Einige Anwendungen der Konstruktionen auf Differenzenverfahren

(a) Abstrakt hinten: A und B seien mit einer Relation ≤
vollständige lineare Räume, und das Operatoren P und CA,
P(D(P)) ⊆ B, X(\Phi) = \Phi - \partial - (D - \partial) X - \partial, habe die Eigenschaft
P x ≤ P y \Rightarrow x ≤ y. In der Terminologie von Collatz heißt P
dann: von Annahme. 7
Gesucht ist eine Halbkreistrecke P t = t der, wenn P t = s
eine in der Gleichung und t eine 'Näherung' mit
P t = s in). Wir setzen zunächst die Halbkreistrecke als archi-
medisch voraus. Für eine Ordnungszahl y ∈ B gibt es
dann 0 ≤ \epsilon ≤ R, so dass
-2 ≤ y ≤ s - \epsilon ≤ s + \epsilon \\

und aus (1) P t - P(\epsilon - \epsilon t) ≥ \epsilon y und
(2) P t - (\epsilon + \epsilon t) - P t ≥ \epsilon y
folgt die Einschlusslösung -\epsilon \epsilon ≤ t ≤ \epsilon \epsilon.
Die Tatsache muß man ein gegebener ν 0 F oder
Wem P Annahme ist, genügt P t 0 γ.

(b) Distanzform: Ann(P) ein Raum von konvexen Funktions-
leisten, deren Gleichungspunkte mit einem Skali-
\gamma(A) bzv. \gamma(B) überwiegung, \mu sei auf \gamma(B)
kompatibel und punktweise \Theta = 1, die Halbkreistrecke
in der entsprechenden Räume, \Theta(A) und \Theta(B) sei die natürliche
Distanzform des Parameters \Theta(t) → 0.
Für die mit \Theta indizierten Gleichungen von (a) gilt
Annahme, auch P ist in vielen, P t ist ein
Näherungsoperat in P t, es soll
\epsilon - P t (\epsilon - \gamma(A)) - \gamma(B) \epsilon \epsilon → 0 \epsilon 0 0 B ε ε

\epsilon ε ε ∈ \Theta_{\text{Max}} - ε 0
aus der vorherigen Ausdrücke der Konvergenz
der Näherungslösung γ gegen \epsilon, wenn eine konstanten \kappa
und ein \epsilon \epsilon ε \epsilon \epsilon \epsilon \epsilon 0 so existieren, daß \kappa(t) \epsilon \epsilon \epsilon ε K
und füre $\overline{a}_k = a \mid g_k(\cdot)$ gilt

$$\overline{P}_k \overline{a}_k - P(\overline{a}_k - \varepsilon, \varepsilon \overline{a}_k) \geq \varepsilon \cdot \overline{a}_k \quad \text{und} \quad P(\overline{a}_k - \varepsilon, \varepsilon \overline{a}_k) - P_0 \overline{a}_k \geq \varepsilon \overline{a}_k.$$

(c) Anwendungen: Anwendung auf verallgemeinerte Eigenwertaufgaben im L^2-Rahmen. Randwertaufgaben, gewöhnliche Differentialgleichungen und Randwertaufgaben für schwach gekoppelte parabolische Systeme ergibt, daß manche in der Literatur üblichen Voraussetzungen entbehrlich sind. Das Monotone-Prinzip führt weiters als das Maximumprinzip.

Raphy Gorenflo, 7.1.1972
Gorenflo

A. Schmelzer, 10.1.72

Sei X eine kompakte offene Punktmengengruppe des \mathbb{R}^n mit gleicher Rand. Zunächst wird der Begriff der gebrochenen Potenz einer elliptischen Operator

$$\sum a_k(x) \Delta$$

mit Null-Dirichletbedingung vom X-Räumen $L^2(X)$, in denen er widersprach-
wird erläutert. Auf die Darstellung $C^0(\Omega)$ übertragen. Mit Hilfe dieser Theorie wird ein Regularitätsatz für die schwache Lösung gedeckter paralleler Differenziellequationen angegeben.

Der zweite Teil beschäftigt sich mit a-priori Schranken für die Hölder-Norm der Ableitungen der Lösungen paralleler Systeme

\[\sum_{ij} a_{ij}(t,x) \frac{\partial^2 u}{\partial x_i \partial x_j} = f(t,x,u,Du), \quad a = 1, \ldots, L. \]

Hierbei gestattet f eine Wachstumshyperbedingung

\[|f_a(t,x,u,Du)| \leq \|x\|_L + \|u\|_L + \|Du\|_L + K \]

und $\|u\|_L + \|Du\|_L$ ist eine Körnerbeitsbedingung. Die Körnerheitsbedingung ist in Falle einer einzigen Gleichung überflüssig. Auch für gewöhnliche Differentialgleichungen

\[\frac{\partial u}{\partial t} - \sum_{ij} a_{ij}(x,Du) \frac{\partial^2 u}{\partial x_i \partial x_j} = f(t,x,u,Du). \]

lässt sich unter einer ähnlichen Wachstumshyperbedingung auf f weiten und gemischt bedingungen an a_{ij} mit $a_{ij}, \frac{\partial a_{ij}}{\partial x_i}, \frac{\partial a_{ij}}{\partial t}$ eine a-priori Schranke für $\sup_{0 \leq t \leq T} \|Du(t)\|_{C(\Omega)}$ für $T > 0$, erledigen.

17. 1. 1972

Hans von Wahl

Sei \(L = \mathbb{Z} / q \mathbb{Z} \), \(q = 4ab-1 \), \(X \) der quadratische Charakter von \(L \), definiert durch \(X(x) = -1 \) für \(x \in X \), \(H = (X(x+\beta)) \) die von Gleich- Pólya gefundenen Hadamard-Matrizen, die Bilinearform \((aI + bH) \) definiert den Radikal einer \(4ab \)-dimensionalen Mischung \(\mathbb{Z} / q \mathbb{Z} \mathbb{Z} \), der genau drei mit \((x,y),(0,0),(x,0)\) bezeichnete unimodulare Gitter (mit den Paritäten \(b, x, y, a \)) besitzt, entsprechend der Bedingungen \(\sum x, \sum (x+y), \sum xy = 0 \) und \(\mathbb{Z} \) für die Koeffizienten. Die Gitter mit ihren Gruppen

\[M = (2,3), \quad M' = (0,2,3), \quad \Lambda = (2,0,3) \]

feiern ihren 32. Geburtstag!

Die M und \(\Lambda \) waren im Jahre 1844 in meinen Untersuchungen Hamb. Abh. 14, 322 erkannt, 28.5.1940 durch Studien des Steinerschen Satzes 5.8.29 und bestimmte die Gruppenordnungen: \(G(M) = 2^{12} M_24 \), \(G(M') = 2^{12} M_24 \), \(G(\Lambda) = 3^{9} 2^{8} (2^{6}-1) \), usw. \(\Lambda \) wurde 1967 von Leed wiederentdeckt, \(G(\Lambda) \) von Conway untersucht.

Satz. Aus \(a, b, c > 1 \), \(2bc - q = 4ab-1 \geq 2^7 - 3ac+4 \),

\[c \leq b + 3, \quad b \leq 1 \quad \text{folgt} \quad (a,b,c) > c. \quad (a,b,c,0,6) \]

Interessante Beispiele abgebildet mit \(q = 167, (0,3,6) 26, (3,6,14) 26 \), \(q = 719, (0,0,5) 28, q = 1499, (3,5,7) 29, q = 1579, (5,7,8) 31, (5,7,9) 31 \).

Für \(q = 2 \) oder \(b = 2 \) sind die drei erwähnten Gitter \((0,8,0,6)\) monomial, wenn \(a \neq b \), d.h. ihre linearen Automorphismen sind monomial. Diese folgen nach gesonderter Diskussion über \((2,0,4)\) und \((0,2,4)\) aus dem Satz.

\((3,8,0)\) ist sieh monomial, \((3,6,0)\) und \((3,8,0)\) für \(q > 251 \).

Parallelle zur Kreisprozitatgesetz für \(\frac{2}{q} \), insbesondere im Fall \((3,9,4)\).

Einf. Witz
31/11, 1972
Città: keine Ordnungen.

Sei \(\sigma \) ein Dedekindring, dessen Ausdehnungsbetrachtungen leiten. Sei \(A/\sigma \) eine halbinfinito algebra und \(R \) eine \(\sigma \)-Ordnung in \(A \) d.h. ein Unterring mit \(1 = R \) und \(R = A \), welcher endlich erzeugt \(\sigma \)-ideal ist. Darstellung von \(R \) in \(A \) werden vermittelt durch \(\sigma \)-fette, d.h. endlich erzeugte \(\sigma \)-ideale ohne \(\sigma \)-torsion. Zwei \(\sigma \)-fette gehören zum gleichen \(\sigma \)-idealfaktor, wenn sie ein \(\sigma \)-Prinzipielle nennt.

Er wurde den Künstlerflügel einer Involution strecken, mit deren Hilfe die Transformationen in einem Geschlecht charakterisiert werden können. Wieder wurde diese Involution dazu benutzt, um Eigenschaften der \(R \)-fetten zu verfehle.

H. Jacobi

7. Februar 1972
Fast Bairesche topologische lineare Räume

Ein topologischer linearer Raum \(X \) heiße fast Bairesch oder ein (\(\sigma \))-Raum, wenn er die folgende Eigenschaft (\(\sigma \)) hat

\[\left\{ \begin{array}{l}
\text{Ist} (A_n) \text{ eine aufsteigende Folge von absolutkonnverexen} \\
\text{abgeschlossenen Teilmengen von} \ X \text{ mit} \ U A_n = \ X, \text{so} \\
\text{sind die} \ A_n \text{ für alle hinreichend großen} \ n \text{ absorbant.}
\end{array} \right. \]

Diese Eigenschaft ist schwächer als die Eigenschaft, daß \(X \) ein Bairescher Raum im Sinne von Borel ist. (\(\sigma \)) läßt sich im lokalkonvexen Fall dual charakterisieren, es gibt mehrere hinreichende Bedingungen für (\(\sigma \)), und die fast Baireschen Räume haben zahlreiche Permanenz eigenschaften, z.B. bezüglich Produktbildung. Zu den Anwendungen dieser Räume gehören Formen der Sätze vom abgeschlossenen Graphen und von der offenen Abbildung, ein Analogon des Satzes von Banach-Steinhaus und andere Stetigkeitsaussagen.

W. Roeleke
"Recent results concerning the relationship between
axiomatic and probabilistic potential theory."

1) To each Bauer sheaf \mathcal{S}, for which 1 is superharmonic there exists
a standard process Y such that the process Y^U obtained by
killing Y at U has as its excessive functions the cone of
non-negative hyperharmonic functions on U, U an arbitrary open
locally compact subset of E.

2) If a Bauer sheaf admits a Green function then there
exist two diffusions X and Y in duality such that (i) the
excessive functions defined by X coincide with the cone of
non-negative hyperharmonic functions defined by the sheaf and
(ii) Y is adjoint to X in a suitable sense (for example, if
an adjoint sheaf exists then the excessive functions defined by
Y coincide with the cone of non-negative hyperharmonic functions
defined by the adjoint sheaf).

JC Taylor

10 April 72
Autosomorphismen des Sphäroschalenkeims zweiten Grades

17.4.72

Sei G die Sphäroschale Modulgruppe, H die (verschiedene) Sphäroschale Halbebenen n-ten Grades. Der Quotient $Q_n = H_n^\perp$ ist ein normaler komplexer Raum. Die Gruppe der analytischen Autosomorphismen von Q_n für $n \geq 3$ ist nach einem Resultat von Gotshaidle trivial.

Für den Fall $n = 2$ ($n = 1$ ist natürlich klassisch) wird gezeigt:

Die Gruppe der analytischen Autosomorphismen von Q_2 ist eine komplexe Liegruppe \mathbb{C}^3.

Daraus resultiert man das Problem unmittelbar auf ein algebraisch-geometrisches Problem (nämlich auf die Bestimmung der (algebraischen) Autosomorphismen der Varietät Q_2) und benutzt dann die bekannte Struktur der Graduierten der Ringes der gewöhnlichen Modulformen zu G_2.

S. Böckes

über nicht äquivalente Repräsentationen in Gruppenalgebren

24.4.72

Es sei $[\mathbb{F}]_n$ bzw. $[\mathbb{S}]_n$ die Klasse derjenigen linearkompakten Gruppen, in denen die symmetrischen Elemente relativ kompakt sind bzw. das Einbettung in eine invariante Umgebung besitzt. Es wird gezeigt, dass für $G \in [\mathbb{F}]_n$ [resp. $G \in [\mathbb{S}]_n$] die Gruppenalgebra $L^1(G)$ (bzw. der Raum $Z^1(G$)) von einer (nicht speziellen) \mathbb{S}-struktur trägt.

E. Kanić
Extremale harmonische Funktionen auf Gruppen. 8.5.72

Sei \((G, \mathbb{K})\) eine harmonische Gruppe mit \(x \in \mathbb{K}^G\), wobei \(G\) eine abelsche, lokal-kompakte, zusammenhängende topologische Gruppe ist. Eine harmonische Funktion \(b > 0\) auf \(G\) heißt genau dann auf einem extremalen Stab der konvexen Kegel \(\mathbb{K}^G\), wenn es ein harmonisches Exponential \(f\) (d.h. eine solche Funktion \(f: G \rightarrow \mathbb{K}^*\) mit \(f(x+y) = f(x)f(y)\)) und \(\int f(x)dx = 1\) für eine reguläre Haarmessung \(V\) von \(G\) ist eine reelle Zahl \(x > 0\) und \(b = f\) gilt. Da \(G\) homöomorph zu \(\mathbb{R}^n\) gilt und maximale kompakte Untergruppe \(K\) von \(G\), ergibt sich, daß die Menge der extremalen Stabhe von \(\mathbb{K}^G\) versteht mit der unvollständigen Topologie, zu einer der folgenden Merger homöomorph ist: \(\Sigma, D_n^\infty(n > 1), S^1, S^n, S^n \times \mathbb{R}^1 (n+1)\).

Mit \(G = \mathbb{R}^n\), so sind nach dem Satz alle harmonischen Gruppen durch elliptische oder parabolische Differentialoperatoren \(A = \sum a_{ij}^\xi \partial^2 / \partial x_i^\xi \partial x_j^\xi \) mit konstanten Koeffizienten gegeben. In diesem Fall erhält man die folgende Darstellung: \(\lim_{t \to 0} \text{Verkehr} = \text{Ende}\) in jede Gruppe \(b > 0\) von \(A_0 = 0\) gilt es genau ein positives Räuber-Mass \(\nu_0\) auf \(M^0\) mit \(\nu_0 = \int e^{\xi i} v_0(y) dy\), wobei \(M^0 = \{x \in \mathbb{R}^n: \sum a_{ij}^\xi y_i y_j + \sum a_{ij}^\xi y_i = 0\}\) ist. Dabei ist \(M^0\) also der Raum einer Elliptizität bzw. Parabolizität, nachdem aber \(A\) elliptisch bzw. parabolisch ist.

Erwartete Zuwächse von Punktkorrelationen 15.5.72

Wir betrachten Punktkorrelationen auf \(\mathbb{R}\) die Stationär sind und endliche Intensität \(\lambda\) haben. \(N(\omega, Q)\) bezeichnet die zufällige Anzahl der Punkte der Prozesse in der Borelschen Menge \(Q\). Es sei \([b, c]\) ein endliches Intervall. Für jede Zerlegung \(\Delta = \delta b\)

\(S_0 < \delta_1 < \ldots < \delta_{n+1} = c\) dieser Intervalldefinitionen um \(S_\Delta(\omega) = \sum_{y = \delta b}^{x c} E(N(\varphi, s_{n+1}) | F_{\delta b})\), wobei \(F_\delta (-\infty < x < \infty)\) die \(\sigma\)-Algebra der im \((-\infty, t)\) eintretenden Ereignisse. Satz: Es existiert eine Version von \(E(N(\varphi, s_{n+1}) | F_{\delta})\) derart, daß \(x\) in \(S_\Delta(\omega) = W(\omega, [b, c])\) existiert.

Sobald und im Mittel. \(Y(\omega) = \lim_{\Delta \to 0} E(N(\varphi, s_{n+1}) | F_{\delta})\) exi-
Sprühregen und lineare Zusammenhänge 29-5-72

"Sprühregen" (= spray.) und lineare Zusammenhänge, die symmetrisch sind, stehen in umkehrbar eindeutiger Beziehung zueinander: für diesen Satz von Ambrose, Palais und Singer wurde nach einigen Vorbereitungen ein einfacher Beweis gegeben.

F. Papangelou
We first try to show how the classical H^p spaces of analytic functions can be described with martingales, associated to the brownian motion. Then extending this situation we introduce the H^p spaces of continuous martingales, which are the space of continuous martingales with their maximum in L^p. Following a paper of Getoor and Sharpe ("conformal martingales," to be published in Inv. Math. Math. Acad.) we then study the dual of H^p, which is a Banach space of "almost bounded martingales".

N. Dunford

Rings with finite Krull dimension 31-5-72.

The definition of Krull dimension defined by Gabriel & Reutenauer in CR, 1967 which certainly excludes 15 algebraic categories. The classical notion due to Krull expressed in terms of lengths of chains of prime ideals of a ring. For a ring R, possibly non-commutative the relationship between the new Krull dimension $|R|$ and the classical one, $cl(R)$ is considered. The following results indicate their connection.

Theorem 1. If $|R|$ exists (as an ordinal) then $cl(R)$ exists and $cl(R) = |R|$. Examples show that $cl(|R|) = 0$ and $|R|$ not exist is possible. Also $cl(|R|) = 0$ and $|R| = 0$ may too occur, is possible. For commutative noetherian rings the two notions coincide.

The effect which the existence of $|R|$ has on the structure of R is considerable.

Theorem 2. If $|R|$ exists then the power of the nil radical N of R is distinct.

Theorem 3. If R is commutative, $|R|$ exists, and $cl(|R|) = 0$, then N is nilpotent.

It may be possible to extend these either to the case of non-commutative rings or to arbitrary $cl(R)$; at the moment the outlook is undecided.

Alfred Goldie
Das Steppen eines Markov-Prozesses

Gegeben die messbare Räume \((E, \mathcal{B})\) darauf der nicht-ko-
archistische Kern \(P\). Man betrachtet die Ordnung in
der Menge der Maße auf \((E, \mathcal{B})\) "Bakayaga-Ordner":
\[p \succ q \iff \langle p, f \rangle \geq \langle q, f \rangle \quad \forall \text{ alle } P-
extensive } \]

Es wird, wenn \(p, q\) ein Maß \(\bar{v}\) konstruiert mit
folgender Eigenschaft:

a) \(p \succ \bar{v}, \quad \bar{v} \in v\)

b) wenn \(p \succ q, p \in v\), so gilt \(\bar{v} \succ p\).

Insbesondere gilt \(\bar{v} = v\), genau dann, wenn \(p \succ v\).

Durch probabilistische Interpretation dieser Konstruktion
erhält man folgende Deutung der Ordnung \(\succ\):

\[p \succ v \quad \text{genau dann, wenn } v = p^\alpha \text{ } f \text{ eine zeige.} \]

Stoppzeit \(T\).

Dieses Ergebnis übertragen sich vorteilhaft auf eine weit
klassisch konsistente Halbgruppen, wofür man
\(p \succ v\) durch eine map \(v - p, f \to -0 \) erklärt
\[
\int_{a}^{T} f e^{-s}
\]

(\(e^x\): Menge der \(\alpha\)-extensiven Funktionen).

Als Anwendung der Methode, die man zur Konstruktion
der Stoppzeit \(T\) sehr gewöhnlich hat, wird ein Tafel
von Typ des Skorokhod'schen Sagen in der Bemerkungs-
Bemerkung manuell für allgemeine Markov-Prozesse
aufgestellt.

Hermann Rost
Let \(0 < x < 1 \), \(-1 < v < \infty \), \(K \in (1, +\infty) \), \(\lambda \in (0, \infty) \) and
\[
J_v(\lambda, x) = a_n - J_v(\lambda, x) + K a_n - J_v(\lambda, x) \quad (K > 0 \text{ if } \beta > 0),
\]
\[
J_v(\lambda, x) = -\frac{1}{\pi} (\log(K^2)) J_v(\lambda, x) + Y_v(\lambda, x),
\]
Solutions of Bessel's equation (\(x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (1 - \nu^2) y = 0 \) satisfying at \(x = 1 \)
(1) \(a_n(1) + \beta a_n(1) = 0 \), \(x^2 + \beta^2 = 0 \), \(x, \beta \) real.

Here \(a_n \) runs in the set of zeroes defined by (1) such that \(\nu > \arg a_n > 0 \). Then if \(c_n = \int_0^\infty J_v(\lambda, x) x dx \) and \(S_N = \sum_{n=1}^N c_n \), it holds:

Assume \(-\nu < \beta < \nu \). Then \(S_N f \to f \) in the space \(L^p \) associated to the measure \(x^\beta dx \)
\(0 < x < 1 \), if and only if \(1 < \nu < \infty \) and
\[
(\nu + \frac{3}{2} - \beta > 1 \quad \nu > \frac{1}{2} - \beta - \{(\nu + \frac{3}{2})^1 - \}
\]

The described systems \(\{u_n\} \) are "essentially" all the orthogonal systems of solutions of Bessel's equation complete in \(L^2 \) with respect to the measure \(x dx \), \(0 < x < 1 \) — for \(\nu \in (1, \infty) \).

Besides, for \(\beta = 0 \), all these systems verify: \(S_N f \to f \) a.e. when \(\beta = 0 \) and \(1 < \nu < \infty \), \(\{(\nu + \frac{3}{2})^1 + \frac{3}{2} > \frac{1}{2} - \{(\nu + \frac{3}{2})^1 - \}

Rafael Panzone.

12.6.72

Nullstellen von quadratischen Formen.

Sei \(\varphi \) eine quadratische Form über einem Körper \(K \) über einem Körper \(K \) einen Körper.

Einer Körpertrennung \(K/K \) heiße generischer Nullstellenkörper, falls a) \(\varphi \otimes K \) isotrop ist und b) zu jedem Körper \(L/K \)
mit \(\varphi \otimes L \) isotrop eine Stelle \(\zeta: K \to L \) existiert.

Z.B. ist jede des Funktionenkörper \(k(\varphi) \) der Quadratik \(\varphi = 0 \) über \(k \) generischer Nullstellenkörpere von \(\varphi \) (sogar mit einer "generischen Nullstelle"). \(k(\varphi) \) ist genau dann reell
transzendent über \(k \), wenn \(\varphi \) isotrop ist. Allen kann man
zu jedem \(\varphi \) über \(k \) einen "generischen "nullstellenkörper" \(k = K_0 \cdot K_1 \cdot \ldots \cdot K_n \) folgen konstruieren! Sei
\(i_0(q)\) der Witt-Index von \(q\) und \(q_0\) die Kanform von \(q\). Fall der \(\dim q_0 > 1\) wähle \(K_1\) als gen. Nullst. Körper von \(q_0\) und definire \(i_1(q) = \text{Witt-Index von } q \otimes K_1\), \(q_1 = \text{Kanform von } q \otimes K_1\) und definire \(i_2(q) = \text{Witt-Index von } q_1 \otimes K_2\), \(q_2 = \text{Kanform von } q_1 \otimes K_2\) etc. \(h\), sowie die Indices \(i_k(q)\) und "im wesentlichen" die \(q_k\) hängen nicht von der Wahl der Zerfällungstrenns ab. Für einen beliebigen Körper \(L/K\) gibt es genau ein \(x \in K_{h+1}\), so daß der Index von \(q \otimes L = i_0(q) + \ldots + i(h)\) ist und die Kanform von \(q \otimes L\) eine Spezialisierung von \(q_k\). Die Formen der "Höhe" \(h = 1\) sind gerade die "Pfinkerformen" \((1, a_1) \otimes \ldots \otimes (1, a_5),\ s \geq 1\), und ihre reinen Anteile \(z^h, (\tau = (1) + \tau'').\) Dieser Satz ist eine Folge eines "Normensatzes": Sei \(q\) quader. Form über \(K, v)\) ein normiertes irreduzibler Polynom über \(K\) in beliebigen \(v\) Variablen \(t_1, \ldots, t_v\). Dann gleichwertig:

(i) \(q\) ist Ähnlichkeitsmorm von \(q \otimes K(t_1, \ldots, t_v)\)

(ii) Es gibt ein quadratisches Polynom \(f(t_1, \ldots, t_v)\)

in \(K[t_1, \ldots, t_v]\) mit \(p/f\) und \(f\) Ähnlichkeitsmorm von \(q \otimes K(t_1, \ldots, t_v)\)

(iii) \(q\) hypobolisch über dem Funktionenkörper

\[k(p) = \text{Quot } K[t_1, \ldots, t_v]/(p)\] zu \(p\).

Über jedem formal reellen Körper \(K\) gibt es Formen \(n \times (1)\) von beliebiger Höhe.

Die Untersuchungen schließen eng an Arbeiten von Pfister, Arason - Pfister und Elman - Lam an.

Allan Reed Kuebesch
Neue Methoden der Erzeugung nicht-gleichverteilter Zufallszahlen.

Die heute üblichen Computerverfahren der Generierung von zufälligen Größen beginnen alle mit der Erzeugung von \([0,1]\)-gleichverteilten Zufallszahlen \(u\). Daher wird am häufigsten die Lehnerische multiplikative Konstruktionsmethode verwendet. Nicht-gleichverteilte Zufallszahlen \(x\) mit vorgegebener Verteilungsfunktion \(F(x)\) lassen sich prinzipiell leicht aus \([0,1]\)-gleichverteilten Größen \(u\) erzeugen: Man setzt hierfür \(u = F(x)\) und inverse (\(x = F^{-1}(u)\)). Die Inversion ist jedoch immerhin sehr mühsam, und für alle praktisch bedeutenden statistischen Verteilungen existieren daher schnellere Methoden.

Als ein Beispiel werde die für Funktionen, die nicht-gleichverteilt sind, vorgeschlagen.

A durch inverse ermittelt wie die Verfahren.

\[
\begin{align*}
A: x &< 1-V_u \quad B: x < \sqrt{u} \\
A: x &< 1+u_1 + u_2 - 1 \\ B: &< 1-1+u_1 + u_2 - 1 \\
A: \text{Min}(u_1, u_2), & \quad B: \text{Max}(u_1, u_2).
\end{align*}
\]

Eine neue Methode, die wiederum mit einer \([0,1]\)-Zufallszahl alle annehmen, aber die laufende Ausnutzung vermeidet, ist die folgende.

\[
\frac{u = 0, b_1, b_2, b_3 \ldots}{b_n = 1, b_{n+1} = 0} \quad \frac{b_n = 1, b_{n+1} = 0}{b_0, b_1, b_2 \ldots} \quad \ldots \quad \frac{x = 0}{0, b_0, b_1, b_2 \ldots}
\]

Die Binärzahl ist eine umkehrte Zufallszahl. Wenn \(b_1 = 0\) ist, dann setze man \(x < u\). Hat aber \(u\) am Anfang \(k\) Bits, die gleich eins sind (\(b_1 = b_2 = \ldots = b_k = 1, b_{k+1} = 0\)), dann setze man \(x = 0, b_0, b_1, b_2 \ldots b_0, b_1, b_2 \ldots \) ist dann auch \(A\)-verteilt, was eine ähnliche Methode (in der man die Kette von 0 und 1 zu verteilen ist) ergibt, die Verteilung \(B\). Diese Transformation ist 'pathologisch' erster programmerbar in Intervalle.
Als ein weiteres Beispiel wird nun eine Methode von v. Neumann / Forsythe vorgestellt, die Stichproben in endliche Intervalle \((a, b)\) von einer Wahrscheinlichkeitsdichte der Form \(e^{-x}\) liefert:

1. Erzeuge eine \((0,1)\)-verteilte \(u\), setze \(x = a + (b-a)u\)
2. Berechne \(u = G(x)\).
3. Erzeuge \(k\) (mehrphasige) weitere \((0,1)\)-verteilte \(u_1, u_2, \ldots, u_k\). Dabei ist \(k\) bestimmt durch die Bedingung
 \[
 t \geq u_1, \geq u_2, \geq \ldots \geq u_k < u_k
 \]
 Wenn \(k\) gerade ist, gehe man nach 1. Andernfalls akzeptiere \(x\).

Die ermittelten Bereiche für die Gültigkeit dieses Algorithmus sind unwesentlich komplexer, als wenn die Methode tatsächlich in 2 Teile geteilt wurde. Angesichts der Möglichkeit der Verwendung mehrerer Computerleben erscheint dies das Verfahren (in einer von Verfasser stark modifizierten Form) in einem speziellen Algorithmus für die Normalverteilung erweitert werden kann, der allen bisher bekannten Erzeugungsmethoden überlegen zu sein scheint.

Joachim H. Ahrens

5. Anwendungen auf Differentialgleichungsmethoden (Cauchy, Whitehead).
The purpose of the talk is to suggest a definition of an "elementary object" of representation theory. The question imposes itself upon taking into account, that the possibility of a unique direct integral decomposition into irreducible components fails to hold true already for five dimensional Lie groups. The proposed substitute is a "trace class" factor representation. This is a unitary algebraic representation T_p such that the p-Jordan normal algebra $(R(T))$ its generates comes a trace of, such that the family \[T \circ \{ (f, q), q \in (G \setminus \{O\})_{\ast}, L = L \} \text{ generates } R(T). \]

Theorem 1. For any connected solvable Lie group G the induced (as left) regular representation is of trace class.

Theorem 2. For any connected topological group the induced ring is injective.

The proof of these two theorems depends in a decisive fashion on ideas and methods developed by J. Dixmier during the last twenty years.

Theorem 3. Suppose that G as in Th 1 and that it is simply connected. Then the global type of the induced ring is 1 or 2.

(L. Pukanszky, 28.6.72)
In der Transformationsgruppentheorie werden Sätze von dem folgenden Typ betrachtet: Ist \(G \) eine kompakte Gruppe, die auf einem (hinsichtlich eines gegebenen Koordinatensystems \(R \)) affinen kompakten Raums \(X \) stetig operiert, so ist der Raum \(\text{Fix}(G,X) \) der Fixpunkte ebenfalls affin. Diese Behauptung ist richtig für \(G = \mathbb{Z}(p^n) \), \(R = \mathbb{F}(p) \) [Smith], \(G \) zusammenhängend abelsch, \(R = \mathbb{Q} \) [Koolen, Conner], falsch für \(G = A_5 \), \(X = \mathbb{C}^n \), für ein geeignetes \(G \) [Røldal und Richardson], \(G = \mathbb{Z}(m), m \neq p^n, R = \mathbb{Z} \) [Conner und Røldal].

Kum sei \(X \) ein kompaktes zusammenhängendes Monoid mit \(O+1 \), und \(G \) operiere auf \(X \) als eine Automorphismengruppe, empirisch war abgeschätzt ist die folgende Fixpunktvoraussage: \(\text{Fix}(G,X) \) ist zusammenhängend (äquivalent für ein (alle) \(R \), dann \(\text{Fix}(G,X) \) ist ein Monoid mit Null).

Die Fixpunktvoraussage ist richtig für alle auflosbaren \(G \), deren Faktoren keine p-adischen Unterguppen enthalten (also z.B. für \(\mathbb{Z}(m) : n \) oder). Es wurde der folgende, von Mislove und den Vortragenden bewiesene Satz diskutiert:

3. Ist die Menge der Hauptideale von \(X \) endlich, so ist \(X \) vollständig geordnet und sind die \(G \)-fixenen Ideale endlich, so gilt die Fixpunktvoraussage für \(G \)-Gruppe der Endhaken mit der Operation durch innere Automorphismen. Da nun der folgende transformatorische theoretische Satz aufgestellt ist:

Ist \(X \) ein topologischer Raum auf dem die kompakte Gruppe \(G \) operiert, dann ist \(\text{Fix}(G,X) \) ein Fixpunkt, wobei \(x \) in der Bogen komponente eines Fixpunktes liegt und \(Gx \) ein Fixpunkt von \(X \) ist. Haupthilfsmittel ist der Satz: Ist \(G \) eine kompakte Gruppe, \(H \) eine abgeschlossene Unterguppe, so besitzt die Homologieklasse der Restklassenabbildung \(G \to G/H \) aus linearen Injektionen.

Polynomialale Transformationen.

Im Zusammenhang mit der Verlegung einer Vermutung von Narkiewicz (Coll. Math. 1963) betrachtete K.K. Kubota (J. of Number Theory 1972) füllende Eigenschaft (P) für einen Körper \(K \). Für jede Teilmenge \(E \subset K \) und zwei Polynome \(P, Q \in K[X] \) mit \(\deg P > \deg Q \), \(Q/E \) injektiv
gilt: Ist $P(E) = Q(E)$, so ist E endlich. Kubota bewies, daß jeder globale Körper (i, Sinne der Zahlentheorie) die Eigenschaft (P^{n}) hat. Schärfer gilt: Jeder endliche Körper erfüllt (P^{n}).

Franz Halter-Koch, 16.10.72

Sei H eine algebraische Untergruppe von G. Es wird der Frage untersucht, ob es unter welchen Bedingungen die Einschränkungsabbildung von $B(G)$ in $B(H)$ injektiv ist. Die ist äquivalent zu der Frage, ob es eine positive definitive Funktion auf H zu einer positiv definiten Funktion auf G fortsetzen läßt. In diesem Problem werden folgende Ergebnisse gezeigt.

Ist die Untergruppe H offene oder kompakt, dann ist die Einschränkungsabbildung $B(G)$ in $B(H)$ injektiv. Ist H ein Normalteiler und jede Automorphismus g von H, gegeben, g äußert in unserer Automorphismen von H, dann ist die Einschränkungsabbildung injektiv. Ist H ein offenes Normalteiler, dann ist das Zentrum von H in G enthalten ist, dann existiert ein Charakter χ auf H, der nicht sucht positive definit auf G fortsetzen läßt. Dieser Fall holt solche sukzessive angenommen endlichen, positiven Untergruppen auf.

Peter Flasch 23.10.72
A survey is given of problems concerning Ramanujan's function \(\tau(n) \). The Ramanujan conjecture states that \(|\tau(n)| \leq \pi^{12} n^{1/2} \) for all primes \(n \) and this implies that \(\tau(n) = O(n^{1/2+\varepsilon}) \) for arbitrary \(\varepsilon > 0 \). The best known estimate, depending on A. Weil's estimate of Kloosterman sums, is that \(\tau(n) = O(n^2 \log n^{1/2}) \). This together with the result that \(\sum_{n \leq x} \tau(n) \theta(n) = O(x \log^{1/2} x + O(x^{2/3})) \) leads to the following estimate for the abscissa \(A \) of \(L(\tau(s)) \) at the Dirichlet pole:

\[
\sigma_\tau(s) = \frac{\log 2}{\log \log x} \quad \text{and} \quad \sigma_\tau(s) = 2\tau(n)x^{-s}.
\]

These new depend on estimates of W. F. R. de Jong, which have recently been slightly improved by H. Iwaki. The function \(\tau(n) \) is now shown to be even and non-negative. The zeros of \(\tau(n) \) with the application of the Euler to the non-degenerate zeta of Pairi's series are finally, a better estimate is made of the Sato-Tate conjecture on the distribution of the \(\tau \)-partial of \(\tau(p) = \tau(p)/p^{11/2} \), and the elementary methods are used to show the multiplicative properties of \(\tau(n) \) by using the multiplicative properties of Kloosterman sums or the representation \(\tau(n) \) as a sum ofappy integers of norm \(n \).

Rigid-analytische Gruppen
Unter einer rigid-analytischen Gruppe versteht man ein Gruppenobjekt in der Kategorie der rigid-analytischen Räume (im Sinne von Tak-Kisell); es wurden für solche Gruppen einige Eigenschaften und Resultate entwickelt.

Als Analogie zu den affin-algebraischen Gruppen hat man im rigid-analytischen Fall die affinoiden Gruppen, welche in ihren Eigenschaften ihren algebraischen Vorbildern sehr stark ähneln, jedwede zudem von allgemeineren Eigenschaften handelt.

Es sei insbesondere G affinoid, H ⊆ G eine abgeschlossene Untergruppe, so läßt sich G/H als rigid-analytischer Raum definieren, G/H ist sogar affinoid, wenn H Normalsubgruppe in G ist.

zuordnet, man hat eine kanonische Projektion $\tilde{G} \to G$.
(Allegemein läßt sich der Funktor $G \to \tilde{G}$ für alle diejenigen
rigid-analytischen Gruppen erklären, welche zu einem formalen
Gruppenobjekt assoziiert sind.) Dieser Funktor gestattet es oftmals,
als die Struktur von \tilde{G} auf die Struktur von G zu schließen,
man weiß z. B., daß sich in \tilde{G} enthaltene Torsionsanteile
hier zu affinoiden Torsionsanteilen von G laufen lassen.
Letzteres Resultat ist wichtig für die Untersuchung geschlossener
rigid-analytischer Gruppen. Man nennt diese Gruppen auch abelsche
Mannigfaltigkeiten, da sie die rigid-analytischen Analogen zu den
abelschen Mannigfaltigkeiten darstellen. Jede abelsche Mannigfaltig-
keit gibt Anlaß zu einem abelschen Mannigfaltigkeits- und im 1-
dimensionalen Fall ist sogar jede
abelsche Mannigfaltigkeit abelsch, also eine elliptische Kurve. Man
hat folgende analytische Beschreibung für elliptische Kurven G:

$|j(G)| < 1 \implies G$ hat gute Reduktion, d.h. man kann
\tilde{G} erklären, und \tilde{G} ist elliptische Kurve.

$|j(G)| > 1 \implies G$ besitzt den 1-dimensionalen affinen
Torus \mathbb{G}_m als universelle Überlagerung,
so gilt $G = \mathbb{G}_m / \Gamma$, wobei Γ eine
von einem Element erzeugte "diskrete"
Unterguppe von \mathbb{G}_m ist.

J. Bosch / 13. 11. 72
Die Hilbertsche Modulgruppe und die zugehörigen algebraischen Flächen.

Die Standardzitat der Hilbertschen Modulgruppe von $K = \mathbb{Q} (\sqrt{p})$, $p \text{ prim } \equiv 1 \mod 4$, hat folgende Anfangsform:

\[\omega = \sqrt[n]{\frac{1}{p^2} + \sqrt{p}} \]

\(\sqrt[n]{p^2} \) = kleinstes ungeordnete Zahl > \(\sqrt{p} \)

Jeder Strich repräsentiert eine rationale Kurve der Spaltgrätte - \(b_j \).

Definiert man inaktiv \(A_k \) durch \(A_{-1} = w, A_0 = 1 \)

\[b_k A_k = A_{k-1} + A_{k+1} \]

für \(k \in \mathbb{Z} \), wobei

\[b_0, b_1, \ldots, b_3, b_5, b_7, \ldots, b_1, b_0, b_1, b_2, \ldots, b_9, b_8, b_9, b_{10}, \ldots \]

gesetzt wird, dann schneidet

\[\gamma = A_3 t \]

\[\eta = A_3 t \]

die Kurve \(S_j \) transversal.

Aus dem Verhalten der Kurven \(\gamma, \eta \) werden Rationalität beweise für die Hilbertsche Modulfläche gewonnen.

\(H^{x} \mathcal{H} \) hat einen ret. Funktionenraum \(\mathcal{H} \) für \(p = 5, 13, 17 \)

\(H^{x} \mathcal{H} \) / Bedingung der Funktoren von \(\mathcal{H} \) hat ret. Funktionenrump \(\mathcal{H} \)

\(p = 5, 13, 17, \ldots < 193, p = 197, 229, 267, 293, 317 \)

\(\mathbb{F} \text{ Faktor } \tau \)

20.11.72
Existenz lehnts Tests

Mit Hilfe der Funktionstheorie wurde der folgende Satz bewiesen:
Es sei \(\mathcal{H} \) eine Familie von Wahrscheinlichkeitsmaßen und \(\mathcal{H}_0 \) ein einzelnes Wahrscheinlichkeitsmaß.
Für jedes \(\alpha \in \mathcal{H}_0, \mathcal{H} \) existiert ein lehntstes Test zum Niveau \(\alpha \) für die Hypothese \(\mathcal{H} \) gegen die Alternative \(\mathcal{H}_0 \).

Die folgende Verallgemeinerung dieses Satzes wurde angegeben:
Es seien \(\mathcal{H}_1 \) und \(\mathcal{H}_2 \) zueinander von Wahrscheinlichkeitsmaßen von denen mindestens eine dominiert ist.

a) Für jedes \(\alpha \in \mathcal{H}_0, \mathcal{H} \) existiert ein lehntstes Test zum Niveau \(\alpha \) für \(\mathcal{H}_1 \) gegen \(\mathcal{H}_2 \).
b) Für jedes \(\alpha \in \mathcal{H}_0, \mathcal{H} \) existiert ein Test zum Niveau \(\alpha \) mit minimaxi maximaler Sicherheitsfunktion für \(\mathcal{H}_1 \) gegen \(\mathcal{H}_2 \).

I. Rooge 6.12.1972
Das Differenzenverfahren bei Randwertaufgaben singulärer gewöhnlicher Differentialgleichungen.

Es werden Randwertaufgaben der Art

\[\ell(y) = y'' + \frac{p_1(x)}{x} y' + \frac{p_2(x)}{x^2} y = f, \quad 0 < x < 1 \]

\[f, \ p_k \in C^2 [0,1], \ p_k = p_0 + o(x^\alpha), \ \alpha > 0, \ k = 1, 2 \]

\[\lim_{x \to 0} [y, x^{1-\rho_2}] = 0, \ y(1) = 0. \]

Dabei bedeutet \([\ , \]\) den Lagrange-Ausdruck von \ell und \(\rho_1, \rho_2\) sind die Wurzeln der charakteristischen Gleichung \(\rho (\rho-1) + p_1 \rho + p_2 = 0\); Wir setzen \(\rho_1, \rho_2\) reell und \(\rho_1 > \rho_2\) voraus. Randwertaufgaben dieser Art treten in Physik und Technik sehr häufig auf.

Zur numerischen Lösung wird ein möglichst einfaches Differenzenverfahren verwendet: Sei \(n \in \mathbb{N}, \ h = 1/n, \ x_i = ih, \ i = 0, 1, \ldots, n\). Sei \(r \in \mathbb{N}, 1 \leq r \leq n\). Die Differenzen-Approximationen \(y_i\) für \(y(x_i)\) ergeben sich dann aus dem Gleichungssystem

\[\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + \frac{p_1(x_i)}{x_i} \frac{y_{i+1} - y_{i-1}}{2h} + \frac{p_2(x_i)}{x_i^2} y_i = f(x_i), \ i = r, \ldots, n-1 \]

\[\frac{y_{r+1} - y_r}{2h} x_r^{1-\rho_2} - y_r \left((1-\rho_2) - p_1(x_r) \right) x_r^{-\rho_2} = 0, \ y_n = 0. \]

Über die Konvergenz dieses Verfahrens kann man beweisen:

Das kontinuierliche Randwertproblem habe nicht den Eigenwert 0. Dann sind die diskreten Probleme für hinreichend große \(r\) und hinreichend kleine \(h\) lösbar, und es gilt

\[|y_i - y(x_i)| \leq C (1 + x_i^{\rho_2}) h \ln \frac{1}{h} \]

\[i = r, \ldots, n-1, \ C \text{ unabhängig von } r, h. \]

Für ganzzahliges \(\rho_1\) läßt sich dieses Resultat noch verschärfen.

17. 11. 1972
(F. Hubers)
Weiter von Zetafunktionen, quadratischen Zahlkörpern.

Sei \(K \) ein total-reeller Zahlkörper, \(\zeta_K(s) = \sum \frac{1}{\mathfrak{N}(\mathfrak{a})^s} \) (\(\mathfrak{a} = \text{Ideal} \)).

Zu \(\mathfrak{a} = \text{ring der ganzen Zahlen} \) zugehörige Zetafunktion \(\zeta_K(s) \) kann auf \(C \) als meromorphe Funktion fortgezeichnet werden; denn ist \(\zeta_K(-2n) = 0 \)
und \(\zeta_K(1) = 1 \), für \(n \geq 0 \). Für \(\zeta_K(-2m) \) hat Siegel eine Formel gegeben [Nachr. Acad. Wiss. Göttingen 1969], aus der es folgt, daß
\[C_h \cdot \zeta_K(1-2m) = 0 \]
wobei \(C_h \) eine nur von \(h = 2m \) abhängige Zahl ist.

In dieser Formel gelten Potenzsummen \(\sigma_k(2m) = \sum \frac{N(h)^k}{h^{2m}} \) mit \(h = \text{Iden.} \).

Für \(K = \mathbb{Q}(i) \) ein quadratischer Körper, kann man \(\zeta_K(s) \) explizit angeben, und die Siegel'sche Formel dadurch auf elementarer Weise liefern. Zum Beispiel ist
\[\zeta_K(1) = \frac{1}{6} e_1(D), \quad \zeta_K(-3) = \frac{1}{120} e_3(D), \quad \zeta_K(-5) = \frac{1}{720} [e_5(D) + (32D^2 + 27) e(D)] \]
mit \(D \) die Diskriminante und \(e_1(D) = \sum_{n=1}^\infty \frac{1}{n^s} \) den zugehörigen Charakter, und \(\sigma_k(1) = L(s, \sigma_k) \). Hier ist \(e_k(D) = \sum_{n=1}^\infty \frac{1}{n^s} \) für \(s > 0 \) und \(\sigma_k(1) = L(s, \sigma_k) \).

Um z.B. die Formel \(\zeta_K(-3) = \frac{1}{120} e_3(D) \) auf elementarere Weise zu beweisen, kann man jetzt die "Kreismethode" von Hardy-Krause anwenden. Die eigentliche Funktion \(\sum e_3(n)x^n \) ist gleich \(e^{x^2} \), wo \(e^{x^2} = \sum e^{2\pi i x y} \) für \(s = 2 \), und \(e^{2\pi i x y} \) eine Exponentialische Reihe ist (wenn \(\sum e^{2\pi i x y} = e^{2\pi i y} \)).

Wenn man dann \(e_3(n) = \sum_{-\infty}^{\infty} e^{2\pi i x n} \) für \(0 < x < 1 \) integriert, kommt man auf einen Beitrag von jedem natürlichen Punkt \(x \in \mathbb{R} \) (nämlich \(\frac{1}{2\pi i} \int_{0}^{1} e^{2\pi i x y} dy \)).

Diese Integration kann man ausrechnen, und die Summe von den Beiträgen von \(0 < x < 2 \), liefert dann eine Reihe, die nach etwas Rechnen auf eine L-reihe zurückgeführt werden kann.

Man findet \(e_3(n) = \begin{cases} 0 \quad & n \neq 0, \pm 1 \pmod{y} \\ \frac{360D^{1/2} L(y)}{n^{1/2} (\sigma_1(D))^2} \sum_{\chi_2(n) \equiv \chi_2(1)} & n \equiv 0, \pm 1 \pmod{y} \end{cases} \)

also insbesondere \(e_3(D) = \frac{360D^{1/2} L(y)}{n^{1/2}} \) für \(D = \mathbb{Q}(i) \), in Übereinstimmung mit der Siegel'schen Formel.

Den Züger

41. 12. 72
Dynamische Optimierung unter Stetigkeits- und Kompatibilitätsbedingungen

In der Theorie der dynamischen Optimierung besteht man sich mit stochastischen Prozessen, deren Verlauf durch ein Tupel \((s_t, a_t, \ldots, s_{t+1}, a_{t+1}) \in H_t := S \times A \times S \times A \times \ldots \) beschrieben werden kann, wobei \(s_t \in S\) als Zustand eines Systems zur Zeit \(t\) und \(a_t \in A\) als eine Aktion interpretiert werden kann, die zur Zeit \(t\) ergriffen wird. Durch die vorgegebene Startverteilung und das vorgegebene sogenannte Bewegungsgezücht sowie durch die Wahl eines Plans (einer Strategie) \(\pi\) wird ein Wollfase \(P_\pi\) auf \(H_t\) definiert, das die stochastische Entwicklung des Prozesses beschreibt. Bei der Wahl eines Plans \(\pi\) wird man sich an den Kostenfunktionen \(\nu\) orientieren, die jeweils die Kosten im Intervall \([t, t+1)\) annehmen, und zwar wird ein Plan \(\pi^*\) als optimal ausgewählt, wenn er die mittleren Gesamtkosten \(\sum_s \sum_a \nu_t \cdot dP_\pi\) minimiert. Das Ziel des Vorhabens war es, Vorausschätzungen an das Bewegungsgezücht den Gleichungen \(A\) und die Kostenfunktionen \(\nu\) anzugeben für

1. die Existenz eines optimalen Plans
2. die Konvergenz von \(\inf \sum_t \sum_s \nu_t \cdot dP_\pi\) gegen \(\inf \sum_t \sum_s \nu_t \cdot dP_{\pi^*}\) für \(n \to \infty\).

Bewährt wurde es, daß (1) und (2) gesichert sind, wenn eine Topologie auf \(W(CH)\), dem Raum aller Wollfasen auf \(H_t\), gefunden wurde können, so daß gilt:

(a) \(\Pi = \{P \in W(CH)\} \) \(\Rightarrow P = P_{\pi}\) für einen Plan \(\pi\), ist kompakt in \(W(CH)\),
(b) \(P \to \sum_s \nu_t \cdot dP\) ist nach unten halbstetig auf \(\Pi\).

Darauf würden Stetigkeits- und Kompatibilitätsbedingungen angegeben, so daß (a) und (b) für die schwache Topologie bzw. für die sogenannte \(w^\infty\)-Topologie auf \(W(CH)\) gilt.

Bielefeld, den 17. Dez. 1972

Ellenried Schöd