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Indecomposable matrix factorizations of the simpls
hypersurface singularities

e Az +y"tH + 22 (n>1)
e Dz 4+ xy? + 22 (n > 4)
o B¢ z3 4+ y* + 27
o Br:ady +y° + 27
o Fg:axd+9° + 22
are explicitly known, there are finitely many of ther

See the book of Yoshino and a paper of Kajiura, S
and Takahashi for explicit lists.
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Indecomposable Cohen—Macaulay modules over
minimally ellipticsingularities

* Thar(N) 1 2P +y? 4 2" 4+ Azyz, where
]lo + é +2 <1landX € k\ {finite set}
o Togrt(A) 2P +y? = uv,u” + 0" = Axy
have been classified by Kahn (1987)
and Drozd, Greuel and Kashuba (2001).

Their method relates maximal Cohen—Macaulay
modules with vector bundles on the exceptional fik
of a minimal resolution of singularities and uses a
classification of vector bundles genus oneurves.

This description isather unexplicit
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Description of Results

e Matrix factorizations ofw = zyz € k|z, vy, z].

e Maximal Cohen—Macaulay modules over certain
complete intersections, likdz, v, u, v| /(zy, uv).

e More generally, a classification afl maximal
Cohen—Macaulay modules ov#egenerate cusps

e Newtype oftamematrix problems: representatior
of decorated bunches of chains

e Example of such a problem is the following:

X — S7IXT.

Here X € Mat,,..,(K) andS,T € GL,(D) are such
thatS(0) = T'(0) for K = k((t)) andD = k|t].
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e Let (A, m) be a complete reduced bubn—isolated
Cohen—Macaulagurfacesingularity.

e Let R O A be the normalization ofl.
e By a Theorem of Serrdy is Cohen—Macaulay.

e Let ] = Ann4(R/A) be theconductor ideal

 Thenwe havel = 1A = IR.
« Moreover,

I — Homu(R,A), z— (r— zr).

Hence,l is Cohen—Macaulay viewed as- or
R—module.
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Main Construction—II|
e \We have

A)® 4 — —

Q(A)—mod

lQ(R)@)Q(A) —
AR Q(R)—mod

MCM(A) -
MCM(R)

e Key idea recoveran objecth of MCM(A) from

. Its normalization)/ := R A M
» The induced modul® := Q(A) @4 M

» Gluing mapQ(R) ®g 1) V L Q(R) ®r M.
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Category of Triples—I

We have a pair of functors

MCM(R) — Q(R)—mod +— Q(A)—mod.

Definition. Consider the categofiri(A) whose
objects are triplesM, V, 0), where

- M € MCM(R)

* Ve Q(A)—mod

» a surjectiveQ (R)-linear map

- such that/ - Q(R) @ M is injective.
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A morphism(M, V,6) — (M’,V',0') in the categor
of triplesTri(A) is given by a pair of morphisms

M- M and V-5V
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Category of Triples—I|

A morphism(M, V,6) — (M’,V',0') in the categor

of triplesTri(A) is given by a pair of morphisms
M- M and VLV

such that the diagram

_ 0 B _

Q(R) @qgayV
]l®gl l]l@f

— 9/ ——

Q(R) g V'

commutes.
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Main Theorem
Once again: we have a diagram of categories

MCM(A) 2212 0 4)—mod

RIX 4 — l lQ(R)(X)Q(A) —
QR)®R — =
MCM(R) Q(R)—mod

Theorem(Burban—Drozd). The functor
MCM(A) — Tri(A)

mapping a maximal Cohen—Macauldy-module)M
to the triple(R X4 M, Q(A) ®4 M, 0,) isan
equivalence of categories
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Example: A.,—singularity
o Let A =k|z,y, 2| /xy be anA,.—singularity.

e Its normalization Is
R = Rl X RQ — k[[:E,Zl]] X kﬂy,ZQ]].

e The conductor ideal i = (z,y)A = (z,y)R.
e Hence, we have:
A=A/l =k|z] — R:= R/I = k|z1] x k[z22]
o Let (]\7 ,V,6) be an object offri(4). Then

- M =~ R' @ RlandV = K

- whereK = Q(A) = k((z))

* 6 Is given by a pair of matrices
(@1,@2) ~ I\/Iatpxt(K) X I\/Iatht(K).
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Example: A.,—singularity

Summary classification of matrix factorizations of
w = xy € klz,y, z]|] reduces to thenatrix problem

(01,05) — (0,91 &,0,U 1)
where
¢ @1 - I\/Iatpxt(K), @2 — I\/Iatpxt(K)
« K =k((2)) andD = k|z]
* U e GLy(K), ®; € GL,(D) and®, € GL, (D).
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Example: A.,—singularity

Summary classification of matrix factorizations of
w = xy € klz,y, z]|] reduces to thenatrix problem

(01,03) — (®10,0 " DO, 1)
where
¢ @1 - I\/Iatpxt(K), @2 = I\/Iatpxt(K)
« K =k((2)) andD = k|z]
* U e GLy(K), ®; € GL,(D) and®, € GL, (D).
Remark This problem of linear algebra is close to

classification of representations©t— e — e over
the field K.

MCM Modules over non-isolated surface sinaularities. 14/



Example: A.,—singularity
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Indecomposable objects @fi(A) are:

: (31 B Ry, K, (=), (1))), wheren ¢ 7

+ (B, K ((1),0)) and (Ra, K, (6,(1)) ).
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Example: A.,—singularity
Indecomposable objects @fi(A) are:

: (R1 B Ry, K, (=), (1))), wheren ¢ 7

+ (B, K ((1),0)) and (Ra, K, (6,(1)) ).

Indecomposable matrix factorizationswf= zy are:
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Example: A.,—singularity
Indecomposable objects @fi(A) are:

: (R1 B Ry, K, (=), (1))), wheren ¢ 7

+ (B, K ((1),0)) and (Ra, K, (6,(1)) ).

Indecomposable matrix factorizationswf= zy are:
o M(pn, ) andM (1, v, ), wheren > 1

[y =z - x —Z"
%”’(o $>and¢n<0 ) )
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Example: A.,—singularity
Indecomposable objects @fi(A) are:

: (R1 B Ry, K, (=), (1))), wheren ¢ 7

+ (B, K ((1),0)) and (Ra, K, (6,(1)) ).

Indecomposable matrix factorizationswf= zy are:
o M(pn, ) andM (1, v, ), wheren > 1

[y =z - x —Z"
(1w (i)
© M(z,y)andM(y,z).
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Example: A.,—singularity
Indecomposable objects @fi(A) are:

: (R1 B Ry, K, (=), (1))), wheren ¢ 7

+ (B, K ((1),0)) and (Ra, K, (6,(1)) ).

Indecomposable matrix factorizationswf= zy are:
o M(pn, ) andM (1, v, ), wheren > 1

[y =z - x —Z"
%”’(o $>and¢n<0 ) )

© M(z,y)andM(y,z).
It Is a result of Buchweitz, Greuel and Schreyer.
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Degenerate Cusp/ 39,
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Degenerate Cusp/ 39,
Let A = k[z, y, 2] /(z° + y° — zyz).
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Degenerate Cusp/ 39,

Let A = k[z,y, 2] /(2® + y* — zy2).

Obviously, it is a degeneration of the cusp
k[z,y, 2] /(x® + y* + 2" — 2yz).
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Degenerate Cusp/ 39,

Let A = k[z,y, 2] /(2® + y* — zy2).

Obviously, it is a degeneration of the cusp
k[z,y, 2] /(x® + y* + 2" — 2yz).
The normalization ofd is R = k|u, v],
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Degenerate Cusp/ 39,

Let A = k[z,y, 2] /(2® + y* — xy2).
Obviously, it is a degeneration of the cusp
k[z,y, 2] /(x® + y* + 2" — 2yz).

The normalization ofd is R = k|u, v],

Whereu:%andv: mx_y — 2 — .
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Degenerate Cusp/ 39,

Let A = k[z,y, 2] /(2® + y* — xy2).
Obviously, it is a degeneration of the cusp
k[z,y, 2] /(x® + y* + 2" — 2yz).

The normalization ofd is R = k|u, v],

Whereu:%andv: mx_y — 2 — .

[ :=Homu(R,A) = (z,y)A = (uv)R.
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Degenerate Cusp/ 39,

Let A = k[z,y, 2] /(2® + y* — xy2).
Obviously, it is a degeneration of the cusp
k[z,y, 2] /(x® + y* + 2" — 2yz).

The normalization ofd is R = k|u, v],

Whereu:%andv: mx_y — 2 — .

[ :=Homu(R,A) = (z,y)A = (uv)R.
In particular,
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Degenerate Cusp/ 39,

Let A = k[z,y, 2] /(2® + y* — xy2).
Obviously, it is a degeneration of the cusp
k[z,y, 2] /(x® + y* + 2" — 2yz).

The normalization ofd is R = k|u, v],

Whereu:%andv: mx_y — 2 — .

[ :=Homu(R,A) = (z,y)A = (uv)R.
In particular,
e A= A/T = Kk[7]
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Degenerate Cusp/ 39,

Let A = k[z,y, 2] /(2® + y* — xy2).
Obviously, it is a degeneration of the cusp
k[z,y, 2] /(x® + y* + 2" — 2yz).

The normalization ofd is R = k|u, v],

re —Y
T — Z u.

I :=Homy(R,A) = (z,y)A = (uv)R.
In particular,
e A= A/T = Kk[7]
e R:= R/I = klu,v]/uv

wherey = % andy =
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Degenerate Cusp/ 39,

Let A = k[z,y, 2] /(2® + y* — zy2).

Obviously, it is a degeneration of the cusp
k[z,y, 2] /(x® + y* + 2" — 2yz).
The normalization ofd is R = k|u, v],

whereu = 2 andv = **— = » — .
[ :=Homu(R,A) = (z,y)A = (uv)R.
In particular,

e A= A/T = Kk[7]
* R:=R/I = Kk[u,v]/uv
* Q(A) = k((2)) andQ(R) = k((u)) x k((v)).
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Matrix Problem for MCM(T354)
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Matrix Problem for MCM(T354)

LetT = (]\7 ,V,0) be an object offri(A).
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Matrix Problem for MCM(T354)

LetT = (]\7 ,V,0) be an object offri(A).

e M = RP
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Matrix Problem for MCM(T354)

LetT = (]\7 ,V,0) be an object offri(A).

- M =~ Rr andV = K9, whereK = k((z))
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Matrix Problem for MCM(T354)

LetT = (]\7 ,V,0) be an object offri(A).

- M =~ Rr andV = K9, whereK = k((z))
* fis given by©;, 0, € Mat,,(K).
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Matrix Problem for MCM(T354)

LetT = (J\7 ,V,0) be an object offri(A).

- M =~ Rr andV = K9, whereK = k((z))
* fis given by©;, 0, € Mat,,(K).

The matrix problem is the following:

(@1, @2) — (@1@1\11_1, (132@2\11_1),
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Matrix Problem for MCM(T594)
LetT = (J\7 ,V,0) be an object offri(A).
- M =~ Rr andV = K9, whereK = k((z))
* fis given by©;, 0, € Mat,,(K).
The matrix problem is the following:
(01,02) — (P1010 ", P20, 1),

where
» U e GL,(K)
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Matrix Problem for MCM(T594)
LetT = (J\7 ,V,0) be an object offri(A).
- M =~ Rr andV = K9, whereK = k((z))
* fis given by©;, 0, € Mat,,(K).
The matrix problem is the following:
(01,02) — (P1010 ", P20, 1),

where
» U e GL,(K)
* &, Py € GL,(D) are such thab,(0) = $,(0)
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Matrix Problem for MCM(T594)
LetT = (J\7 ,V,0) be an object offri(A).
- M =~ Rr andV = K9, whereK = k((z))
* fis given by©;, 0, € Mat,,(K).
The matrix problem is the following:
(01,02) — (P1010 ", P20, 1),

where
» U e GL,(K)
* &, Py € GL,(D) are such thab,(0) = $,(0)
« andD = k[z].
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Canonical Forms: Continuous Series
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Canonical Forms: Continuous Series

(227 0 0 ... 0 )
0 =z 0 ... O
0 0 ... " 0
\ 0 0 ... 0 2z
[0 21 0 ... 0 )
0 0 2BI ... 0
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Canonical Forms: Continuous Series

/ZC“] o 0 ... O \
0 ... 0

2] 0
0O, = : : '
0 0 ... 0
\ 0 0 ... 0 z%I)
[0 21 0 ... 0 )
0 0 2B ... 0
0, — L

0 0 0 ... 21
\z"J 0 0 ... 0 /
((a1,b1), ..., (ap, b)) € Z*, I = I, andJ = J,(\).
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Canonical Forms: Discrete Series
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Canonical Forms: Discrete Series

O

[ 2

0

0

0

Z

0

[0 2 0
0 0

Z

mi

0

0

-0

.0

.zmt(.)/




MCMs over k[z,y, 2] /(z° + y* — xy=2)
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MCMs over k[z,y, 2] /(z° + y* — zy2)

Theorem(Burban—-Drozd). Le{©, ©,) be an
iIndecomposable canonical form as above and

O = @1(U) + @2(2}).
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MCMs over k[z,y, 2] /(z° + y* — zy2)

Theorem(Burban—-Drozd). Le{©, ©,) be an
iIndecomposable canonical form as above and
O = @1(U) + @2(2}).

Consider the matrix

O := (2 |yl | ©) € Mat,»,(R).
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MCMs over k[z,y, 2] /(z° + y* — zy2)

Theorem(Burban—-Drozd). Le{©, ©,) be an
iIndecomposable canonical form as above and

O = @1(%) + @Q(U).
Consider the matrix

O := (2 |yl | ©) € Mat,»,(R).

Let L C R? be theA—module generated by the
columns of the matri®.
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MCMs over k[z,y, 2] /(z° + y* — zy2)

Theorem(Burban—-Drozd). Le{©, ©,) be an
iIndecomposable canonical form as above and
O = @1(%) + @Q(U).

Consider the matrix

O := (2 |yl | ©) € Mat,»,(R).

Let L C R? be theA—module generated by the
columns of the matri®.

ThenL"" is an indecomposable maximal
Cohen—Macaulayl-module
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MCMs over k|z, y, 2|

/(x° +y* — zyz)

Theorem(Burban—-Drozd). Le{©, ©,) be an
iIndecomposable canonical form as above and

O = @1(%) + @Q(U).
Consider the matrix

O := (2 |yl | ©) € Mat,»,(R).

Let L C R? be theA—module generated by the

columns of the matrix®.

ThenZ"" is an indecom
Cohen—Macaulayl—moc

nosable maximal
ule

and any indecomposab

e maximal Cohen—Macaul

A—module has such form.
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MCM modules over 155
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MCM modules over 155

Corollary (Burban—Drozd). MCM modules over
A =Kk[z,y, 2] /(x® + y* — zyz) of rank oneare
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MCM modules over 155

Corollary (Burban—Drozd). MCM modules over
A =Kk[z,y, 2] /(x® + y* — zyz) of rank oneare

o Iy = <1,m—|—17 yl’m_l 1 )\(Z‘Z . y)m>,
wherem € N and)\ € k*.
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MCM modules over 155

Corollary (Burban—Drozd). MCM modules over
A =Kk[z,y, 2] /(x® + y* — zyz) of rank oneare

o Iy = <Qjm—|—17 yl’m_l 1 )\(332 . y)m>,
wherem € N and)\ € k*.

* JIm,\ = <xm—|—1’ ym + )\gjm_l(gjz _ y)>’
wherem € N and)\ € k*.
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MCM modules over 155

Corollary (Burban—Drozd). MCM modules over
A =Kk[z,y, 2] /(x® + y* — zyz) of rank oneare

o Iy = <Qjm—|—17 yl’m_l 1 )\(332 . y)m>,
wherem € N and)\ € k*.

* JIm,\ = <mm—|—1’ ym + )\gjm_l(gjz _ y)>’
wherem € N and)\ € k*.

« [ = (z, y)= R and the regular modulé.
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MCM modules over 155

Corollary (Burban—Drozd). MCM modules over
A =Kk[z,y, 2] /(x® + y* — zyz) of rank oneare

o Iy = <Qjm—|—17 yl’m_l 1 )\(332 . y)m>,
wherem € N and)\ € k*.

* JIm,\ = <:Em+1a ym + )\gjm_l(gjz _ y)>’
wherem € N and)\ € k*.

« [ = (z, y)= R and the regular modulé.

Example In the terms of matrix factorizations

<x+u(u+1)z2 Y+puxz

y—(p+l)zz  —z? )>A2>.

Ty =2 Cok(A2

MCM Modules over non-isolated surface sinaularities. 21/



MCM modules over k| u, v, w] /uvw
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MCM modules over k| u, v, w] /uvw

Theorem(Burban—Drozd). Any MCM module of
rank one ovek|u, v, w] /uvw which is locally free or

the punctured spectrum, Is iIsomorphic to the coke
of one of the following matrices (or its transpose)
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MCM modules over k| u, v, w] /uvw

Theorem(Burban—Drozd). Any MCM module of
rank one ovek|u, v, w] /uvw which is locally free or

the punctured spectrum, Is iIsomorphic to the coke
of one of the following matrices (or its transpose)

. U 0
P+ w? vw )
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MCM modules over k| u, v, w] /uvw

Theorem(Burban—Drozd). Any MCM module of
rank one ovek|u, v, w] /uvw which is locally free or

the punctured spectrum, Is iIsomorphic to the coke
of one of the following matrices (or its transpose)

i u 0 \u + vPw? it
P+ w! vw ) uitl VW
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MCM modules over k| u, v, w] /uvw

Theorem(Burban—Drozd). Any MCM module of
rank one ovek|u, v, w] /uvw which is locally free or

the punctured spectrum, Is iIsomorphic to the coke
of one of the following matrices (or its transpose)

i u 0 \u + vPw? it
P+ w! vw ) uitl VW

u w0
. 0O v u" |,
A0 w
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MCM modules over k| u, v, w] /uvw

Theorem(Burban—Drozd). Any MCM module of
rank one ovek|u, v, w] /uvw which is locally free or

the punctured spectrum, Is iIsomorphic to the coke
of one of the following matrices (or its transpose)

i u 0 \u + vPw? it
P+ w! vw ) uitl VW

u w0 w wh "
. 0O v u" |, 0 v u™
A0 w 0 0 w
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Some other degenerate cusps
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Some other degenerate cusps
A = K[z, y,u,v]/(zy, uv).
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Some other degenerate cusps
A = K[z, y,u,v]/(zy, uv).
J = {(zu)?, (2v)?, (yu)?, (yv)?) C A.
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Some other degenerate cusps

A =k|z,y,u,v]/(zy, uv).

T = ((zu)?, (zv)?, (yu)?, (yv)?) C A.

Forw = ((m1,m2), (n1,12), (p1,p2), (q1, Qz)) e 78
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Some other degenerate cusps

A =k|z,y,u,v]/(zy, uv).

T = ((zu)?, (zv)?, (yu)?, (yv)?) C A.

Forw = ((m1,m2), (n1,12), (p1,p2), (q1, 612)) e 78

min(my, ms) = -+ = min(qy, o) =
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Some other degenerate cusps

A =k|z,y,u,v]/(zy, uv).

T = ((zu)?, (zv)?, (yu)?, (yv)?) C A.

Forw = ((m1,m2), (n1,12), (p1,p2), (q1, 612)) e 78

min(my, ms) = -+ = min(qy, o) =

and)\ € k*
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Some other degenerate cusps
A =k|z,y,u,v]/(zy, uv).
J = ((zu)?, (zv)?, (yu)?, (yv)*) C A.
Forw = ((m1,m2), (n1,m2), (P1,p2), (01, 612)) WA
min(my, me) = --- = min(qy, g2) = 1

and\ € k* we set/ (w, \) := (™ ly + g™z,

un1—|—1y _l_ ung—le’ yp1—|—1,U _I_ yp2—|—1u’ UQ1+133 _l_ /UQ2+1y>.
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Some other degenerate cusps
A =k|z,y,u,v]/(zy, uv).
J = ((zu)?, (zv)*, (yu)?, (yv)?) C A.
Forw = ((m1,m2), (n1,m2), (P1,p2), (01, CIQ)) WA
min(my, me) = --- = min(qy, g2) = 1
and\ € k* we set/ (w, \) := (™ ly + g™z,

n1+1y_|_unz+1 yplﬂv—|—yp2+1u,UQ1+1x—|—UQ2+1y>.

Any M € MCMY(A), rk(M) = 1 is isomorphic to
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Some other degenerate cusps

A =k|z,y,u,v]/(zy, uv).

J = ((zu)?, (2v)?, (yu)?, (yv)?) C A.

Forw = ((m1,m2), (n1,m2), (P1,p2), (01, CIQ)) WA

min(my, me) = --- = min(qy, g2) = 1
and\ € k* we set/ (w, \) := (™ ly + g™z,
n1+1y 1 unQHx, yp1—|-1v L ypg—i—l UQ1+1ZC 1 ,UQQ+1y>.
Any M € MCMY(A), rk(M) = 1 is isomorphic to

M(w, ) == {(J,I(w,\)), C A
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Degenerate cusgk|x, y, u, v||/(xy, uv)
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Degenerate cusg|x, y, u, v|/(zy, uv)

Example In the above notations, let

*mp=n1=p=q =1

*ma =1Mm,nNn2 = N,pP2 — P, 42 — (.
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Degenerate cusg|x, y, u, v|/(zy, uv)

Example In the above notations, let

*mp=n1=p=q =1

© M2 =Mm,N2 =N,P2 =P, 42 = (.
Then the corresponding Cohen—Macaulay module

<x2u+)\xm+1v,u2y+u”+1x,y2v+yp+1u,v2x+vqﬂy>.
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Degenerate cusg|x, y, u, v|/(zy, uv)

Example In the above notations, let

*mp=n1=p=q =1

© M2 =Mm,N2 =N,P2 =P, 42 = (.
Then the corresponding Cohen—Macaulay module

<x2u+)\xm+1v,u2y+u”+1x,y2v+yp+1u,v2x+vqﬂy>.

Moreover, Its presentation Is

(

00 w
00 O
0 O
0 u A\x

0
v
0
0 Az

SO O

A® > A* — M (w,\) — 0.
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Thank you for your attention!
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