldsymbol{\operatorname { r a d }}$ of $\mathbf{D}^{\mathbf{b}}(\boldsymbol{R} \bmod)$ (an \mathbf{k}-linear additive sub-bi-functor of $\mathbf{H o m}_{\mathbf{D}^{\mathbf{b}}(\boldsymbol{R} \mathbf{~ m o d})}$).

For $\boldsymbol{n} \geq \mathbf{2}$, we denote the \boldsymbol{n}-th power of $\mathbf{r a d}$ by $\mathbf{r a d}^{\boldsymbol{n}}$.
In other words, $\operatorname{rad}^{n}(\boldsymbol{M}, \boldsymbol{N})$ is a subspace of $\operatorname{Hom}_{\mathbf{D}^{\mathbf{b}}(\boldsymbol{R} \text { mod })}(\boldsymbol{M}, \boldsymbol{N})$ consisting of those morphisms $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{N}$ that are obtained as \boldsymbol{n}-times compositions of morphisms in rad.

$$
f: M \xrightarrow{g_{1}} L_{1} \xrightarrow{g_{2}} L_{2} \xrightarrow{g_{3}} \cdots \xrightarrow{g_{n-1}} L_{n-1} \xrightarrow{g_{n}} N
$$

where $\boldsymbol{g}_{1}, \cdots, \boldsymbol{g}_{\boldsymbol{n}} \in \operatorname{rad}$.
2.0.2. $\mathbf{r a d}^{n}$-approximations.

Definition . Let $\boldsymbol{n} \geq 1$.

(1) A morphism $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{N}$ is called a left approximation of \boldsymbol{M} with respect to $\mathbf{r a d}^{n}$ (or, left $\mathbf{r a d}^{n}$-approximation of \boldsymbol{M})
if (i) \boldsymbol{f} belongs to $\operatorname{rad}^{n}(\boldsymbol{M}, \boldsymbol{N})$ and
(ii) any morphism $\boldsymbol{g}: \boldsymbol{M} \rightarrow \boldsymbol{L}$ belonging to $\operatorname{rad}^{n}(\boldsymbol{M}, \boldsymbol{L})$ factors through \boldsymbol{f}, i.e., there exists $\boldsymbol{h}: \boldsymbol{N} \rightarrow \boldsymbol{L}$ such that $\boldsymbol{g}=\boldsymbol{h} \boldsymbol{f}$.

(2) A morphism $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{N}$ is called a left minimal if $\boldsymbol{h}: \boldsymbol{N} \rightarrow \boldsymbol{N}$ satisfies $\boldsymbol{h} \boldsymbol{f}=\boldsymbol{f}$, then it is an isomorphism.

$\Longrightarrow \quad \boldsymbol{h}$ is an isom.
(3) A morphism $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{N}$ is called a minimal left rad^{n}-approximation if it is both left minimal and a left $\mathbf{r a d}^{n}$-approximation.

Remark . (1) We define a (minimal) right $\mathbf{r a d}^{n}$-approximation of \boldsymbol{M}, which is a morphism $\boldsymbol{N} \rightarrow \boldsymbol{M}$, in a dual way.
(2) More generally, we can define (minimal) left or right approximations with respect to an ideal.

Lemma . Let $\boldsymbol{M} \in \operatorname{ind} \mathbf{D}^{\mathrm{b}}(\boldsymbol{R} \bmod)$.
Then a morphism $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{N}$ is minimal left almost split if and only if it is a minimal left rad-approximation.

A point here is that if \boldsymbol{M} is a domain of a left almost split morphism $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{N}$, it must be indecomposable. But the notion of minimal left rad-approximation makes sense for a non-indecomposable object.
Since any $\boldsymbol{M} \in \operatorname{ind} \mathbf{D}^{\mathbf{b}}(\boldsymbol{R} \bmod)$ admits a minimal left almost split morphism $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{N}$,

Corollary . For $M \in \mathbf{D}^{\mathbf{b}}(\boldsymbol{R} \bmod)$ and $\boldsymbol{n} \geq \mathbf{1}$,
a (minimal) left $\mathbf{r a d}^{n}$-approximation $\boldsymbol{M} \rightarrow \boldsymbol{N}$ of \boldsymbol{M} exists.
A minimal left $\mathbf{r a d}^{n}$-approximation of \boldsymbol{M} is unique up to isomorphism under \boldsymbol{M}.
2.0.3. A description of $\mathbf{r a d}^{n}$-approximations.

We give $\mathbf{r a d}^{n}$-versions of well-know description of rad-approximations.

Theorem . Let $\boldsymbol{n} \geq 1$ and $M \in \operatorname{ind} \mathbf{D}^{\mathrm{b}}(\boldsymbol{R} \bmod)$.
Let $\boldsymbol{\lambda}_{\boldsymbol{n}}: \boldsymbol{M} \rightarrow \boldsymbol{L}_{\boldsymbol{n}}$ be a minimal left $\mathbf{r a d}^{n}$-approximation of \boldsymbol{M}.
Then

$$
\boldsymbol{L}_{n} \cong \bigoplus_{K \in \operatorname{ind}} \prod_{\mathbf{D}^{\mathbf{b}}(\boldsymbol{R} \bmod)} \boldsymbol{K}^{\oplus d_{K}^{n}}
$$

where

$$
d_{K}^{n}:=\operatorname{dim} \frac{\operatorname{rad}^{n}(M, K)}{\operatorname{rad}^{n+1}(M, K)}
$$

3. $\mathbf{r a d}^{n}$-APPROXIMATIONS IN $\mathbf{D}^{\mathbf{b}}(\mathbf{k} \boldsymbol{Q} \bmod)$

Let $\boldsymbol{M} \in \operatorname{ind} \mathbf{D}^{\mathbf{b}}(\mathbf{k} \boldsymbol{Q} \bmod)$ and
$\boldsymbol{\lambda}_{\boldsymbol{n}}: \boldsymbol{M} \rightarrow \boldsymbol{L}_{\boldsymbol{n}}$ a minimal left $\mathbf{r a d}^{n}$-approximation of \boldsymbol{M} for $\boldsymbol{n} \geq \mathbf{0}$.

- If \boldsymbol{Q} is non-Dynkin, then, $\boldsymbol{L}_{\boldsymbol{n}} \neq \mathbf{0}$ for $\boldsymbol{n} \geq \mathbf{0}$.

Theorem . Let \boldsymbol{Q} be a Dynkin quiver with the Coxeter number \boldsymbol{h}.
Then,
(1) $\boldsymbol{L}_{\boldsymbol{n}} \neq \mathbf{0}$ if and only if $\mathbf{0} \leq \boldsymbol{n} \leq \boldsymbol{h}-\mathbf{2}$.
(2) $\boldsymbol{L}_{\boldsymbol{h}-\mathbf{2}}=\mathbf{S}(\boldsymbol{M})$ where \mathbf{S} denotes a Serre functor of $\mathbf{D}^{\mathbf{b}}(\mathbf{k} \boldsymbol{Q} \bmod)$.

Example . In the case $\boldsymbol{M}=\boldsymbol{P}_{\boldsymbol{i}}=\mathbf{k} \boldsymbol{Q} \boldsymbol{e}_{\boldsymbol{i}}$, we have

$$
\boldsymbol{L}_{h-2}=\mathbf{S}\left(\boldsymbol{P}_{i}\right)=\boldsymbol{I}_{i}=\mathrm{D}\left(\boldsymbol{e}_{i} \mathrm{k} \boldsymbol{Q}\right)
$$

and a minimal left $\mathbf{r a d}^{h-2}$-approximation is a non-zero morphism

$$
f: P_{i} \longrightarrow I_{i}
$$

3.1. Description of $\bigoplus_{n} \boldsymbol{L}_{n}$.

We exclude the case where \boldsymbol{Q} is wild and \boldsymbol{M} is a shift of a regular module.
Let $\boldsymbol{\mathscr { C }}_{\boldsymbol{M}}$ be the connected component of AR-quiver that contains \boldsymbol{M}.
Then for each $\boldsymbol{K} \in$ ind $\mathscr{\mathscr { C }}_{\boldsymbol{M}}$, the radical filtration terminates

$$
\operatorname{Hom}_{\mathrm{k} Q}(M, K) \supset \operatorname{rad}(M, K) \supset \cdots \supset \operatorname{rad}^{n}(M, K) \supset \cdots
$$

Consequently,

Theorem . In the above setting,

$$
\bigoplus_{n \geq 0} \boldsymbol{L}_{n}=\bigoplus_{K \in \operatorname{ind} \mathscr{C}_{M}} \boldsymbol{K}^{\oplus \operatorname{dim} \operatorname{Hom}(M, K)}
$$

4. The derived quiver Heisenberg algebras

4.1. For a moment assume char $k \neq 2$.

Lemma . The $Q H A^{\boldsymbol{v}} \boldsymbol{\Lambda}(\boldsymbol{Q})$ is the Jacobi algebra:

$$
{ }^{v} \Lambda(Q)=\mathscr{P}\left(\bar{Q},-\frac{1}{2} v \varrho \rho\right)
$$

Definition . The derived quiver Heisenberg algebra ${ }^{\boldsymbol{v}} \widetilde{\boldsymbol{\Lambda}}(\boldsymbol{Q})$ is defined to be the Ginzburg dg-algebra

$$
{ }^{v} \widetilde{\Lambda}(Q)=\mathscr{G}\left(\bar{Q},-\frac{1}{2} v \varrho \rho\right)
$$

Explicitly,

$$
\begin{aligned}
& Q \xrightarrow{\alpha} j \\
& \begin{array}{l|l|l|l|l|l|l}
\alpha \\
& e_{i} & \alpha & \alpha^{*} & \alpha^{\circledast} & \alpha^{\circ} & t_{i} \\
\hline \operatorname{ch~deg} & 0 & 0 & 0 & -1 & -1 & -2
\end{array}
\end{aligned}
$$

The values of \boldsymbol{d} are defined as:

$$
\begin{aligned}
& d(\alpha):=0, \quad d\left(\alpha^{*}\right):=0 \\
& d\left(\alpha^{\circ}\right):=-{ }^{v} \boldsymbol{\eta}_{\alpha^{*}}, \quad d\left(\boldsymbol{\alpha}^{\circledast}\right):={ }^{v} \boldsymbol{\eta}_{\alpha}
\end{aligned}
$$

$$
d\left(t_{i}\right):=\sum_{\alpha: t(\alpha)=i} \alpha \alpha^{\circ}-\sum_{\alpha: h(\alpha)=i} \alpha^{\circ} \alpha+\sum_{\alpha: h(\alpha)=i} \alpha^{*} \alpha^{\circledast}-\sum_{\alpha: t(\alpha)=i} \alpha^{\circledast} \alpha^{*}
$$

The point here is that

Although the potential $-\frac{1}{2} \boldsymbol{v} \boldsymbol{\rho} \boldsymbol{\rho}$ contains the fraction $\frac{1}{2}$, but the differential of $\boldsymbol{\mathscr { G }}\left(\overline{\boldsymbol{Q}},-\frac{1}{\mathbf{2}} \boldsymbol{v} \boldsymbol{\rho} \boldsymbol{\rho}\right)$ does not.
Therefore, the explicit definition of $\boldsymbol{v} \widetilde{\boldsymbol{\Lambda}}(\boldsymbol{Q})$ even works for the case $\mathbf{c h a r} \mathbf{k}=\mathbf{2}$.

4.2. From now char k is arbitrary, again.

Definition . We define the derived quiver Heisenberg algebra ${ }^{\boldsymbol{v}} \widetilde{\boldsymbol{\Lambda}}(\boldsymbol{Q})$ as a $D G$-algebra given by the above cohomological graded quiver and the differentials.

We may equip ${ }^{v} \widetilde{\Lambda}(\boldsymbol{Q})$ with the $*$-grading as below:

	e_{i}	α	α^{*}	α^{\circledast}	α°	t_{i}
ch deg	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	-1	-1	-2
deg *	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	2	2

Lemma .

$$
\mathrm{H}^{0}\left({ }^{v} \widetilde{\Lambda}(\boldsymbol{Q})\right) \cong{ }^{v} \boldsymbol{\Lambda}(\boldsymbol{Q})
$$

- Recall that ${ }^{\boldsymbol{v}} \boldsymbol{\varrho} \in{ }^{\boldsymbol{v}} \boldsymbol{\Lambda}$ is central and there is an exact seq of $\boldsymbol{*}$-graded ${ }^{v} \boldsymbol{\Lambda}$-bimdoules:

$$
{ }^{v} \Lambda(-1) \xrightarrow{v_{\varrho}}{ }^{v} \Lambda \xrightarrow{v_{\pi}} \Pi \longrightarrow 0
$$

Lemma . (1) The element ${ }^{\boldsymbol{v}} \varrho \in{ }^{\boldsymbol{v}} \widetilde{\boldsymbol{\Lambda}}(\boldsymbol{Q})$ is "homotopical central".
(2) The right multiplication

$$
\cdot{ }^{v} \varrho:{ }^{v} \widetilde{\Lambda}(Q) \rightarrow{ }^{v} \widetilde{\Lambda}(Q)
$$

can be regraded as a morphism of $*$-graded $D G^{-} \boldsymbol{v} \widetilde{\boldsymbol{\Lambda}}$-bimdoules.

Let $\widetilde{\boldsymbol{\Pi}}=\widetilde{\Pi}(\boldsymbol{Q})$ be the derived preprojective algebra:

$$
\begin{aligned}
\widetilde{\Pi}(Q) & :=\mathbf{T}_{\mathrm{k} Q} \Theta[1] \\
\Theta & :=\mathbb{R} \operatorname{Hom}_{\mathrm{k} Q}(\mathrm{D}(\mathrm{k} Q), \mathrm{k} Q)
\end{aligned}
$$

We call the tensor degree of $\widetilde{\boldsymbol{\Pi}}(\boldsymbol{Q})$, the $*$-grading. Thus, in particular

$$
\widetilde{\Pi}_{1}=\Theta[1] .
$$

Note we have $H^{0}(\widetilde{\Pi}(\boldsymbol{Q}))=\boldsymbol{\Pi}(\boldsymbol{Q})$.
Theorem . There exists a *-graded $D G$-algebra homomorphism

$$
{ }^{v} \tilde{\pi}:{ }^{v} \widetilde{\Lambda}(Q) \rightarrow \widetilde{\Pi}(Q)
$$

such that $\mathrm{H}^{0}\left({ }^{v} \tilde{\boldsymbol{\pi}}\right)={ }^{v} \boldsymbol{\pi}$.
The above morphisms constitute an exact triangle

$$
v^{v}(-1) \xrightarrow{\cdot^{v} \varrho} v^{v} \widetilde{\Lambda} \xrightarrow{v_{\tilde{\pi}}} \widetilde{\Pi} \rightarrow
$$

in the derived category of $*$-graded $D G_{-}{ }^{v} \widetilde{\boldsymbol{\Lambda}}$-bimdoules.
We denote the $\boldsymbol{*}$-degree $\mathbf{1}$-part of the exact triangle by ${ }^{v} \mathbf{A R}$, which is an exact triangle of $\mathrm{DG}-\mathrm{k} Q$-bimodules:

$$
{ }^{v} \mathbf{A R}: \mathrm{k} Q \xrightarrow{\cdot^{v} \varrho}{ }^{v} \widetilde{\Lambda}_{1} \xrightarrow{v_{\tilde{\pi}_{1}}} \widetilde{\Pi}_{1} \xrightarrow{-{ }^{v} \tilde{\theta}[1]}
$$

where we set the co-connecting morphism of ${ }^{v} \mathbf{A R}$ by

$$
{ }^{v} \tilde{\theta}: \Theta=\widetilde{\Pi}_{1}[-1] \longrightarrow \mathrm{k} Q .
$$

5.1. Weighted trace.

Let $\left.\boldsymbol{U} \in \mathbf{D}^{\mathbf{b}} \mathbf{(k m o d}\right)$. The trace of $\boldsymbol{\phi}: \boldsymbol{U} \rightarrow \boldsymbol{U}$ is defined to be

$$
\operatorname{Tr}_{\mathrm{k}}(\phi):=\sum_{n \in \mathbb{Z}}(-1)^{n} \operatorname{Tr}_{\mathrm{k}}\left[\mathrm{H}^{n}(\phi): \mathrm{H}^{n}(\boldsymbol{U}) \rightarrow \mathrm{H}^{n}(\boldsymbol{U})\right]
$$

Definition . Let $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$.
For $\boldsymbol{M} \in \mathbf{D}^{\mathbf{b}}(\mathbf{k} \boldsymbol{Q} \bmod)$ and $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{M}$, we define

$$
{ }^{v} \operatorname{Tr}(f):=\sum_{i \in Q_{0}} v_{i} \operatorname{Tr}_{\mathrm{k}}\left(e_{i} f\right)
$$

where $\boldsymbol{e}_{i} \boldsymbol{f}: \boldsymbol{e}_{\boldsymbol{i}} \boldsymbol{M} \rightarrow \boldsymbol{e}_{\boldsymbol{i}} \boldsymbol{M} \in \mathrm{D}^{\mathrm{b}}(\mathrm{k} \bmod)$.

Example . If $\boldsymbol{M} \in \mathbf{k} \boldsymbol{Q} \bmod$, then

$$
{ }^{v} \operatorname{Tr}\left(\mathrm{id}_{M}\right)=\sum_{i \in Q_{0}} v_{i} \operatorname{dim}\left(e_{i} M\right)=v \cdot \underline{\operatorname{dim}}(M)
$$

5.2. Trace formula.

The endofunctor $\mathbf{S}^{-1}:=\Theta \otimes_{\mathbf{k} Q}^{\mathbb{L}}-$ of $\mathbf{D}^{\mathbf{b}}(\mathbf{k} \boldsymbol{Q} \mathbf{m o d})$ is the inverse of a Serre functor \mathbf{S}. So, ${ }^{\boldsymbol{v}} \tilde{\boldsymbol{\theta}}_{\boldsymbol{M}}:={ }^{v} \tilde{\boldsymbol{\theta}} \otimes^{\mathbb{L}} \boldsymbol{M}$ is

$$
{ }^{v} \tilde{\boldsymbol{\theta}}_{M}: \mathrm{S}^{-1} M \longrightarrow M
$$

Theorem . Let $\boldsymbol{M} \in \mathbf{D}^{\mathrm{b}}(\mathrm{k} Q \bmod)$ and $\boldsymbol{f} \in \operatorname{Hom}_{\mathrm{k} Q}(\boldsymbol{M}, \boldsymbol{M})$. Then,

$$
\left\langle f,{ }^{v} \tilde{\theta}_{M}\right\rangle_{S^{-1}}={ }^{v} \operatorname{Tr}(f)
$$

where $\langle-,+\rangle_{\mathbf{s}^{-1}}$ denotes the paring of Serre duality

$$
\langle-,+\rangle_{\mathrm{S}^{-1}}: \operatorname{Hom}_{\mathrm{k} Q}(M, M) \otimes_{\mathrm{k}} \operatorname{Hom}_{\mathrm{k} Q}\left(\mathrm{~S}^{-1} M, M\right) \longrightarrow \mathrm{k}
$$

5.3. Universal Auslander-Reiten triangle.

Definition . An element $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$ is said to have the property (I) if for all $\boldsymbol{M} \in$ ind \boldsymbol{Q} we have

$$
0 \neq v \cdot \underline{\operatorname{dim}}(M)={ }^{v} \operatorname{Tr}\left(\mathbf{i d}_{M}\right)=\left\langle\mathbf{i d}_{M},{ }^{v} \tilde{\theta}_{M}\right\rangle_{\mathbf{S}^{-1}} \text { in } \mathbf{k} .
$$

Example . (1) Assume that char $\mathbf{k}=\mathbf{0}$.
If $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{r}}>\mathbf{0}$, then $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}$ has the property (I).
(2) If $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\boldsymbol{2}}, \cdots, \boldsymbol{v}_{\boldsymbol{r}} \in \mathbf{k}$ are linearly independent over the prime field \mathbb{P} of \mathbf{k}, then $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$ has the property (I).

Using Happel's criterion for AR-triangle, we deduce

Theorem (Universal Auslander-Reiten triangle).
Assume that $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$ has the property (I).
Then for any $\boldsymbol{M} \in \mathbf{D}^{\mathbf{b}}(\mathbf{k} \boldsymbol{Q} \bmod)$
the exact triangle ${ }^{\boldsymbol{v}} \mathbf{A} \mathbf{R}_{M}:={ }^{v} \mathbf{A R} \otimes^{\mathbb{L}} \boldsymbol{M}$ is
a direct sum of $A R$-triangles starting from indec. summand of \boldsymbol{M}
${ }^{v} \mathbf{A R}_{M}: M \xrightarrow{v^{\tilde{\varrho}_{M}}} \widetilde{\Lambda}_{1} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M \xrightarrow{v_{\tilde{\pi}_{1, M}}} \widetilde{\Pi}_{1} \otimes_{\mathrm{k} Q}^{\mathbb{L}} \boldsymbol{M} \xrightarrow{-{ }^{v} \tilde{\theta}_{M}[1]}$.
In other words, the morphism ${ }^{\boldsymbol{v}} \tilde{\underline{\varrho}}_{\boldsymbol{M}}: \boldsymbol{M} \rightarrow{ }^{\boldsymbol{v}} \widetilde{\boldsymbol{\Lambda}}_{\mathbf{1}} \otimes_{\mathbf{k} \boldsymbol{Q}}^{\mathbb{L}} \boldsymbol{M}$ is a minimal left rad-approximation of \boldsymbol{M} and
the morphism ${ }^{v} \tilde{\boldsymbol{\pi}}_{1, M}:{ }^{v} \widetilde{\Lambda}_{\mathbf{1}} \otimes_{\mathbf{k} Q}^{\mathbb{L}} \boldsymbol{M} \rightarrow \widetilde{\boldsymbol{\Pi}}_{\mathbf{1}} \otimes_{\mathbf{k} Q}^{\mathbb{L}} \boldsymbol{M}$ is a minimal right rad-approximation of $\widetilde{\Pi}_{1} \otimes_{\mathrm{k} Q}^{\mathbb{L}} \boldsymbol{M}$.

Remark. If we fix \boldsymbol{M} first, then we can weakened the assumption on

6. rad^{n}-APPROXIMATIONS AND ${ }^{v} \widetilde{\Lambda}(\boldsymbol{Q})$

Recall there is a $*$-graded DG-algebra morphism

$$
{ }^{v} \tilde{\pi}:{ }^{v} \widetilde{\Lambda} \rightarrow \widetilde{\Pi}
$$

Let ${ }^{v} \tilde{\boldsymbol{\pi}}_{n}:{ }^{v} \widetilde{\boldsymbol{\Lambda}}_{\boldsymbol{n}} \rightarrow \widetilde{\boldsymbol{\Pi}}_{\boldsymbol{n}}$ be the $*$-degree \boldsymbol{n}-part and ${ }^{\boldsymbol{v}} \tilde{\boldsymbol{\pi}}_{\boldsymbol{n}, \boldsymbol{M}}={ }^{v} \tilde{\boldsymbol{\pi}}_{n} \otimes^{\mathbb{L}} \boldsymbol{M}$.

Theorem . Assume that $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$ has the property (I).
Let $\boldsymbol{M} \in \mathbf{D}^{\mathbf{b}}(\mathbf{k} \boldsymbol{Q} \bmod)$.
Then the morphism

$$
{ }^{v} \tilde{\pi}_{n, M}:{ }^{v} \widetilde{\Lambda}_{n} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M \rightarrow \widetilde{\Pi}_{n} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M
$$

is a minimal right $\mathbf{r a d}^{n}$-approximation of $\widetilde{\boldsymbol{\Pi}}_{\boldsymbol{n}} \otimes_{\mathbf{k} \boldsymbol{Q}}^{\mathbb{L}} \boldsymbol{M}$ for

$$
n \text { belonging to } \begin{cases}0 \leq n \leq h-2 & (\boldsymbol{Q} \text { is Dynkin }) \\ 0 \leq n & (\boldsymbol{Q} \text { is non-Dynkin })\end{cases}
$$

Taking $\mathbb{R} \mathbf{H o m}_{\mathrm{k} \boldsymbol{Q}^{\text {op }}}\left(-, \widetilde{\boldsymbol{\Pi}}_{\boldsymbol{n}}\right)$ of the right modules version of this theorem, inductively, we can deduce

Theorem . Assume that $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$ has the property (I). Let $\boldsymbol{M} \in \mathbf{D}^{\mathbf{b}}(\mathbf{k} \boldsymbol{Q} \bmod)$.
Then ${ }^{v} \widetilde{\Lambda}_{\boldsymbol{n}} \otimes_{\mathrm{k} \boldsymbol{Q}}^{\mathbb{L}} \boldsymbol{M}$ provides a minimal left rad^{n}-approximation of \boldsymbol{M} for \boldsymbol{n} belonging to ($\boldsymbol{\phi}$).
I.e., there exists a minimal left $\mathbf{r a d}^{n}$-approximation morphism

$$
{ }^{v} \boldsymbol{\beta}_{M}^{(n)}: M \rightarrow^{v} \widetilde{\Lambda}_{n} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M
$$

for \boldsymbol{n} belonging to ($\boldsymbol{\phi}$).

Theorem. Assume that $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$ has the property (I).
Let $\boldsymbol{M} \in \operatorname{ind} \mathbf{D}^{\mathrm{b}}(\mathbf{k} Q \bmod)$.
Except the case where \boldsymbol{Q} is wild and \boldsymbol{M} is a shift of a regular module, we have the following isomorphism

$$
\bigoplus_{n} v \widetilde{\Lambda}_{n} \otimes_{\mathrm{k} Q}^{\mathbb{L}} \boldsymbol{M} \cong \bigoplus_{K \in \operatorname{ind} \mathscr{C}_{M}} \boldsymbol{K}^{\oplus \operatorname{dim} \operatorname{Hom}(M, K)}
$$

where in LHS, \boldsymbol{n} runs through $(\boldsymbol{\oplus})$.

Corollary . Assume that $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$ has the property (I).
Then as $\mathbf{k} \boldsymbol{Q}$-modules

$$
{ }^{v} \Lambda \cong \bigoplus_{K \in \operatorname{ind} \mathscr{P}(Q)} \boldsymbol{K}^{\oplus \operatorname{dim} K}
$$

7. What is a minimal left rad^{n}-APproximation morphism We have shown that
there exists a minimal left $\mathbf{r a d}^{n}$-approximation morphism

$$
{ }^{v} \boldsymbol{\beta}_{M}^{(n)}: M \rightarrow{ }^{v} \widetilde{\Lambda}_{n} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M
$$

A natural candidate is the multiplication of the \boldsymbol{n}-th power ${ }^{\boldsymbol{v}} \boldsymbol{\varrho}^{\boldsymbol{n}}$ of ${ }^{\boldsymbol{v}} \boldsymbol{\varrho}$

Question: Is

$$
{ }^{v} \varrho_{M}^{n}: M \rightarrow{ }^{v} \widetilde{\Lambda}_{n} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M
$$

a minimal left rad^{n}-approximation of M ?

Example. Let \boldsymbol{Q} be a directed $\boldsymbol{A}_{\mathbf{3}^{-}}$quiver.

$$
Q: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3, \bar{Q}: 1 \underset{\alpha^{*}}{\stackrel{\alpha}{\rightleftarrows}} 2 \underset{\beta^{*}}{\stackrel{\beta}{\rightleftarrows}} 3 .
$$

The property (I) precisely says that \boldsymbol{v} satisfies the followings

$$
\begin{aligned}
& v_{1} \neq 0, v_{2} \neq 0, v_{3} \neq 0 \\
& v_{1}+v_{2} \neq 0, v_{2}+v_{3} \neq 0, v_{1}+v_{2}+v_{3} \neq 0
\end{aligned}
$$

Proposition. Assume that $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$ has the property (I).
Then, the morphism

$$
{ }^{v} \varrho_{P_{2}}^{2}: P_{2} \rightarrow{ }^{v} \widetilde{\Lambda}_{2} \otimes_{\mathrm{k} Q}^{\mathbb{L}} P_{2}
$$

is a minimal left $\mathbf{r a d}^{2}$-approximation if and only if

$$
v_{1}+2 v_{2}+v_{3} \neq 0 .
$$

We note

$$
v_{1}+2 v_{2}+v_{3}=v \cdot \underline{\operatorname{dim}}\left({ }^{v} \widetilde{\Lambda}_{1} \otimes_{\mathrm{k} Q}^{\mathbb{L}} P_{2}\right) .
$$

7.1. Minimal left rad^{2}-approximation.

Theorem. Assume that $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$ has the property (I).
Let $\boldsymbol{M} \in \operatorname{ind} \mathbf{D}^{\mathbf{b}}(\mathbf{k} \boldsymbol{Q}$ mod). Assume that

$$
v \cdot \underline{\operatorname{dim}}\left({ }^{v} \widetilde{\Lambda}_{1} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M\right) \neq 0 .
$$

Then the morphism

$$
{ }^{v} \varrho_{M}^{2}: M \longrightarrow{ }^{v} \widetilde{\Lambda}_{2} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M
$$

is a minimal left $\mathbf{r a d}^{2}$-approximation of \boldsymbol{M}.
7.2. Minimal left rad^{n}-approx (char $\mathrm{k}=0$).

Theorem . Assume char $\mathbf{k}=0$.
Let $\left.\boldsymbol{M} \in \operatorname{ind} \mathbf{D}^{\mathbf{b}} \mathbf{(k Q} \bmod \right)$ and \boldsymbol{n} belongs to (\boldsymbol{Q}).
Then for a generic parameter $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$, the morphism

$$
{ }^{v} \varrho_{M}^{n}: M \rightarrow{ }^{v} \widetilde{\Lambda}_{n} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M
$$

is a minimal left $\mathbf{r a d}^{n}$-approximation of \boldsymbol{M}.

Corollary . Assume char $\mathrm{k}=0$.
Let \boldsymbol{Q} be a Dynkin quiver with the Coxeter number \boldsymbol{h}.
Then for a generic parameter $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$ the morphism

$$
{ }^{v} \varrho_{M}^{n}: M \rightarrow{ }^{v} \widetilde{\Lambda}_{n} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M
$$

is a minimal left $\mathbf{r a d}^{n}$-approximation of \boldsymbol{M} for all $\boldsymbol{M} \in \mathbf{D}^{\mathbf{b}}(\mathrm{k} \boldsymbol{Q} \bmod)$ and $\boldsymbol{n}=\mathbf{1}, \mathbf{2}, \cdots, \boldsymbol{h}-\mathbf{2}$,

7.3. Minimal left rad^{n}-approx $\left(Q=A_{N^{-}}\right.$-quiver $)$.

Theorem $. \operatorname{Let} \boldsymbol{N} \geq \mathbf{1}$ and \boldsymbol{Q} an $\boldsymbol{A}_{\boldsymbol{N}}$-quiver (note $\left.\boldsymbol{h}=\boldsymbol{N}+\mathbf{1}\right)$.
Assume that \mathbf{k} has a primitive \boldsymbol{h}-th root of unity.
Then for a generic $\boldsymbol{v} \in \mathbf{k}^{\times} \boldsymbol{Q}_{\mathbf{0}}$, the morphism

$$
{ }^{v} \varrho_{M}^{n}: M \rightarrow \widetilde{\Lambda}_{n} \otimes_{\mathrm{k} Q}^{\mathbb{L}} M
$$

is a minimal left $\mathbf{r a d}^{n}$-approximation of \boldsymbol{M} for all $\boldsymbol{M} \in \mathbf{D}^{\mathbf{b}}(\mathbf{k} \boldsymbol{Q} \bmod)$ and $\boldsymbol{n}=\mathbf{1}, \mathbf{2}, \cdots, \boldsymbol{h}-\mathbf{2}$.

Thank you

