Approximation by polynomials on simplices

by T. Ciesielski (Sopot, Poland)

Jan. 18, 1985

13

In the space \( \Pi_j \) of real algebraic polynomials on \( \mathbb{R}^k \)
of total degree \( j \), different bases are discussed. One is
the "Bernstein" basis \( N_{d,j}(x) = (j!/(d!d!)) x_0^{d_0} x_1^{d_1} \ldots x_d^{d_d} \),
\( x_0 = 1 - (x_1 + \ldots + x_d) \), \( d_0 = j - 1 \), \( d = (d_1, \ldots, d_d) \), \( j \leq d \). The other
bases are biorthogonal polynomials \( \{P_d, P^*_d, 1 \leq d \leq j\} \)
such that \( P_d, P^*_d \in \Pi_{d,j} \), \( (P_d, P^*_d) = \delta_{d,j} \) where
\( (\cdot, \cdot) \) is the scalar product w.r.t. the Lebesgue
measure over the standard simplex \( \Delta = \text{conv} \{0, e_1, \ldots, e_k\} \).

One biorthogonal system of such polynomials is
explicitly constructed. In one-dimensional case
\( \{P_d, P^*_d\} \) is simply the orthonormal set of Legendre poly-

No. 1. The following polynomial operators are treated

\[ Q_j f = \sum_{|d| \leq j} (f, M_{d,j}) N_{d,j} \]

Explicit formulas for the eigenvalues \( m_{d,j} = m_{d,j}(\Delta) \)
of the symmetric Gram matrices \( (N_{d,j}, N_{d,j})_\Delta \)
\( 1 \leq d < j \), are found and it is shown that

\[ Q_j f = \sum_{|d| \leq j} m_{d,j} (f, P^*_d) P_d \]

For the Sobolev space \( W^m(\Delta) \) we have
\[ \| f - Q_j f \|_{W^m(\Delta)} \to 0 \quad \text{as} \; j \to \infty \quad \text{and} \quad f \in W^m(\Delta). \]

Moreover, if for some \( d \), \( 1 \leq d < j \), \( d^\alpha f \geq 0 \),
then \( D^\alpha Q_j f \geq 0 \) on \( \Delta \) for \( j > |d| \). An algo-

rithm for interpolating polynomials
on general sets of m-tuple of multiindices is given. Extension to \( L^p(\Delta) \)
\( 1 \leq p < \infty \), of

Presnel's identity is given. Multivariate int.
spline interpolation was helpful.
Scharf 3-fach transitiv gruppen und Fastkörper

Heinrich Wefelscheid (Bürsberg)

Wie bekannt, operieren die Gruppen $PGL(2,K)$ scharf 3-fach transitiv auf den projektiv abgeschlossenen Körper $K := K \cup \{\infty\}$, resp. $K := \{K^+(\bar{K}) \mid \bar{K} \in K, (\bar{K}, \bar{K}+\bar{K})\}$. Es gibt jedoch noch sehr mehr scharf 3-fach transitiven gruppen. Definiert man als einen KT-Fastkörper einen Fastkörper mit der zusätzlichen Eigenschaft, dass es ein $\sigma \in Aut(F^*)$ gibt mit $\sigma^2 = id, \sigma + id$, das die Funktionstheorie $\sigma(1 + \sigma(x)) = 1 - \sigma(1 + x)$ für $x \in F^* \setminus \{1\}$ erfüllt, so kann man zeigen, dass die Abbildungen

\[ \begin{align*}
\alpha : & \quad \frac{F}{\infty} \rightarrow \frac{F}{\infty} \\
& \quad x \mapsto a + m \cdot x
\end{align*} \]

scharf 3-fach transitiv auf $F$ operieren.

Wie findet man solche KT-Fastkörper?

Die bisher allgemeine Konstruktionsmethode stammt von W. Kervy. Es sei $(K, +, \cdot)$ ein kommutativer Körper und $A \leq (K^+, \cdot)$ eine Unterruppe mit den Eigenschaften:

(i) $Q := \{q \in K \mid q \cdot k^2 \in A\}$
(ii) Es gibt einen Monomorphismus $\pi : K/A \rightarrow Aut(K^+, \cdot)$
(iii) $\pi(x) \in x \cdot A$ für $x \in K^*$ und $\pi \circ \pi \circ \pi = \pi(K/A)$.

Definiert man $a \cdot b := a \cdot \pi(a)(b)$ und $\sigma(x) = x^{-1}$, dann ist $(F^+, +, \sigma)$ ein KT-Fastkörper.


u.a. von Zassenhau, Tiet, Kapel, Wegrz und

...
Homotopietheorie für Moduln mit Anwendungen auf Galoisdarstellungen

1. Februar 1985

Uwe Jannsen (Regensburg)

Es sei Λ ein noetherscher Ring mit Einheit, nicht notwendigerweise kommutativ. Eine Abbildung \( f : M \to N \) von \( \Lambda \)-Moduln heißt homotop zu null, wenn sie über einen projektiven Modul \( P \) faktorisierbar ist: \( M \to P \to N \), wenn \( f \sim g \), wenn \( f - g \) homotop zu null.

Man erhält die Kategorie \( \text{Mod}_\Lambda^p \) (Objekte = \( \Lambda \)-Moduln, \( \text{Mod}_\Lambda^p (M, N) = \text{Hom}_\Lambda (M, N) / \{ f + g \} \)) als "Moduln bis auf Homotopie", dabei gilt \( M \cong N \) genau dann, wenn \( M \oplus P = N \oplus Q \) für projektive Moduln \( P, Q \) gilt.

In dieser gilt der "Schleifensummenfaktor \( \Omega \)" (voll.) definiert durch eine exakte Sequenz

\[ 0 \to \Omega M \to P \to M \to 0 \]

\( P \) projektiv. Diese Begriffe wurden bereits 1956 von Schimman und Hilton eingeführt, die jedoch auf den Zahlring \( \Lambda \) hinweisend anmerken, dass eine adäquate Einführung von "Homotopie" einer "Einführung von Einbegriffen" \( S \) vorausgehen müsste, die jedoch konstruiert werden, und zwar durch eine exakte Sequenz

\[ M \to Q \to SM \to 0 \]

wobei der projektive Modul \( Q \) und \( f \) "geschickt" gewählt werden (\( P \) projektiv, \( P \to M^+ = \text{Hom}_\Lambda (M, \Lambda) \) injektiv, \( f : M \to M^+ \to P^+ =: Q \), \( \text{Hom}_\Lambda ^p (SM, N) \cong \text{Hom}_\Lambda ^p (M, \Omega N) \)).

Weiter gilt es eine Dualität \( D \) mit \( D^2 M \cong M \) und \( D \Omega = SD \), sowie viele analoge zur topologischen Homotopietheorie, exakte Homotopiesequenzen, Faserungen etc.

Es ergeben sich Anwendungen dieser Theorie auf

1) die Gleichmodulstruktur von Einheiten globaler Zahlkörper
2) die Struktur von Galoissystemen lokaler und globaler Körper
3) Torsion - Theorie
Autonomous functions and ordinary differential equations

1. Feb. 1985
Alexei Venkov
(Division USSR)

We consider the general problem to find dependence of standard autonomous function on the deformations of the groups. We consider also the drift equations which are generalized the Schrödinger equations.

\[ \frac{dA}{dt} = - \sum_{j} \left[ A, A_j \right] d \log \frac{g_j - g_0}{x_0 - x_0} \]

in the situation of the nontrivial deformation of the Fuchsian group of the first kind. For example quasi-isomonodromic deformations of Klein-

Fuchsian equations

\[ \frac{d}{dx} \left[ x(x-1)(x-2) y'(x) \right] + (x+1) y(x) = 0 \]

and

\[ \frac{d}{dx} \left[ x(x-1)(x-2) y'(x) \right] + P(x, y, y') y(x) = 0 \]

and some of formulas for accessory parameters \( a_i \), \( \lambda_i \).

We consider also the connection between equations (1) and

with the Schrödinger equation

\[ \{ z, J \} = Q(3) \]

\[ \{ z, J \} = \frac{2}{\sqrt{2}} - \frac{3(z')^2}{2 \sqrt{2} z'c} \]

\[ z: P \rightarrow M, \quad M \text{ is a polygone and } P \text{ half-planes,} \]
Semialgebraische Topologie

Manfred Knebusch (Regensburg) 8.2.85

Die Menge \( V(R) \) der reellen Punkte einer algebraischen Varietät \( V \) über einem reell abgeschlossenen Körper ist in der (von der Anordnung von \( R \) herührenden) starken Topologie ein total unendlicher Raum außer in den einzigen Fällen \( R = \mathbb{R} \). Um auf \( V(R) \), und allgemein auf einer semialgebraischen Teilmenge \( M \) von \( V(R) \), die "topologische" Phänomene zu untersuchen, muss man \( M \) mit einer Grothendieck-Topologie versehen, d.h. offene Mengen die stark-offenen semialgebraischen Teilmengen von \( M \), und den Verbindungen dieser Mengen durch solche Mengen sind. In dieser Topologie bilgen die semialgebraischen Funktionen, d.h. die "stark stetigen Funktionen" mit semialg. Graphen, eine Gerade. Aus diesen lokal geformten Räumen \((M, U)\) erhält man durch Verkleben ebene lokale Exemplare der "semialgebraischen Räume". Die Kategorie der semialg. Räume ist bestens geeignet, um ein voll befriedigende Analogien für viele Teile der klassischen algebraischen Topologie zu gewinnen. Insbesondere hat man Homologie- etc. Homologie- gruppen und (orthogonale, unitäre, symplektische) K-Gruppen. Im Falle \( R = \mathbb{R} \) stimmen diese mit den klassischen Homologie- etc. - gruppen überein. Allgemein gilt für jede eine Art "Frankl-Prinzip": Ist \( R \) ein reell abgeschlossener Oberkörper von \( R \), so liefert jeder semialg. Raum \( M \) über \( R \) einen semialg. Raum \( M(R) \) über \( R \), der jede Rane habe dieselben Homologie- etc. - gruppen.

8. Febr 1975 – Neue Algebraische Modelle für Homotopie Typen

The University of Chicago

The problem at issue is that of finding algebraic objects which describe the homotopy-type of a topological space (The space $X$ and $Y$ have the same homotopy-type if there exist continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ with $gf$ and $fg$ homotopic to the identity).

Deshalb künst man homotopie gruppen zusammen. Für eine asphärische Raum $X$ (i.e., mit $\pi_1(X)=0$ für $i>1$) gilt die Fundamental gruppe $\pi_1(X)$ der Homotopie-Typ.

In allgemein, kann man Homotopie-Typ mit dem Poincaré-System beschreiben, von auf eine zu homotopien ist.

1950 hat Whitehead erwähnte homotopie-Typ von Räumen untersucht die nur zwei homotopie Gruppen $(\pi_0, \pi_1)$ haben. In diesem Fall ist der Typ gegeben direkt ein Verzweigte Modell bestimmt: Ein morphism $h: M \rightarrow N$ von Gruppen ist $N$ auf $M$ erklärt (mit $m \rightarrow m'$ in der Kategorie $K(n)=\pi(n)$ und $K(n')=\pi(n)$ in der Kategorie $K(m)=\pi(m)$.

Geht. Für ein CW-Complex $X$ bekommt man ein solches Modell:

$$\pi_2(X, X') \rightarrow \pi_1(X')$$

woher $X'$ die 1-Sphäre von $X$ ist.
Ein solches Verfahren ist leichter und genauer als die Gruppenobjekte \( G = M \times N \) in der Kategorie mit Gruppen oben näherung. Dabei ist \( N \) die Objekt-Gruppe, während die Morphismen Gruppe des "semi-categories" besteht \( G = M \times N \)

oder jeder Pfeil in der Kategorie \( N \to (m,n) \).

Nachdem J. L. Loday (J. Pure Appl. Alg. 24 (1972) 45-52) dieses Resultat weitergehend generalisiert hat, betrachtete Reiner X mit einer

nicht-festen Homotopie Gruppe \( \pi_1, \ldots, \pi_{n-1} \). Der Typ eines solchen Raums und die eine Gruppe in \( n \)-Cat beschreibt. Hier ist \( n \)-Cat

die Kategorie der \( n \)-fachen Kategorie \( C : C \) ist eine Mengen von "Pfeilen" die \( n \)-vercellen Würfe eine Kategorie bilden, wobei je zwei dieser Kategorien Strukturrelation mit gleichen Kommutativität

Zum Beispiel ist ein \( n \)-facher Kategorie \( C \) in Ausnahmen

\[ \square \]

die so wird vertikal zu komprimieren sind.

Auch Jörgen und Uwe können solche homotopie-typische Werte
deren von Eilenberg-MacLane angegeben. Sie betrachtete Reiner X mit

oder zwei Homotopie Gruppen \( T_1 \) und \( T_2 \). Der Typ eines solchen Raums

und dann ein symmetrischer Monoidale Kategorie gegeben mit einer

Ovalade \( A \to A_\star \) mit regulär isomorphen \( A \otimes A \cong I \cong A_\star \otimes A_\star \)

A. Goetheme, in einer lang (550 Seiten) Manuskript, hat

sehr allgemein interessierte interne, welche Kategorien für Homotopie Typen

dienen können, wenn man eine Kategorie von Ausdrücke (Category of

Freien) verwendet. Er hat einige allgemeine Behauptungen gefunden-

Beispiel, um welche Kategorien man die Simplices Mengen, die

Kubische Mengen und

Wieder viele Beschreibung und zu erwartet.

Laverne Mac Lane

8.3.85
March 15, 1985

"Menniche symbols" LVASERSTEIN

For any ring $A$, the group $K_A$ is filtered by the Whitehead determinants of invertible matrices of different sizes. We want to compute the corresponding graded group (especially the highest degree non-zero term) in terms of symbols, which generalize Menniche's symbols.

In particular we generalize the Bass-Milnor-Serre result which presents $SK_A$ for Dedekind ring $A$ via the Menniche symbol to an arbitrary commutative ring $A$ satisfying the Bass second stable range condition. As an application, $SK_n$ is computed for some rings of continuous functions.

Das reelle Spektrum eines Rings und semigr"o\-nische Gruppen.

ALBERTO Rosenberg

den 12.4.85

Sei $R$ ein Ring. Das reelle Spektrum, $r$Spec $R$, ist die Menge aller Paare $(\mathfrak{p}, \mathfrak{p}')$ von Primideal $\mathfrak{p}$ und $\mathfrak{p}'$ in einem quasiregelarem und $R$-einfachen Quotientenk"orper von $R/T$. Man f"uhrt eine Topologie auf $r$Spec $R$ ein. Dann man $D((x))$ als Subbasis f"ur die Topologie von $r$Spec $R$. Mit dieser Topologie ist $r$Spec $R$ quasis"auber "uber $\mathfrak{m}$ und der Unter Raum $\mathfrak{m}$-Spec $R$ der maximalen Paare ist sogar...
kompakt Hausdorff. Dabei ist maximal als im Sinne des Urbildes in $\mathbb{R}^n$ von $\psi$ zu verstehen. Dieser Begriff wurde von Marie Coxe, Ray und Michel Coxe ca. 1979 eingeführt. Sei jetzt $\psi$ eine ganze irreduzible Van-Kampen-Varietät über einem reell-absolventen Körper $\mathbb{R}$ und $A(\psi)$ der Menge der reellen Punkte von $\psi$ die wir jetzt stellvertretend für $\mathbb{R}$ einsetzen. Dazu definiert man $V(\psi)$ als die Mengen der reellen Punkte von $\psi$ die stetig sind gegen $\mathbb{R}$. Man kann also die euklidische Topologie von $V(\psi)$ durch das von algebraischer Objekt $A$-Spezieller Art erweitert sich. Als wichtiger Helfspittel um die geometrischen Eigenschaften von $V(\psi)$ zu ergründen.

Disproof of the Menten conjecture

Andrew Odlyzko, April 10, 1985

The Menten conjecture states that $|M(x)| < 5x$

for all $x > 1$, where

$M(x) = \sum_{n=1}^{x} \mu(n)$

and $\mu(n)$ is the Möbius function. This conjecture has attracted a substantial amount of interest in its almost 100 years of existence because its truth was known to imply the truth of the Riemann hypothesis. However, it was believed that the conjecture was disproven by the disproving conjecture by showing that

$$\limsup_{x \to \infty} \frac{M(x)}{5x} > 1.06.$$
Optimierungsmodelle für den Wettkampfsport
Norbert Behrke, Univ. Osnabrück, 26.4.85


Die K-Gruppen und den beschränkten h-begründeten Sätze. Erste Lysær Pedersen
Odense Universität (nur. Univ. Göteborg), 3-5-85

von $A$-Morphismen $\alpha^I_J : A(I) \to B(J)$
so dass es existiert $k = k(\phi)$ so dass $\alpha^I_J = 0$
Wenn $\| I - J \| > k$ ist. Komponenten von
$\phi$ und $\psi$ ist definiert als
$\phi \circ \psi (I, J) = \sum (K, J) \cdot \psi (I, K).
Diese Summe ist endlich wegen
der oberen Bedingung.

**Satz** Sei $\text{Or}$ die Kategorie von endlich erzeugten freien $R$-Moduln. Dann ist
$K_1 (E_{i+1} (\text{Or})) = K_1 (R).

Als Anwendung leitet man ab, dass die $K_i$-Gruppen hindernis-gruppen sind
für den $R^{\times^*}$-parametrisierten beschränkte
$\text{h}$-Kohomologie Satz, das heißt: Gegeben
ein $h$-Kohomologie $(W, d, W, d, W)$ und
eine eigenständige Abbildung $f : W \to R^{\times^*}$ so
dass die Inklusionen $\mathbb{Z}, (W) \to W$ definierte
Homologie Äquivalenz sind (wenn in $R^{\times^*}$
gemessen), dann hat $W$ ein beschränktes
Produkt Struktur, wenn ein Hindernis
in $K_1 (Z_{\mathbb{Z}}, W)$ verschwindet. Umsgeweht
setzt man, dass die fundamental Gruppe
in allgemein beschränkt darstellbar ist. Durch
ein bisher erstes Arbeiten führt man eine
Ausgabe von Quauer's dünne $h$-Kohomologie Satz.

Ernst Unger Poets
Orthogonal representations of Galois-groups
A. Frolich, 6 May 1985

One considers representations \( \Gamma \to O(b_\ell) \)
\( \Gamma \) a Galois-group over a field \( K \) of characteristic \( \neq 2 \),
\( O(b_\ell) \) the special orthogonal group of a quadratic form \( b_\ell \) over \( K \).
One associates with this a new quadratic form \( b_\ell^* \),
the Saliné dual of \( b_\ell \), but given by an explicit formula.
The trace form of a finite separable extension \( M/K \) is
such a \( b_\ell^* \). One then deduces relations between invariants
of \( b_\ell^* \) and invariants of \( \Gamma \) — in particular an
equation in \( Br_2^0(K) \) between the Hasse-Witt invariants
of \( b_\ell \) and of \( b_\ell^* \), the Serre-Witt class of \( X_k^* \)
defined purely algebraically — and a new Brauer class
coming from the same reason. This generalizes
Serre's formula for the Hasse-Witt of the
trace form, and also leads to general and
explicit embedding criteria for fields.

Numerical invariants of arithmetic varieties of O-rank 1
May 10, 1985

I tried to show how the cup contributions in \( S \)-genus
\( X_f(X) \) of the smooth compactification of the arithmetic quotient
\( \Gamma \backslash \mathbb{H} \) can be computed in certain cases by using the
R-R-H theorem and the theory of toric bundles.

I patted (the cat - Bob)
Functional Equations of Complex Power
May 14, 1986

The Riemann zeta-function, or Dedekind zeta-function, is holomorphic in \( \Re(s) > 1 \) and it has the following three properties:
1) meromorphic continuation to the whole \( s \)-plane,
2) functional equation, 3) Euler product.
The talk was concerned with their generalization.

More precisely if \( \mathcal{K} \) is a completion of a number field, \( \mathfrak{A} \) a nontrivial character of \( \mathcal{K} \), \( \psi \) a quasicharacter of \( \mathcal{K}^* \), in particular \( \psi(t) = 1/\mathcal{K} \) and \( \psi(\mathfrak{A}) \) is the unique measure on \( \mathcal{K}^* \) relative to \( \psi(1/\mathcal{K}) \), then for any \( \mathfrak{A} \) on \( \mathcal{K} \), \( \mathfrak{A}_1, \ldots, \mathfrak{A}_n \) of degree \( d \geq 1 \) a tempered distribution \( \psi(\mathfrak{A}_2)(\mathfrak{A}_1) \) in \( \mathcal{K}^* \) is defined first for \( \sigma(\psi) > \frac{d}{2} \).

\[
(\varphi_{\mathfrak{A}_2})(s) = \int (\varphi_{\mathfrak{A}_1}(\mathfrak{A}) \varphi_{\mathfrak{A}_2}(\mathfrak{A})) \ d\mathfrak{A}, \quad \sigma(\mathfrak{A}) > \frac{d}{2}
\]

and then by meromorphic continuation to \( \mathcal{K}^* \).

Thus exists a connected reductive \( \mathcal{K} \)-subgroup \( G \) of \( GL(X) \) such that \( G \) is transitive on \( \mathfrak{A}_1, \ldots, \mathfrak{A}_n \), finite \( t = X - 1/\mathcal{K} \), then a functional equation of the form

\[
(\varphi_{\mathfrak{A}_2})(\mathfrak{A}) = \rho(\mathfrak{A}, \psi, \varphi_{\mathfrak{A}_2})(\mathfrak{A})
\]

exists with some meromorphic function \( \psi(\mathfrak{A}, \psi, \varphi_{\mathfrak{A}_2}) \) of \( \mathcal{K}^* \). The main part of the talk was an explicit determination of \( \psi(\mathfrak{A}, \psi, \varphi_{\mathfrak{A}_2}) \). As its application generalization of \( \sigma(\psi) = 0 \), for a special zero function was mentioned.

Launedda, Sizina in Belthione

(林內達, 石洗)
Orthomodulare Verbände

G. Broun, Hamilton, Ont. & R. Münchau


Nach einem Satz von R. Broom über Polynomideale in endlichen projektiven Ebenen sind die einzigen endlichen, nicht direkten irreduziblen modularen Orthoverbände der Verbande Hm (n≥2), ziehe Bild, von R. Michael Boyd der letzte Satz. Jede Varietät (gleichungsdafinierter Klassen) von modularen Orthoverbänden der abgeschlossenen Unterräume ist (Hm), wenn die triviale Varietät vermehrt ist ([S] Verschieden in 5 ergibt) in Hm 0a.

Der Bereich beinhaltet den Fundament des Einbettungssatzes, der symmetrisierbar modularer Verbande zu projektiven Geometrien, so dass der D. Jonasson, Koordinatentransformationssatz für symmetrisierbar, modularen Verbande durch reguläre Ringe.

Singularities of finite Cohen-Macaulay type.

Ideas: Reiten, Trondheim

Ortho-Macaulay

Let R be a complete integrally closed local domain with maximal ideal m such that C = R/m⊂R, with Krull-dim R = 2. We consider the question of finite Cohen-Macaulay type, that is, has only a finite number of indecomposable Cohen-Macaulay modules.

If dim R = 2, it is known that the case exactly when R = C[[X, Y]]G, where G⊂GL(2, C) is a finite group. If dim R ≥ 2, a complete description is known for the hypersurfaces. Here the answer is in terms of simple hypersurface singularities (Knörrer; Buchweitz, Greuel, Schreyer).

In joint work with Auslander we have proved that we have finite Cohen-Macaulay type for quotient singularities and for scrolls. The only ones are C[[X, Y, Z]]^G_{X2},
where if \( E = \{0\} \), \( o \) sends \( X \) to \( X, Y \) to \( Y, Z \) to \( Z \), and the scroll whose relations is given by the matrix \((X_0, X_2, Y_0)\). We illustrate how almost split sequences can be used to prove that these two rings are of finite Cohen-Macaulay type.

\((34, 5, 85)\)

### Holomorphe Blätterungen

Hans-Jörg Petersen, Osnabrück, 7.6.85

Sei \( X \) ein reduziertes komplexes Raum. Eine Blätterung auf \( X \) ist ein Paar \((A, \beta)\), wobei \( A \) eine umgekehrte analytische Menge in \( X \) mit \( A \cap X_0 \) (Singularitätenmenge) und \( X \) eine holomorphe holomorphe Blätterung auf \( X \setminus A \) ist. Sei \( \beta \) eine Blätterung \( \beta \) nicht holomorph, wenn die zugehörige Gebilde \( Z = \beta \) nicht holomorph ist (\( \Leftarrow \) die zugehörige Kegel \( K = S(\beta) \) analytisch \( \Rightarrow \) \( K_\beta \) nicht holomorph ist). Die Umkehrung gilt für normale Räume. Über den Kegelbegriff soll eine Bedingung der Blätterungsoperation von Holmann hergeleitet. Mit Hilfe von Sätzen von Malgrange und der Charakterisierung der lokal-einfachen holomorphen Abbildungen durch Reduziertheit bleibt man in Kritik für Holmann-Blätterungen. Folgender Koll. Korollar wird abgegeben: \( \forall X \) eine gelegte Mannigfaltigkeit und \( \beta \) eine 1-codimensionale Blätterung mit codim \( S(\beta) \geq 3 \), so definiert \( \beta \) eine Holmamn-Blätterung.
Poincaré-summationsformeln und das Salz von Bohr - Hecke

Bernd Dreesen, Siegen, 14. 6. 85

Die bekannte Poincaré-Summationsformel in $\mathbb{R}^n$ ist von grundlegender Bedeutung für die Theorie der Fermi - Reihen und die Theorie der Fermi - Koeffizienten. Solche Werte, die einzigartige Poincaré-Anwendungen erlauben sind:

Fundamentalsätze in der Zeta - Funktion; Einer Mac Laurinische Sums-summationsformel das Weylsche Problem der Asymptote des Eigenwerts des Laplace - Operators und das Salz von Heckebaum. S. Bohr benennt sie als Dualitätsformel von fundamentaler Bedeutung in der Analysis. Das Salz von Bohr und Hecke besagt, daß bei Fermi - Koeffizienten $f$ eine Fundamentalsatz der Typos $f = g$ existieren und $H$ homogenes harmonisches Polynom von Grade $g$, Produkt einer Hamilton - Koeffizienten mit $H$ st. Ist $H$ zusätzlich unter einer Cosetens - Gruppe in $O(\mathbb{R}^n)$ symmetrisch, so erhält man mit der Poincaré-Summationsformel eine Poincaré-Summationsformel für die Schrödingerwelle $\psi(k) = \sum_{\mathbf{n} \in \mathbb{Z}^n} e^{i \mathbf{k} \cdot \mathbf{n}} \psi(\mathbf{n})$

$\mathbf{k} \in \mathbb{Z}^n = \Lambda$. Für die Fermi - Reihenzentrale Funktion (von der Gruppe $SU(2)$) erhält man eine Poincaré-Summationsformel, wenn man die einzelnen Funktionen $f_i$ seiner Art betrachtet. Auf beliebigen kompakten halborganischen Lie - Gruppen $G$ gelingt dies mit Hilfe der Weylschen Charakterformeln. Als Anwendung ergibt sich unter anderem: Eine Jacobi - Identität für die Theta - Funktionen auf $G$, die Formel

$\psi(0) \in (\mathbb{Z}^n)^* \text{ und } \psi(0) \in (\mathbb{Z}^n)^* \text{ vol } \pi^{|G|/2} \text{ mit } B(0, 12)$, ein Resultat

$\psi(0)$.
von Calam über die Asymptotik der Eigenwerte des Laplace-Operators $\Delta G$ auf $G$ und die Asymptotik der Lebegue-Konstanten zu einer speziellen Aufgabenstellung.

\[ \text{p. Dresel} \]

---

**Monoide mit Divisorenkeime**

Ulrich Krause, Bremen, 27. 6. 85

Sei $S$ ein Monoid (kommu. Halbgr., mit $e$, Kürzungseig.; add. Struktur)

Sei $D$ faktorielles Monoid, $D = \mathbb{N}^{(T)}$; $N = \{0, 1, \ldots, n\}$.

$q: S \rightarrow D$ heißt Divisionstheorie für $S$, wenn gilt:

$q$ ist eine Halbgruppenkeime; $x \leq y \iff q(x) \leq q(y)$ (dabei $x \leq y \iff y-x \in S$);

die Funktion aus $D$ ist punktweise Minimal von Funktionen aus $q(S)$.

(Nach Borelitz / Šafarčík, Skula). Mit Hilfe von Primkegeln

werden diejenigen Monoide charakterisiert, die eine Divisionstheorie

besitzen. Ein Teilmenge $PCG: S - S$ heißt Primkegel, wenn:

$0 \in P \neq G; P + P \subset P; G = P \cup -P; nx + y \in P \forall x \in G; y \in P, \text{ alle in }$impliziert, daß $x \in P$ (Pganze abgekürzt); $P = S - S \cap (Pn - P)$.

Beispiele: 1) Die Primkegel der multiplikativen Halbgruppe eines Dedekindringes entsprechen dazu eine Lokalisation eindeutig dem Primideal des Ringes. 2) In einem beliebigen Inkegelkern sind die durch $x$-geräte Primkegel der multiplikativen Halbgruppe genau die für den

Ring essentiellen Basenkeime von Rang 1 im Quotientenkörper des Ringes. 
Es wird gezeigt: Ein Monoid $S$ besitzt genau dann eine Divisionstheorie,

wenn $S$ Durchschreit mit Punkthalbecharakter alle Abblatt von $S$ gelegen
diskreten Primkegeln ist (dabei $P$ diskret, $x + P = P \neq x \in P$).

Es wird weiter gezeigt, daß ein Inkegelkern genau dann ein Kollaging

ist, wenn eine multiplikative Halbgruppe in der eleve Weise Durchschneidt
der diskreten Primkegel ist. Diese Aussage leitet eine wie multiplikati-

vative Beschreibung von Kollagingen. Zusammen mit der voran-

gehende Aussage ergibt sich eine wie multiplikative Konstruktion
der Divisionskreis von Krullringen wurde von Prüfer.

Weiterhin werde in Verallgemeinerung einer Divisionskreise
Einschachtungen eine Monoids $S$ in den additive Monoid aller
endlich negativen stetigen Funktionen mit komplexen Werten auf
einen lokalkompakten Raum $T$ untersucht. Hat $S$ eine Ordungseinheit,
so besitzt $S$ genau dann eine Einschachtung mit komplexen
$T$ wenn $S$ ganz abgeschlossen in $G$ ist. $T$ kann minimal gewählt
werden. Ist $G$ speziell die additive Gruppe eines Rings mit 1
(nicht notwendig kommutativ oder assoziativ) dann £$S : s = 1$
und 1 Ordungseinheit für $S$ ist, so liefert die Einschachtung der Satz von
Kohlenhier.

Ursula Krause

Die Geometrie der Hecke - Charaktere

NORBERT SCHAPPACHER.

5. 7. 1985

Nur die algebraischen Hecke Charaktere haben [bisher ?? ?? ?] eine geometrische Interpretation, d.h. die Charaktere $X$
ofh eines Zahlkörpers $K$ mit Werten in einem anderen
Zahlkörper $E$, $X : \text{Im} \rightarrow E^*$, wo $\text{Im}$ die Gruppe
der zu einem gegebenen ganzen Ideal in gewissen Idealen von
$K$ ist, mit $X((x)) = \Pi_{x \in \text{Im}} (x^\alpha)^{r_x}$ für alle $x = 1$ mod $\ell$
in $K^*$, mit gewissen $\alpha \in E$.

Die geometrische Standardinterpretation orientiert sich am
Beispiel der abelschen Varietäten über $K$ mit komplexer
Multiplikation durch $E$. Um alle Hecke Charaktere
von $K$ ein geometrisches Objekt zugewiesen, baut man
aus solchen $\ell$ abelschen Varietäten Notizen auf. Deren
Interpretation werde als Darstellungen der Taniyama-
gruppe werde erläutert. — Vgl. Springer fett. Notes 500
[Deligne, Milne, Ogus, Shih], chap. IV, und das ge-
plante Buch von Milne.

Ein Hecke (im obigen Sinn) ist durch seinen Hecke-
charakter bis auf Homomorphie eindeutig bestimmt. De
Coloring Problems for Hypergraphs

Claude Berge

23.10.85

Given a hypergraph \( H = (E_1, E_2, \ldots, E_n) \) (with each \( E_i \) a finite subset called an "edge"), the chromatic index \( \chi(H) \) is the least number of colors needed to color the edges so that no two intersecting edges have the same color. We study some classes of hypergraphs \( H \) for which \( \chi(H) = \Delta(H) \), where \( \Delta(H) = \max \{ \text{deg}(e) \mid e \in E \} \) is the maximum degree of \( H \).

Example: The complete balanced hypergraph \( K_{r,k} \) on \( r \) vertices, by the Baranyai's Theorem. Other examples: the balanced complete hypergraph \( K_n, n \rightarrow \infty \).

We state the following conjecture: Let \( \tilde{H} = (E, E \neq \emptyset, FCE \text{ for some } F \in H) \) be the hereditary class of \( H \), then conjecture: If \( H \) is a linear hypergraph (that is, two edges of \( H \) intersect in at most one point), then \( \chi(\tilde{H}) = \Delta(\tilde{H}) \). ? ? ? ? ? ? ?

Such a statement would generalize the Vizing's Theorem for graphs.

Claude Berge

(Paris)

Invarianter Abfluss: 4 - Mannigfaltigkeiten

A. Van de Ven

Es sei \( X \) die komplexe projektive Ebene, aufgeblasen in den neuen Basispunkten eines allgemeinen Büschels elliptischer Kurven. Dann ist \( X \) ein elliptischer
Faserraum über \( P \). Es entsteht \( X_{p,q} \) aus \( X \) indem man zwei logaritmische Transformationen anwendet entlang gleicher Fasern von \( X \), mit Multiplikität \( p \) bzw. \( q \). Falls \( p \) und \( q \) teilerfremd sind, so ist \( X_{p,q} \) homöomorph zu \( X \). Es war bis jetzt unbekannt ob \( X_{p,q} \) auch diffeomorph mit \( X \) ist. Mit einer neuen Methode hat S. Donaldson neuendriu bewiesen dass \( X_{2,3} \) nicht diffeomorph zu \( X \) ist. Donaldson konstruiert eine Invariante, die eine Abbildung \( \varphi \) von \( P \setminus \{ -\} \)-Wände in \( H^2(V,\mathbb{Z}) \) ist. Hier ist \( V \) eine kompakte, orientierte 4-dimensionale differenzierbare Mannigfaltigkeit mit \( T^1(V) = 0 \) und Cappform \( (1, - , - , - , ... ) \) über \( \mathbb{R} \), während \( \varphi \) \( H^2(X, \mathbb{R}) \) der positive Kegel ist. Falls \( V \) projektiv ist läßt sich für example \( 0 \in P \setminus \{ -\} \)-Wände \( \varphi(0) \) mit Hilfe der Theorie der algebraischen Vektorbündel berechnen.

Eine Erweiterung der Donaldson Methode liefert (Friedman-Norgan, Okottuk-VandeleVen): \( X_{p,q} \) differ \( X_{p,p} \cong S^2 \). Auf \( X \), aufgefasst als topologische Mannigfaltigkeit, gibt es also unendlich viele diffeomorph äqu. Strukturen.

A Van de Ven
(Leiden)
The classical diophantine inequality $(x, y)$ rational

\[
\left| x - \frac{m_n}{q_n} \right| < \frac{1}{2q_n^2}, \quad (p_n, q_n) = 1, \quad q_n > 0
\]

where $p_n, q_n \in \mathbb{Z}$ is generalized to the Hecke groups $G = G(\lambda, \gamma) = \langle (1, \lambda), (\gamma, -1) \rangle$, $\lambda = 2 \cos \frac{x}{2}, \quad q = 3, 4, 5, \ldots$.

Call $x$ $G$-rational if $x = \sqrt{\gamma}$ for some $\gamma \in G$, otherwise $G$-irrational. Then for each $G$ there is an $h_2 > 0$ such that

\[
| x - g_n(x) | < h_2^{-1} q_n^{-2}, \quad n = 1, 2, \ldots \quad x = G \text{-rational}
\]

where

\[
g_n = (a_n b_n) \in G
\]

and $h_2$ is best possible. For $q = 3$, $\lambda = 1$, and $G = SL(2, \mathbb{Z})$, the modular group. Here $h_2 = \sqrt{15}$ as noted in (1). It is proved in (2).

(3) $h_2 = 2$, $q$ even, $\geq 4$

and an upper bound for $h_2$ is obtained when $q$ is odd. Recently, A. Haas/ C. Series have obtained the exact value of $h_2$ for $q$ odd;

\[
h_2^2 = 2 \left[ 1 + \left( -\frac{1}{2} \right)^2 \right]^{\frac{x}{2}}, \quad x = \lambda \frac{q}{2}, \quad q \geq 3
\]

This paper has not yet appeared.


- J. Lehner

(Princeton)
Automorphic Forms and Exponential Sums for $GL(n, \mathbb{R})$

Solomon Friedberg (Harvard, I.H.E.S., U.C. Santa Cruz)

15 November 1985

Let $\Gamma$ be a congruence subgroup of $SL(2, \mathbb{Z})$, $H = \{x \in \mathbb{R}^2 | \det x = 1\}$. The special expansion of a function in $L^2(\Gamma\backslash H)$ involves both discrete and continuous spectrum, and is especially interesting (following Ramanujan-Peters and Selberg) in the discrete spectrum.

In this talk, I describe work in progress on generalizing this to $GL(n)$. For $n=3$ this is joint with D. Bump and J. Cogdell. One forms a $GL(n)$ upper half space $H = GL(n, \mathbb{R})/\mathbb{R}^\times$ on which is a congruence subgroup $\Gamma(n, 2)$, one can again study $L^2(\Gamma\backslash H)$; the discrete spectrum consists of automorphic functions $\phi: H \to \mathbb{C}$ s.t. $\phi|_\Gamma \phi \in L^2(\Gamma\backslash H)$ satisfying certain differential equations (corresponding to the center of the universal enveloping algebra of $gl(n, \mathbb{R})$). I introduce a $GL(n)$ Poincaré series $P_{m, m-1, \ldots, m-1} (\tau, s_1, \ldots, s_m)$. For example, for $n=3$, $H = \{(y_1, y_2, y_3) \in \mathbb{R}^3 \mid y_1 y_2 y_3 = 1\}$ and $P_{m, m-1, \ldots, m-1} (\tau, s_1, \ldots, s_m) = \sum_{y_1, y_2, y_3} e^{2\pi i (\langle m, y_1 \rangle + \langle m-1, y_2 \rangle + \ldots + \langle m-1, y_3 \rangle)}$. The discrete expansion involves certain new exponential sums, which are $GL(n)$ analogues of the classical Kloosterman sum; in fact there is one sum for each element of the Weyl group $W$ of $GL(n)$. Conjecture: sums $S_{n, -s} = \sum_{y_1, y_2, y_3} e^{2\pi i (\langle m, y_1 \rangle + \langle m-1, y_2 \rangle + \ldots + \langle m-1, y_3 \rangle)}$.

These sums are estimated by Deligne and so one might hope to apply Selberg's method. However, the spectral expansion of $P$, relating its polar divisor to the discrete spectrum, has been computed only for $n=3$ at present [the obstacle for $n>3$ is too much on the formula for certain transforms of Jacobi's Whittaker function]. We conjecture:

Conjecture: The sum $S_{n, -s} = \sum_{y_1, y_2, y_3} e^{2\pi i (\langle m, y_1 \rangle + \langle m-1, y_2 \rangle + \ldots + \langle m-1, y_3 \rangle)}$ has poles corresponding to $\nu\omega$ in the critical region $s=\frac{1}{2} + it$.

Then, for $n=3$, if the conjecture holds, then so do the $GL(2)$ and $GL(3)$ Ramanujan-Peters-Selberg conjectures.

Paris
Uniform distribution, numerical integration, ergodic theory

Vera T. Fö, ELTE Univ. BUDAPEST 21.11.85

Let $E = [0, 1]^d$, $I(x) = x [0,1)^d$, $|I|$ be the Lebesgue

measure. The characteristic function of $I$, for a sequence $U = (u_n)

in $E$, the discrepancy (in sup norm) is defined as

$$
\Delta_n^U(I) = \sum_{k=1}^n \mathbb{1}_I(u_k) - N |I|,
\Delta_n^U = 1/\Delta_n^U, \Delta_n^U = \sup I/\Delta_n^U(I).
$$

The sequence $(u_n)$ is uniformly distributed in $E$ if $\Delta_n^U = 0$.

According to classical results of Weyl, Erdős, Kac, Roth, Schauder, we know, that no sequence can be "too good" if $\Delta_n^U$ cannot converge to 0 "too rapidly". The theory of

uniformly distributed sequences is strongly related to the theory of

distributive approximation. The relation to ergodic theory is shown

e.g. $Th.$: Hecke (Orthogonality $\Leftrightarrow$), Weyl $\Rightarrow$: $\forall x \in \mathbb{R}, a_n \rightarrow \mathbb{1}_x \Leftrightarrow \Delta_n^U \rightarrow 0$.

Suppose $\Delta_n^U(I) < \infty \Rightarrow I = \{k \in \mathbb{Z} / k \Leftrightarrow \text{generalization}

for e.g. transform: $Th.$: (Furstenberg - Keynes, Shapira, Helman, etc.)

$\sum_{k=1}^N \mathbb{1}_I(T^k x) - N \mu(A) < \infty \Rightarrow e^{2 \pi i \mu(A)}$ is

an eigenvalue of $T$. Results for one-sided inequality.

$\exists x \in \{0, 1\}$ such different phenomena. It is not clear whether

the strong ina. pla. for $\{x \in \mathbb{Z} / k \Leftrightarrow \text{generalization}

for arbitrary sequences (Helman, Tijdeman-Wagener) have some

analogues for ergodic transformations. Using Denjoy’s

Theorem for hom. $T: \mathbb{R}/2 \rightarrow \mathbb{R}/2$, many of the results for

transform live as consequences for the orbit $(T^x)$.

The fact, that $(u_n)$ is u.d. iff for every Riemann-integrable

$\lim N \sum f(u_n) \rightarrow \int f(x) dx$, and the Koksma-

inequality for $k = 1$, and generalization) $\int f(x) dx \leq \frac{1}{N} \sum f(u_n) < \frac{\|f\|_1}{\Delta_n^U}$

shows the importance of u.d.s. in numerical integration. Using

"very good" u.d.s., deterministic sequences instead of randomly

generated ones (Monte Carlo) in some cases is better.

V. T. Fö
Groups of Arithmetic Type
Ken Brown, Cornell

November 22, 1985

I will describe some new examples of groups which
seem intuitively to be of "arithmetic type", but which also
have some very surprising properties for groups of this type.
Some of them, for instance, are simple groups.

Let $F$ be the group of PL homeomorphisms of the
unit interval with singularities in $2[\frac{1}{2}]$ and slopes in $[2^n]$, $n\geq 0$.
$F$ can also be described as the group of PL homeomorphisms
which are linear with respect to subdivisions defined by
halving. As such, elements of $F$ can be described by
tree pictures, such as $\lambda \rightarrow \lambda$. Let $T(\emptyset)$ (resp. $G$)
by the similarly defined group of homeomorphisms of the circle
(resp. Cantor set). We have $F < T < G$. These groups
were first introduced by R. Thompson, who proved them to
be finitely presented and who proved that $T$ and $G$ were
simple. Replacing $2$ by $n$ and the unit interval by $[0, 1]$, we get
generalizations $F_n < T_n < G_n$. All of them
seem to be "arithmetically defined homeomorphism groups".

This motivates:

Thus, all of these groups admit $K(\pi, 1)$-complete with
finite skeletons.

[For $F$ and $T$ this was proved earlier in joint work
with Ross Geoghegan via an "accidental" isomorphism
of $F$ with a group that had arisen in homology theory.]

The proof is based on the construction of a poset
on which the groups in question act. One arrives at
the poset by properly understanding the groups as
automorphism groups of a space with an "arithmetic PL
structure". Alternatively, one identifies the groups (following
Thompson, Calvin, Higman) with automorphism groups of
certain free algebras in the sense of universal algebra. The
bases of this algebra turn out to have a natural poset structure.
Goodwillie's Derivative of Functors and
Waldhausen's Algebraic K-theory of Spaces.

Let M be a $C^\infty$-manifold and $P(M) = \{ f : M \times I \to \}$ diffeomorphisms such that $f(M \times 0) = \text{id}$. Under the $C^\infty$-topology, then consider $\Omega P(M) = \text{ker} \ P(M \times I)$ under the stabilization $f \mapsto \text{id}$. The $\Omega^2$ homotopy structure of this space is very important to topologists. It was first studied by Cob and then Hatcher-Wagoner for $\Omega P(M)$. About ten years ago, Waldhausen took a quantum jump. He introduced a space $A(X)$ as follows. Let $G = \Sigma X$ be the loop group of $X$ ($G = \Sigma X$ of the same homotopy type). Consider $R = S^2 S^5 (G)$ and the pullback

$$GL(R) \to M(R)$$

$$\downarrow \pi_0 \downarrow \pi_0$$

$$GL(Z[\pi_0]) \to M(Z[\pi_0])$$

Then define $A(X) = BGL^+(R)$ the Quillen's $\Sigma^+$ construction. He then proved that $A(X) = S^2 S^5 (X^\ast) \times B\Omega P(X)$ where $B\Omega P(X)$ is the double delooping of $P(X)$. So $A(X)$ essentially computes $P(X)$. Using the rational computation of Staffeldt and myself, it was observed by Goodwillie and Burghelea that $A(X)$ and $\Sigma B\Omega \Sigma(S^1 X)^\ast$ are rationally equivalent for $X$ 1-connected. So, it is natural to ask whether $A(X)$ and $\Sigma B\Omega \Sigma(S^1 X)^\ast$ are equivalent as $C^\infty$-loop spaces.


If $X = \Sigma X$ a suspension space for $Y$ connected, then $\hat{A}(X) \cong B(X)$. But if $X = CP^2$, then $\hat{A}(X) \not\cong B(X)$.

So, the problem still remains.

(29.11.85)
Differentia-Geometrical Aspects of Information Theory

December 6, 1985, Univ. of Tokyo
Shun'ichi Amari

Information elements are often represented by random variables or probability laws governing them. Let \( S \) be a set of such elements. It often forms a differentiable manifold having interesting geometric structure. More specifically, let \( S = \{ p(x, \theta) \} \) be a parameterized family of probability distribution (density functions) smoothly parametrized by \( \theta = (\theta^1, \ldots, \theta^n) \in \mathbb{R}^n \). Then, we can naturally introduce a Riemannian metric \( g \) and a one-parameter family of affine connections \( \Gamma \) or \( \Gamma^\alpha \) parametrized by a scalar \( \alpha \). The \( \pm \alpha \) connections are dually coupled in the sense that, for \( \alpha \)-parallel displacements \( \Pi^\alpha \) (depending on the path)

\[
\langle A, B \rangle = \langle \Pi^\alpha A, \Pi^{-\alpha} B \rangle
\]

where \( \langle , \rangle \) is the inner products of tangent vectors. When the manifold is \( \pm \alpha \)-flat, we have a very interesting manifold such that:

i) there exists \( \alpha \)-affine coordinates \( \theta \) and \( -\alpha \)-affine coordinate \( \eta \) such that they are dually coupled

\[
\langle \theta_i, \theta^j \rangle = \delta^i_j, \quad \theta_i = \frac{\partial}{\partial \theta^i}, \quad \eta^j = \frac{\partial}{\partial \eta^j}
\]

ii) there exists potential functions \( \Phi(B) \) and \( \Psi(\eta) \) such that

\[
\langle \theta_i, \theta^j \rangle = \frac{\partial^2}{\partial \theta^i \partial \theta^j} \Phi(B), \quad \langle \eta^i, \eta^j \rangle = \frac{\partial^2}{\partial \eta^i \partial \eta^j} \Psi(\eta)
\]

iii) a divergence function is defined between two points \( P, P' \)

\[
D(P, P') = \Phi(B) + \Psi(\eta') - \Phi(B) - \Psi(\eta)
\]

iv) Pythagorean theorem holds for \( D(P, P') \), when 3 points \( P, P_2, P_3 \) satisfy \( P_1 P_2 \) (\( \alpha \)-geodesic) and \( P_2 P_3 \) (\( -\alpha \)-geodesic) are orthogonal at \( P_2 \).

Let \( x, y, z \) be a joint information source \( x \in \{ 1, \ldots, m \} \), \( y \in \{ 1, \ldots, n \} \) with discrete probabilities \( P_{ij} = \text{Prob} \{ x = i, \ y = j \} \). The manifold of all such distributions \( S = \{ P_{ij} \} \) is \( \mathbb{R}^{mn} \).
is 1-flat. We can decompose $S$ into dual geometric foliations
in which each foliation is 1-flat and its co-foliation is $-1$-flat.
This gives us a geometrical structure of mutual correlations of
$x$ and $y$. If we are forced to treat $x$ and $y$ separately
as is in the situation of the multi-territorial information theory,
its observable quantities are limited in some lower-dimensional submanifolds.
This shows how multi-territorial information theory is related to
differential-geometrical structures.

Kohomologie arithmetischer Gruppen 20. Dez. 1985

G. Hark

In diesem Vortrag wurde über die arithmetische
Bedeutung der Kohomologie arithmetischer Gruppen
gesprochen. Dabei wurde zunächst die Vermutung der
enthalten, daß man in den Eigenklassen der Kohomo-
logie $\tau$ Motive finden kann, die l-adische Dar-
stellungen von sich aus den Eigenvektoren bestimmen
lassen. Deligne's Satz, daß die für klassischen
elliptischen Modulformen nicht gilt, wurde erläutert
und es wurde ein Beispiel der $\Delta$-Funktion
der Satz von Ribet besprochen. Diese Satz besagt
in diesem Spezialfall, daß der Körper $\mathbb{Q}(\zeta_{p^\infty})$
eine unverzweigte Erweiterung vom Grad 681 besitzt.
Dies folgt daraus, daß die Eigenvektoren konjugiert
in $\Delta$ und 681 1, 2, 3 ist des ist das klassische Resultat
von Ramond - und die Konjugierte erhält
eine Reduktion der 2-dimensionale Größenbestehung
ein Dreiecksgehalt.

S. Hark