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1. INTRODUCTION

Setup .

® k : an algebraically closed field of arbitrary characteristic.

® (Q: a finite acyclic quiver.

1.1. The preprojective algebras II(Q) of Q.
We denote by @Q the double of Q.

Q . «a . . @

Recall that for a vertex ¢ € Qg, the mesh relation p; is defined by
pi 1= Z ax” — Z a*a.
0 €Qy:t(e)=i a€Qr:h(a)=i
The following is also called the mesh relation:
P = Z Pi-
1€Qo

The preprojective algebra is defined to be
the path of the double quiver @ with the mesh relations:
kQ  kQ
() (pili€Qo)
We equip @ with the grading (*-grading)

Q) =

deg* a := 0, deg” o™ := 1 for a € Q7.

Then deg™ p; = 1 and II(Q) is a *-graded algebra.
We have TI(Q)o = kQ.



1.2. Quiver Heisenberg Algebras "A(Q).
The quiver Heisenberg algebra YA (Q) has a parameter v € k*Q,

i.e., a collection v = (v;)ieq, of non-zero element of k indexed by Qp.

Definition . Let v € k* Q.
(1) For 1 € Qo, we set

v «— —1 v «— Vv, -1 .
O; =V, pPiy 0O := 0; = U, Pi-
i1€Qo 1€Qo

(2) For a € @y, the quiver Heisenberg relation Yng is defined to be

Ulg == [a,"0] = a’e — "ea = vy} apnia) — Vi L PHw)a-

(3) We define the quiver Heisenberg algebra YA(Q) to be
the path algebra of Q with the quiver Heisenberg relations:

kQ
YA = .
@ =G laeay

® The QH-relations Y7, are homogeneous w.r.t *-grading.
Hence YA(Q) is a x-graded algebra. We have "A(Q)o = kQ.
® The element Vg is central in YA(Q) and II(Q) = "A(Q)/(Y0).

Hence there is an exact seq of *-graded Y A-bimdoules:
YA(—1) LA T T 5 0
where (—1) denote the shift of *-degree by —1.

Remark . Originally, I and Martin studied the case v = (1,1,-++ ,1).
In that case, the quiver Heisenberg relation *ng, = [a, p] can be looked as a quiver
version of the Heisenberg relations [z, [z, y]], [y, [z, y]].

Hence the name quiver Heisenberg algebras.



1.3. Related algebras and preceding results.

We point out the following isomorphism of algebras:
k[2]Q
(pi — (viz)ei | i € Qo)

(where e; is the idempotent element corresponding to ¢ € Q)

AQ) =

from which we see that YA (Q) is a special case of

e The central extension of the preprojective algebras

by Etingof-Rains (2006)

[1(Q)y, i= k[z]@Q

(Pi — (Aiz + pi)ei | i € Qo)
where A;, ; € k for cach 2 € Q.

This algebra is a special case of the following algebra.

e The N = 1-quiver algebra by Cachazo-Katz-Vafa (2001)
k[z]Q

(pi — Pi(z)e; | 1 € Qo)

where P;(z) € k[z] for each ¢ € Q.

H(Q)p ppm

This algebra is obtained as a pull-back of
® The deformation family of the preprojective algebras

by Crawley-Boevey-Holland (1998)

k[zla ) Zr]a
(pi — zi€; | i € Qo)

H(Q)o =

where r = #Qo.



Theorem (Etingof-Rains). Assume char k = 0.
If Q is a Dynkin quiver with the Coxeter number h and r := #Q,
then for generic v € k*Q,

dim“A(Q) = Y (dimM)? =

Me€ind Q

rh?(h + 1)
12 '

Theorem (Herschend-M). Assume chark = 0 andv = (1,1,---,1).
Then as kQ-modules,
AQe; = P MO (&)

Meind P (Q)
where P(Q) denotes the set of the preprojective modules of kQ.

Corollary . Assume chark =0 andv = (1,1,--- ,1).
(1) "A(Q) 2 @ NP dim M
Meind 2P (Q)

(2) If Q is a Dynkin quiver, then

UA(Q) ~ @ M@dimM.

Meind Q

The aims of this talk are
(1) to remove the assumptions
chark =0 and v = (1,1,--- ,1) and

(2) to give an understanding of the above theo-

reuinl.




1.4. Example: As-quiver. Let Q be a directed Agz-quiver.

Q:1-°> -2 % 3 9g:1-—2-2_F .3

a* ,8*

The mesh relations are
p1 = aa”, pp = —a*a + BB, ps = —F676.
Let v = (v, v2,v3) € k*Q.
The quiver Heisenberg relations are
"Na = [, 0] = vy 'aps — v pa = vy aBB — (v;! + v Haata
‘ng = —(vy' +v;)B8B°B + vy 'a"ap,
Uy = (,01—1 + vz_l)a*aa* . ’02_155*@*,

UT’B* — (,02—1 + ’03_1),6*,6,8* . v;lﬁ*a*a.

Assume v = (1,1,1), chark = 0.
Then the isomorphism (&) tells, for example, that

”Aezzlz@zg /\
! 3 N TN



Then, looking homogeneous part w.r.t x-grading,
2

3
v 1 v — 2 v —
A082 = ) Alez = 2® ) A2€2 = 3.

1 2

Since YAg = kQ, we see
UAOGZ = erz = Pz.

Observe that

3

UA1€2 — ) 202

is the middle term of Auslander-Reiten sequence stating from Ps.

(not a coincidence, but a consequence of “universal AR-sequence”.)

What about “Ase,?

Rough statement of the main theorem

Let M € ind Q.

Assume n € N and v satisty some conditions.

Then, the module *A,, ®xg M provides

a minimal left rad™-approximation of M.

Thus, in the above case YAzes = YAy Qkg P> provides

a minimal left rad?-approximation of Ps.
As a consequence, we can deduce
UA2€2 = I2

where Iy := D(e2k@).




2. rad™-APPROXIMATIONS

We discuss rad™-approximations in D?(R mod)

where R is a finite dimensional algebra of finite global dimension.

2.0.1. The radical rad and n-th power rad™.
Let M, N € D’(Rmod).
Recall that the radical rad(M, N) is defined to be

a subspace of Hompb g mea) (M, IN) consisting of

such morphisms f : M — N that satisty the following property:
for any L € ind DP(Rmod) and any morphisms

s: L —->M, t: N — L,
the composition tfs : L — L is not an isomorphism.

M— 1 _N.
‘s\L‘/t

The radicals {rad (M, N)} s, form an ideal rad of D?(R mod)

( an k-linear additive sub-bi-functor of Hompb g med))-

For n > 2, we denote the n-th power of rad by rad”.
[n other words, rad™(M, N ) is a subspace of Hompbgmea) (M, IV)
consisting of those morphisms f : M — IN that are obtained as

n-times compositions of morphisms in rad.

gn—1
fF M50, 30,5250, . 5N

where g1,+++ , g, € rad.



2.0.2. rad™-approximations.

Definition . Let n > 1.

(1) A morphism f : M — N s called a left approzimation of M
with respect to rad™ ( or, left rad™-approximation of M )
if (i) f belongs to rad™ (M, N) and
(ii) any morphism g : M — L belonging to rad™ (M, L)
factors through f, i.e.,

there exists h : N — L such that g = hf.

M- N

|
X“‘

L

(2) A morphism f : M — N is called a left minimal

if h : N — N satisfies hf = f, then it is an isomorphism.

I
M/ lh —  h is an isom.

(3) A morphism f + M — N s called a minimal left rad™-approzimation

if it is both left minimal and a left rad™-approximation.

Remark . (1) We define a (minimal) right rad™-approximation of
M, which is a morphism N — M, in a dual way.
(2) More generally, we can define (minimal) left or right approzima-

tions with respect to an ideal.



Lemma . Let M € ind D’(Rmod).
Then a morphism f : M — N is minimal left almost split

of and only if it 1s a minimal left rad-approrimation.

A point here is that if M is a domain of a left almost split morphism
f + M — N, it must be indecomposable. But the notion of minimal left
rad-approximation makes sense for a non-indecomposable object.

Since any M € ind DP(R mod) admits a minimal left almost split
morphism f : M — N,

Corollary . For M € D*(Rmod) and n > 1,
a (minimal) left rad™-approzimation M — N of M exists.
A minimal left rad™-approximation of M is unique up to isomor-

phism under M .

2.0.3. A description of rad™-approximations.

We give rad™-versions of well-know description of rad-approximations.

Theorem . Let n > 1 and M € ind D”(R mod).
Let A, : M — L,, be a minimal left rad™-approximation of M.

Then

12

e @ Kk
K €ind DP(R mod)
where

rad” (M, K)

rad"™ (M, K)’

d?. := dim



3. rad™-APPROXIMATIONS IN DP(kQ@Q mod)

Let M € ind D?(kQ mod) and
An : M — L, aminimal left rad™-approximation of M for n > 0.

e If () is non-Dynkin, then, L,, 7 0 for n > 0.

Theorem . Let Q be a Dynkin quiver with the Coxeter number h.
Then,

(1) L, # 0 if and only if 0 < n < h — 2.
(2) L,_a = S(M) where S denotes a Serre functor of D?(kQ mod).
Example . In the case M = P; = kQe;, we have
Lh—2 = S(_PZ) = Iz = D(esz)
and a minimal left rad™ 2-approzimation is a non-zero morphism
3.1. Description of &, L.
We exclude the case where Q is wild and M is a shift of a regular module.

Let Bps be the connected component of AR-quiver that contains M.
Then for each K € ind 6, the radical filtration terminates

Homyg(M,K) Drad(M,K) D :-- Drad"(M,K) D ---.

Consequently,

Theorem . In the above setting,

@ L, = @ K dimHom(M,K).

n>0 Keind 64



4. THE DERIVED QUIVER HEISENBERG ALGEBRAS

4.1. For a moment assume char k # 2.

Lemma . The QHA "A(Q) is the Jacobi algebra:
— 1
AQ) =P (Q, ——"’Qp> :

2

Definition . The derived quiver Heisenberg algebra ”_/N&(Q) 18 defined
to be the Ginzburg dg-algebra

N 1
AQ) =€ (Q, —5”9;0) :

Explicitly,

aO

e;

* | o®
—1

o«
chdeg| 0 0| O

The values of d are defined as:

d(a) := 0, d(a®) :=0,
d(a®) := —"Nx, d(a®) := "1Nq,

d(t;) := Zaa— Zaa—l— Zaa Zaa

a:t(a)=i a:h(a)=1 azh(a)=1 a:t(a)=i



The point here is that

Although the potential —%”gp contains the fraction 1

27
but the differential of € (@, —%”gp) does not.
Therefore, the explicit definition of ”K(Q) even works

for the case char k = 2.

4.2. From now char k is arbitrary, again.

Definition . We define the deriwved quiver Heisenberg algebra ”K(Q)
as a DG-algebra given by the above cohomological graded quiver and
the differentials.

We may equip ”K(Q) with the *-grading as below:
el a ot a® a®| t;
chdeg 0/ 0|/ 0 |—1|—1|—2

deg® (0|01 | 1| 2 2

Lemma .
HO("A(Q)) = "A(Q).

® Recall that Yo € YA is central and there is an exact seq of *-graded

Y A-bimdoules:
YA(—1) LA T T 5 0

Lemma . (1) The element o € *A(Q) is “homotopical central”.
(2) The right multiplication

0 : "A(Q) — "A(Q)

can be regraded as a morphism of *-graded DG-* A-bimdoules.



Let II = ﬁ(Q) be the derived preprojective algebra:
I1(Q) := T ©[1],
O := RHomyo(D(kQ), kQ).
We call the tensor degree of fI(Q), the *-grading. Thus, in particular
II, = O[1].

Note we have HY(II(Q)) = IL(Q).

Theorem . There exists a *-graded DG-algebra homomorphism
U7 PA(Q) — TI(Q)
such that H°(*®) = =,

The above morphisms constitute an exact triangle
"A(—=1) —25 A — 5 T —
in the derived category of *-graded DG-* A -bimdoules.

We denote the x-degree 1-part of the exact triangle by YAR,

which is an exact triangle of DG-kQ-bimodules:
AR : kQ —2 "A; —* 5 11, — 0,
where we set the co-connecting morphism of VAR by

g : @ = II;[—1] — kQ.



5. UNIVERSAL AUSLANDER-REITEN TRIANGLE

5.1. Weighted trace.
Let U € DP(kmod). The trace of ¢ : U — U is defined to be

Tri(¢) := ) (—1)" Trs[H"(9) : H*(U) — H*(U)].

nez

Definition . Let v € k* Q.
For M € D*(kQ mod) and f : M — M, we define

"Tr(f) := ) v Tr(eif).
1€Qo
where e;f : e;M — e;M € DP(kmod).

Example . If M € kQ mod, then

*Tr(idy) = )  vidim(e;M) = v - dim(M)
t€Qo

5.2. Trace formula.
The endofunctor S~ := @ ®%Q — of DP(kQ mod) is

the inverse of a Serre functor S. So, ”éM = 29 QU M is

YOur : STIM — M.

Theorem . Let M € DP(kQ mod) and f € Homyg(M, M).
Then,

<f7 U9M>S—1 =" Tr(f)
where {(—, +)g-1 denotes the paring of Serre duality

(—y+)g-1: Hoka(M, M) Ry HOka(S_lM, M) — k.



5.3. Universal Auslander-Reiten triangle.

Definition . An element v € k*Qq is said to have

the property (1) if for all M € ind Q we have

0 # v - dim(M) = Tr(idas) = (idas, *Opr)g-1 in k.

Example . (1) Assume that chark = 0.
If v1,v2,+++ ;v > 0, then v € k*Q has the property (I).
(2) If v1,v2,+++ ,v,. € k are linearly independent over

the prime field P of k, then v € k*Qq has the property (I).
Using Happel’s criterion for AR-triangle, we deduce

Theorem (Universal Auslander-Reiten triangle).
Assume that v € k* Qg has the property (I).
Then for any M € DP(kQ mod)

the exact triangle "ARsr := *AR Q" M is

a direct sum of AR-triangles starting from indec. summand of M

_UéM[l]
In other words, the morphism “onr : M — ”K1®1H{‘QM s a minimal
left rad-approximation of M and
the morphism Y1y pr - ”_/NXl ®%Q M — ﬁl ®H1;Q M is a minimal
right rad-approrimation of I, ®£‘Q M

Remark . If we fir M first, then we can weakened the assumption on

v to “v-dimN # 0 for each indec. summand N of M 7.



6. rad™-APPROXIMATIONS AND “A(Q)
Recall there is a *-graded DG-algebra morphism
vZ YA — II
Let Y7, : ”Kn — ﬁn be the *-degree m-part and “mw, pr = "y, R M.

Theorem . Assume that v € k*Qq has the property (I).
Let M € DP(kQ mod).
Then the morphism
v = L UA L - L
M ¢ A Qg M — 11, Qg M
is a minimal right rad™-approximation of IL, ®%Q M for

0<n<h-—2 (Q isDynkin
n belonging to ( ) ()

0<n (Q is non-Dynkin ).

Taking RHomygop (—, ﬁn) of the right modules version of this theorem,

inductively, we can deduce

Theorem . Assume that v € k*Qq has the property (I).
Let M € DP(kQ mod).
Then ”Kn ®%Q M provides a minimal left rad™-approximation of
M for m belonging to ().
Le., there exists a minimal left rad™-approximation morphism
"Byt M — "A, @y M

for n belonging to (M).



Theorem . Assume that v € k* Qg has the property (I).
Let M € ind D®(kQ mod).
Ezcept the case where Q is wild and M s a shift of a reqular module,

we have the following isomorphism
VA L ~Y @ dim Hom(M,K
Pa@o M= P K (MK,
n Keind 6
where in LHS, n runs through (#).
Corollary . Assume that v € k*Qq has the property (I).
Then as kQ-modules

VA DY @ KEB dim K
Keind P (Q)

7. WHAT IS A MINIMAL LEFT rad”™-APPROXIMATION MORPHISM

We have shown that

there exists a minimal left rad™-approximation morphism
"By : M — "A, @5, M.

A natural candidate is the multiplication of the n-th power Yo" of Yo

Question: Is

Yoyt M — ”Kn ®H1;QM

a minimal left rad"-approximation of M?




Example . Let Q be a directed As-quiver.
3, Q:1—"—2 5* 3.

The property (1) precisely says that v satisfies the followings

v1 # 0, v2 # 0, v3 # 0,
’Ul—l—’U2¢0, ’Uz—l—’l)g#o, ’1)1—|—’lJ2—|—’U3#0.

Q:1—* -2

Proposition . Assume that v € k*Qq has the property (I).

Then, the morphism
ok i Py = YAy ®p P
is a minimal left rad®-approzimation if and only if
v1 + 2v2 + v3 # 0.
We note
V1 + 202 +v3 =V - di_m(”./‘l ®]11{"Q P).

7.1. Minimal left rad®-approximation.

Theorem . Assume that v € k* Qg has the property (I).
Let M € ind DP(kQ mod). Assume that

v - dim("Ay ®;, M) # 0.
Then the morphism
Yory M —— Ay Qg M

is a minimal left rad®-approzimation of M.



7.2. Minimal left rad™-approx (char k = 0).

Theorem . Assume chark = 0.
Let M € ind DP(kQ mod) and n belongs to (#).
Then for a generic parameter v € K*Qg, the morphism
oyt M — "An Qpg M

is a minimal left rad™-approzimation of M .

Corollary . Assume chark = 0.
Let Q be a Dynkin quiver with the Coxeter number h.
Then for a generic parameter v € K*Qq the morphism
Yoyt M — "A,, ®%Q M
is a minimal left rad™-approvimation of M

for all M € D*(kQ mod) andn =1,2,--- ,h — 2,

7.3. Minimal left rad™-approx (Q = An-quiver).

Theorem . Let N > 1 and Q an An-quiver (note h = N +1).
Assume that k has a primitive h-th root of unity.
Then for a generic v € K*Qq, the morphism
”Q%:M—)Kn(@i‘QM
is a minimal left rad™-approximation of M

for all M € D*(kQ mod) andn =1,2,--- ,h — 2.



Thank you



