Induction-restriction adjunction in 2-representation theory

> Vanessa Miemietz University of East Anglia

(joint with Aberdeen Powell and Xiaoting Zhang)

Let \Bbbk be a(n algebraically closed) field.

Algebra over \Bbbk : A \Bbbk -linear category \mathcal{A} with one (or finitely many) object(s), say •. Representation of \mathcal{A} : A \Bbbk -linear functor from \mathcal{A} to $\mathcal{V}ect_{\Bbbk}$.

Observe:

- $A := \operatorname{End}_{\mathcal{A}}(\bullet)$ is an associative k-algebra.
- If the functor describing a representation is given by $\bullet \mapsto V$, $\operatorname{End}_{\mathcal{A}}(\bullet) \ni a \mapsto \rho(a) \in \operatorname{End}_{\mathcal{V}ect_{\Bbbk}}(V)$, V is an A-module and ρ is a representation of A.
- If A has several objects 1,...,n, their identities are idempotents in the algebra A = End_A(⊕ⁿ_{i=1} i).

Let A,B be two associative k-algebras, $\phi\colon B\to A$ an algebra morphism. \rightsquigarrow two functors $\mathrm{Ind}_B^A=A\otimes_B$ –, $\mathrm{Res}_B^A=-\circ\phi$, and an adjunction

 $(\operatorname{Ind}_B^A, \operatorname{Res}_B^A)$

Categorically: \mathcal{A}, \mathcal{B} algebras (k-linear categories with one object), ϕ a k-linear functor

$$\phi \colon \mathcal{B} \to \mathcal{A}$$
$$\bullet_{\mathcal{B}} \mapsto \bullet_{\mathcal{A}}$$
End_{\mathcal{B}}(\bullet_{\mathcal{B}}) = B \xrightarrow{\phi} A = \text{End}_{\mathcal{A}}(\bullet_{\mathcal{A}})

Categorify?

A 2-category \mathscr{C} is a category enriched over the monoidal category Cat of small categories, i.e. it consists of

- a class (or set) & of objects;
- for every $\mathtt{i},\mathtt{j}\in\mathscr{C}$ a small category $\mathscr{C}(\mathtt{i},\mathtt{j})$ of morphisms from \mathtt{i} to \mathtt{j}
 - objects in $\mathscr{C}(\mathtt{i},\mathtt{j})$ are called 1-morphisms
 - morphisms in C(i, j) are called 2-morphisms;
- functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- identity 1-morphisms 1ⁱ for every i ∈ 𝒞;
- natural (strict) axioms.

Remark. Everything I will say has a bicategorical analogue.

2-categories

Examples.

- The 2-category Cat:
 - objects are small categories;
 - 1-morphisms functors;
 - 2-morphisms are natural transformations.
- The 2-category \mathfrak{A}^f_{\Bbbk} :
 - objects are small idempotent complete k-linear additive categories with finitely many indecomposable objects up to isomorphism and finite-dimensional morphism spaces

(that is, equivalent to the category of finitely generated projective modules over a finite-dimensional k-algebra);

- 1-morphisms are k-linear (additive) functors;
- 2-morphisms are natural transformations.

A 2-category ${\mathscr C}$ is **multifinitary** over \Bbbk if

- C has finitely many objects;
- each $\mathscr{C}(i, j)$ is in \mathfrak{A}^f_{\Bbbk} ;
- composition is biadditive and k-bilinear;

Moral: Multifinitary 2-categories are 2-analogues of finite dimensional algebras.

A 2-category ${\mathscr C}$ is ${\color{black}{\textbf{multifiat}}}$ (finitary - involution - adjunction - two-category) if

- it is multifinitary;
- there is a weak involutive equivalence $(-)^* : \mathscr{C} \to \mathscr{C}^{\mathrm{op,op}}$ such that there exist adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Example. Let A be a finite-dimensional \Bbbk -algebra. The 2-category \mathscr{C}_A has

- one object (identified with A-proj);
- 1-morphisms are endofunctors of Ø isomorphic to tensoring with bimodules in the additive closure of A ⊕ A ⊗_k A;
- 2-morphisms are natural transformations (bimodule homomorphisms).

Observe:

- \mathscr{C}_A is multifinitary.
- If A is basic with complete set of idempotents e₁,..., e_n, the indecomposable 1 morphisms correspond to the bimodules A and Ae_i ⊗_k e_jA, for i, j = 1,...n.
- If A is weakly symmetric, \mathscr{C}_A is multifiat with involution given by $(Ae_i \otimes_{\Bbbk} e_j A)^* \cong Ae_j \otimes_{\Bbbk} e_i A.$

A finitary 2-representation \mathbf{M} of a finitary 2-category \mathscr{C} is a (strict) 2-functor $\mathscr{C} \to \mathfrak{A}^{f}_{\Bbbk}$, i.e.

- M(i) ≈ B_i-proj for some algebra B_i;
- for $F\in \mathscr{C}(\mathtt{i},\mathtt{j}),\,\mathbf{M}(F)\colon \mathbf{M}(\mathtt{i})\to \mathbf{M}(\mathtt{j})$ is an additive functor;
- for $\alpha \colon F \to G$, $\mathbf{M}(\alpha) \colon \mathbf{M}(F) \to \mathbf{M}(G)$ is a natural transformation.

Examples.

- For $\mathtt{i}\in \mathscr{C},$ we have $\mathbf{P}_{\mathtt{i}}=\mathscr{C}(\mathtt{i},-),$ the principal 2-representation.
- \mathscr{C}_A was defined via its **natural** 2-representation on A-proj.

From now on:

- C, D multifiat 2-categories
- $\Phi \colon \mathscr{C} \to \mathscr{D}$ a 2-functor.

Definition. If N is a 2-representation of \mathscr{D} , set $\mathbf{Res}^{\mathscr{D}}_{\mathscr{C}}\mathbf{N} = \mathbf{N} \circ \Phi$.

Question. How to define induction? No notion of relative tensor product.

Answer. Internalise 2-representations!

Need **injective abelianisation** $\underline{\mathscr{C}}$ of \mathscr{C} : 2-category where each $\underline{\mathscr{C}}(i, j)$ is abelian, and the injective objects in $\underline{\mathscr{C}}(i, j)$ are precisely the objects of $\mathscr{C}(i, j)$.

Let ${\bf M}$ be a finitary 2-representation of ${\mathscr C}.$

Definition. Let $X \in \mathbf{M}(\mathbf{i}), Y \in \mathbf{M}(\mathbf{j})$. Then there exists a 1-morphism $\mathbf{M}[X, Y]$ in $\underline{\mathscr{C}}$, the **internal cohom from** X **to** Y, such that for all $F \in \mathscr{C}(\mathbf{i}, \mathbf{j})$

 $\operatorname{Hom}_{\underline{\mathscr{C}}(\mathtt{i},\mathtt{j})}(\mathbf{M}[X,Y],\mathrm{F})\cong\operatorname{Hom}_{\mathbf{M}(\mathtt{j})}(Y,\mathbf{M}(\mathrm{F})\,X).$

Fact. $_{\mathbf{M}}[X, X] =: \mathbf{C}^X$ has a natural coalgebra structure.

So we can consider C^X -comodules in $\underline{\mathscr{C}}(\mathtt{i},\mathtt{j})$, i.e. those $T\in\underline{\mathscr{C}}(\mathtt{i},\mathtt{j})$ with structure map $T\to TC^X$, such that comodule axioms hold.

Let ${\bf M}$ be a finitary 2-representation of ${\mathscr C}.$

Definition. $\mathbf M$ is generated by $X\in \mathbf M(\mathtt i)$ if for each $\mathtt j\in \mathscr C$

 $\mathbf{M}(\mathtt{j}) \simeq \mathsf{add}\{\mathbf{M}(\mathtt{F}) X \, \| \, \mathtt{F} \in \mathscr{C}(\mathtt{i}, \mathtt{j})\}.$

Fact. If \mathbf{M} is generated by X, there is an equivalence

 $\mathbf{M} \simeq \operatorname{inj}_{\underline{\mathscr{C}}} \mathbf{C}^X$

with $inj_{\mathscr{C}}C^X(j)$ the category of injective right C^X -comodules in $\underline{\mathscr{C}}(i, j)$.

Assume **M** is generated by X, so $\mathbf{M} \simeq \operatorname{inj}_{\underline{\mathscr{C}}} C^X$. Recall the 2-functor $\Phi \colon \mathscr{C} \to \mathscr{D}$ (which extends to $\Phi \colon \underline{\mathscr{C}} \to \underline{\mathscr{D}}$). Fact. $\Phi(C^X) \in \underline{\mathscr{D}}$ has a natural coalgebra structure.

Definition. Define $\mathbf{Ind}_{\mathscr{C}}^{\mathscr{D}}\mathbf{M} := \mathbf{inj}_{\mathscr{D}}\Phi(\mathbf{C}^X).$

Problem. If we want to prove a 2-adjunction $(\mathbf{Ind}_{\mathscr{C}}^{\mathscr{D}}, \mathbf{Res}_{\mathscr{C}}^{\mathscr{D}})$, we need to also formulate $\mathbf{Res}_{\mathscr{C}}^{\mathscr{D}}$ in terms of coalgebras.

Let N be a finitary 2-representation of \mathscr{D} .

WLOG, we can assume that \mathscr{D} only has one object \bullet and that there is a coalgebra $D \in \mathscr{D}(\bullet, \bullet)$ such that $N = inj_{\mathscr{D}}D$.

Then D generates $\mathbf{N} = inj_{\underline{\mathscr{D}}} D$ as a 2-representation of \mathscr{D} but **not**, in general, its restriction to \mathscr{C} .

Question. How to uniformly produce a generator for $\operatorname{Res}_{\mathscr{C}}^{\mathscr{D}}N?$

Recall the principal 2-representation of \mathscr{D} , namely $\mathbf{P}_{\bullet} = \mathscr{D}(\bullet, -)$.

Pick a generator G of $\operatorname{Res}^{\mathscr{D}}_{\mathscr{C}} P_{\bullet}$.

Then GD is a generator of $\mathbf{Res}^{\mathscr{D}}_{\mathscr{C}}\mathsf{inj}_{\mathscr{D}}D$ for any coalgebra $D \in \underline{\mathscr{D}}(\bullet, \bullet)$.

Definition. Define
$$\mathcal{R}D = \underset{\mathcal{R}es}{\operatorname{Res}} \operatorname{P}_{\mathscr{C}}N[GD,GD]$$
. Then
 $\operatorname{Res}_{\mathscr{C}}^{\mathscr{D}}N \simeq \operatorname{inj}_{\mathscr{C}} \mathcal{R}D.$

2-adjunction

Theorem. [M.–Powell–Zhang]

Let $\mathbf{M} = inj_{\underline{\mathscr{C}}} C$ be a finitary 2-representation of \mathscr{C} and $\mathbf{N} = inj_{\underline{\mathscr{D}}} D$ be a finitary 2-representation of \mathscr{D} . Then we have morphisms of 2-representations

$$\varepsilon_{\mathbf{N}}\colon \mathbf{Ind}_{\mathscr{C}}^{\mathscr{D}}\mathbf{Res}_{\mathscr{C}}^{\mathscr{D}}\mathbf{N}=\mathsf{inj}_{\underline{\mathscr{D}}}\Phi(\mathcal{R}\mathbf{D})\to\mathbf{N}$$

$$\eta_{\mathbf{M}} \colon \mathbf{M} \to \mathbf{Res}_{\mathscr{C}}^{\mathscr{D}} \mathbf{Ind}_{\mathscr{C}}^{\mathscr{D}} \mathbf{M} = \mathsf{inj}_{\underline{\mathscr{C}}} \mathcal{R} \Phi(\mathbf{C})$$

such that the triangles

commute up to invertible modifications.

Example

Let
$$\mathscr{C} = \mathscr{C}_A$$
 and note that $\mathscr{C}_{\Bbbk} = \mathscr{V}ect_{\Bbbk}$.

Consider the embedding $\mathscr{C}_{\Bbbk} \to \mathscr{C}_A : \bullet_{\Bbbk} \mapsto \bullet_A, \quad \mathbb{1}_{\bullet_{\Bbbk}} \mapsto \mathbb{1}_{\bullet_A}, \quad \operatorname{id}_{\mathbb{1}_{\bullet_{\Bbbk}}} \mapsto \operatorname{id}_{\mathbb{1}_{\bullet_A}}.$ Let $\mathbf{M} = \operatorname{inj}_{\underline{\mathscr{C}}_{\Bbbk}} \mathbb{1}_{\bullet_{\Bbbk}}$ be the trivial 2-representation of $\mathscr{C}_{\Bbbk}.$ Then $\operatorname{Ind}_{\mathscr{C}_{\Bbbk}}^{\mathscr{C}_A} \mathbf{M} = \operatorname{inj}_{\underline{\mathscr{C}}_A} \mathbb{1}_{\bullet_A} = \mathbf{P}_{\bullet_A}.$ Moreover

$$\mathbf{Res}_{\mathscr{C}_{\Bbbk}}^{\mathscr{C}_{A}}\mathbf{Ind}_{\mathscr{C}_{\Bbbk}}^{\mathscr{C}_{A}}\mathbf{M}\cong\mathsf{inj}_{\underline{\mathscr{C}}_{\Bbbk}}\mathbf{C}$$

where ${\rm C}$ is the coalgebra

$$\mathbf{C} = \mathop{\mathbf{Res}}_{\mathscr{C}_{\Bbbk}^{A}}^{\mathscr{C}_{A}} \mathbf{P}_{\bullet}^{\bullet} [A \oplus A \otimes_{\Bbbk} A, A \oplus A \otimes_{\Bbbk} A] \cong \mathrm{End}_{A \operatorname{-mod-}A} (A \oplus A \otimes_{\Bbbk} A)^{*}.$$

In general, computing internal cohoms is hard!

Thank you for your attention!