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The controversy

Thomas Edison is regarded by many as the greatest inventor in American
history. While most people know that he invented the first long-burning incan-
descent light bulb and the phonograph, the claim is based more generally on
the 1093 patents he was granted. The assumption is that the person receiving
a patent is legally certified as the inventor of the device which is the subject of
the patent.
The invention of the stored program computer during and in the period

immediately following World War II vastly expanded the range of practical
mathematical problems which could be solved numerically. A particular form
of problem which received great interest is the linear programming problem,
which allocates resources optimally subject to constraints. George Dantzig’s
development of the simplex method [5], provided the computational tool still
prominent in the field today for the solution of these problems. Continuous
development of variants of the simplex method has led to contemporary codes
that are quite efficient for many very large problems. However, as the simplex
method proceeds from one vertex of the feasible region defined by the con-
straints to a neighboring vertex, the combinatorial analysis indicates it can be
quite inefficient for some problems. In [14], Klee and Minty showed that, in the
worst case, the method has exponential complexity in the size of the problem.
The question that then presented itself is whether there is another algorithm

for linear programming which has polynomial complexity. This question was
first answered positively in 1979 by Khachian [13], who adapted the ellipsoid
method of Shor [18] and showed that the complexity of the resulting algorithm
was polynomial of order

(

mn3 + n4
)

L, where n represents the number of rows
in A, m the number of columns, and L the length of the data. This result was
an extremely important theoretical advance. It also created intense interest
as a possible computational technique, including a wildly misinformed article
in the New York Times claiming it solved the traveling salesman problem.
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However, despite numerous attempts by many in the broad math programming
community to implement a viable algorithm, it quickly became apparent that
it was an extremely inefficient algorithm for computational work.

One interpretation of the simplex method is to consider what is purported
to be the Norbert Wiener method of negotiating the halls of the massive main
building at MIT. Not wishing to be distracted from thinking by watching where
he was going, he simply dragged his hand along the wall, never removing it until
he reached his destination. This algorithm clearly would eventually get him to
where he was going, provided he began on the correct floor (an initial feasible
point). I am not sure how he decided he had arrived, but in general this is akin
to the simplex algorithm. A better method is to pay attention to where you
are and take the best route. Interior-point algorithms attempt to emulate this
strategy.
In a 1984 paper, Karmarkar [11] considered the linear programming problem

in the form

minimize cTx

subject to Ax = 0,

eTx = 1,

x ≥ 0.

He began with an initial point x0 that satisfied the constraints and used the
projective transformation

T (x) =
X−1

0
x

eTX−1

0
x

where X0 is the diagonal matrix xjj = x0

j . The current point x0 is transformed

to the point 1

n
e, which is the central point of the constraints eTx = 1, x0 ≥ 0.

Then, any vector in the null space of the matrix

[

AX0

eT

]

in particular

δ = −γ
[

I −BT (BBT )
−1

B
]

X0c,

can be used to reduce the objective function while remaining in the interior of
the feasible region. Here, γ is a step length parameter to keep the step in the
interior of the feasible region, which is accomplished by letting

ξ =
1

n
e+ δ

and the new estimate to the solution is

x1 =
X0ξ

eTX0ξ
.
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Karmarkar demonstrated the complexity of this method is of order (mn2+n3)L,
but the proof required that cTx∗ = 0, where x∗ denotes the optimal solution.
Todd and Burrell [19] dealt with this restriction by noting that if v∗ is the
optimal value of the objective function then

cTx = (c− v∗e)
T
x

is 0 at the optimal point. They then use duality theory to obtain a convergent
sequence of estimates to v∗. Note that doing so adds a parameter to the
sequence of estimates that will emerge in a different context shortly.

The originality of the use of projective transformations and the much stronger
complexity results justifiably created a great deal of interest in the method.
This interest, however, was mild compared to the interest created by a sequence
of claims by Karmarkar and supported by Bell Labs, Karmarkar’s employer,
that an algorithm implementing the method was vastly superior to the simplex
method.
A simpler transformation of the current point into the interior of the feasible

region is the basis of the affine scaling method where instead of a projective
transformation, the simple linear transformation was proposed by Barnes [2]
and Vanderbei et al. [20]. Here, the standard form of the linear programming
problem defined by

minimize cTx

subject to Ax = b,

x ≥ 0

is used and the transformation becomes

ξ = X−1

0
x.

Here, the sequence of iterates is defined by

x1 = x0 + γ∆x,

where again γ is chosen to assure that the iterates do not touch the boundary
of the feasible region and

∆x =
[

D −DAT (ADAT )
−1

AD
]

c,

where
D = X2

0
.

It was later discovered that this work was originally published in 1967 by Dikin
[6] who in 1974 proved convergence of the method [7]. No strong complexity
bound equivalent to Karmarkar’s is known for this algorithm.

Both of the above algorithms create room to move entirely in the interior
of the feasible region by transforming the space. A more general method for
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Figure 1: Anthony V. Fiacco (left) and Garth McCormick in 1967 in Fiacco’s
office at Research Analysis Corporation (RAC) in McLean, VA (Photo printed
with the permission of John McCormick).

remaining in the interior was studied prior to either of these methods. An alter-
native method for remaining interior to the feasible region is to add a compo-
nent to the objective function which penalizes close approaches to the bound-
ary. This method was first suggested in 1955 in an unpublished manuscript by
Frisch [9] and developed in both theoretical and computational detail by Fi-
acco and McCormick [8] in 1968. Applied to the linear programming problem
in standard form, the problem is transformed to

minimize cTx− µ

n
∑

i=1

?ln(xi ),

subject to Ax = b.

Here, the method is akin to the invisible fence that is used to keep dogs in
an unfenced yard. The closer the dog gets to the boundary, the more he feels
shock. Here the amount of shock is determined by the parameter µ, and as µ
tends to 0, the boundary, in this case where the solution lies, is approached.

The above reformulation is a nonlinear programming problem, and the first-
order conditions may be derived by forming the Lagrangian and differentiating.
The resulting step directions are

∆x = −
1

µ0

X0PX0c+X0Pe,
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Figure 2: Garth McCormick at the desk in his office (Photo printed with the
permission of John McCormick).

where

P =
[

I −X0A
T (AX2

0
AT )

−1

AX0

]

,

and as before

x1 = x0 + γ∆x.

Fiacco and McCormick actually developed this method for the much harder
general nonlinear programming problem. They showed that for a sequence
of µ’s which decreases monotonically to 0, the sequence of solutions for each
value of µ converges to the solution of the problem. Their book noted that it
applied as well to the linear programming problem, but did not further study
this particular line of development as at the time they developed this work they
felt the algorithm would not be competitive with the simplex method.

In 1985 at the Boston ISMP meeting, Karmarkar gave a plenary lecture in
which he claimed his algorithm would be 50 or 100 times faster than the best
simplex codes of that period. This was greeted with a great deal of skepticism
and more that a little annoyance by many in the audience.
At the same meeting, Margaret Wright presented the results in Gill et al. [8]

that showed there existed values for µ and v∗ that make Karmarkar’s algorithm
a special case of the logarithmic barrier method of Fiacco and McCormick. This
observation led to a major outpouring of theoretical papers proving order n3L

complexity for a wide variety of choices for the sequence of µ’s and the search
parameter γ. It also led to implementation work on numerical algorithms. An
early example of this was the implementation of a dual-affine scaling algorithm
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(derived by applying the affine variant to the dual problem) of Adler et al.
[1]. I was personally involved, first with Roy Marsten, in creating a dual-affine
scaling implementation. We later joined with Irv Lustig to create an imple-
mentation of the primal-dual interior-point code [17] based on an algorithm
published by Kojima et al. [15] which assumed the knowledge of an initial
feasible point. We addressed initial feasibility using the analysis of Lustig [16].
We later discovered that the implemented algorithm can be derived directly by
applying the Fiacco and McCormick logarithmic barrier method to the dual of
the problem in standard form and applying Newton’s method to the first order
conditions.

Meanwhile, AT&T had begun development of the KORBX commercial pack-
age which included an eight processor supercomputer and an interior point code
to be marketed at a multimillion dollar price. AT&T continued to claim (but
not publish) strong computational results for their product. In 1988, they an-
nounced that they had obtained a patent on Karmarkar’s method to protect
their investment [11]. This patent in and of itself created quite a stir in the
mathematics community, as up until that time mathematics was considered not
patentable. However, the value of mathematical algorithms in the workplace
was changing this view, and continues to do so today.

Irv, Roy and I meanwhile completed our first implementation of the primal-
dual method [17], and in the fall of 1989 presented a computational comparison
of our code with KORBX on a set of results which had finally appeared in
publication [4]. The comparison was not favorable to KORBX. We distributed
free of charge source of our OB1 code to researchers, but were marketing it to
industry through XMP Software, a company Roy had started. Shortly after
the presentation of the comparative results, we received a letter from AT&T
informing us that, while they encouraged our promoting research in this area,
we were not to market our code as they owned the patent on all such algorithms.
This led us to carefully study the patent. The abstract of the patent follows.

A method and apparatus for optimizing resource allocations is dis-
closed which proceeds in the interior of the solution space polytope
instead of on the surface (as does the simplex method), and instead
of exterior to the polytope (as does the ellipsoid method). Each
successive approximation of the solution point, and the polytope,
are normalized such that the solution point is at the center of the
normalized polytope. The objective function is then projected into
the normalized space and the next step is taken in the interior of
the polytope, in the direction of steepest-descent of the objective
function gradient and of such a magnitude as to remain within the
interior of the polytope. The process is repeated until the opti-
mum solution is closely approximated. The optimization method is
sufficiently fast to be useful in real time control systems requiring
more or less continual allocation optimization in a changing envi-
ronment, and in allocation systems heretofore too large for practical
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implementation by linear programming methods.

While the patent is for the Karmarkar algorithm, consequent discussions with
AT&T patent lawyers made it clear that they were claiming that Karmarkar
had invented interior point methods and they held the patent more broadly.
The claim was obviously ridiculous, as there is a full chapter entitled Interior

Point Algorithms in the Fiacco and McCormick book, which was published and
won the Lancester prize in 1968. The people we were dealing with at AT&T
seemed totally unaware of the existence of this book, despite its prominence
in the mathematical programming community. The AT&T patent was granted
in 1988, and there is a rule that nothing can be patented that has been in the
public domain for a year or more prior to filing an application for the patent.
Thus by the Edison criterion, Karmarkar invented the interior point method,
but in fact he was well behind the true pioneers.
Meanwhile AT&T continued to claim to Roy, Irv and me that their patent

applied to our code. After we consulted our own patent lawyer and were told
what of the great expense of challenging the patent, we accepted a licensing
agreement with AT&T. For a variety of reasons, the agreement proved to be
unworkable, and we shut down XMP Optimization. We then joined with CPlex
to create the CPlex barrier code. This code was derived by applying Newton’s
method to the log-barrier method of Fiacco and Mccormick applied to the
dual problem. It is equivalent to an interior-point method, but using the term
barrier rather than interior-point did not fall within the linguistic purview of
the AT&T patent.It eventually became clear that AT&T had finally understood
that the idea of interior-point methods did not originate with Karmarkar, and
to the best of my knowledge they have never again tried to enforce the patent.
There is a further irony in AT&T receiving the Karmarkar patent. That

patent is specifically for the projective transformation algorithm. Yet Bob
Vanderbei, who was a member of the AT&T KORBX team, has told me that
the method implemented in KORBX was the affine scaling method, which
was also not eligible to be patented as Dikin’s paper was published in 1967.
AT&T did patent several techniques involved in the implementation of the
affine scaling method [21], [22], such as how to incorporate bounds and ranges,
but not the affine scaling interior point itself. Thus the only patent granted
specifically for an interior point method was granted to the one algorithm that
to the best of my knowledge has never been successfully implemented.

Who did invent interior-point methods?

With any invention that has proved highly successful, there is never a simple
single answer to this question. A case can be made that Orville and Wilbur
Wright invented the airplane. It is impossible to credit them alone with the
creation of the Boeing 787. Further, in building the plane that made the
first powered flight, they undoubtedly learned a great deal from others whose
attempts had failed.
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In a letter to Robert Hooke on February 15, 1676, Isaac Newton said “If I have
seen further it is by standing on ye sholders of Giants.” Personally, I fully credit
Fiacco and McCormick with the invention of interior point methods, and as
the result of many discussions with them over the years, I know that they fully
agreed with Newton. Indeed a prominent giant in the development of interior
point methods is clearly Newton himself, for all of the complexity results for
linear programming depend on using Newton’s method to solve the first order
equations, and current nonlinear programming algorithms depend on Newton’s
method to find a search direction. Another such giant is Lagrange. Both
are easy choices, as most methods for solving continuous math programming
problems are highly reliant on their work.
On more recent work, both Frisch [9] and Carrol [3] must be credited with

suggesting two different penalty functions to keep the iterates within the fea-
sible region. Fiacco and McCormick certainly credited them. However, only
Fiacco and McCormick developed a whole complete theory of interior point
methods, including convergence results and a wealth of ideas for numerical
implementation. They did not, however, analyze computational complexity.
This field was really just beginning at the time of their work. The book con-
tains many hidden gems, and as Hande Benson, a young colleague of mine has
recently discovered, is still totally relevant today.
In addition, Fiacco and McCormick also developed the SUMT code to imple-

ment the general nonlinear programming algorithm documented in the book.
Unfortunately, this was not the success that their theoretical work was. The
difficulties encountered in attempting to solve many applications led some peo-
ple to dismiss the practical value of interior point methods. The problem was
simply that the theory was well in advance of computational tools developed
later.
One particular difficulty was devising a good method to compute the de-

creasing sequence of µ’s. This was greatly improved by the analysis done when
applying the algorithm to linear programming. A good sequence is dependent
on the measure of complementarity.
Another difficulty was nonconvexity of the objective function in nonlinear

programming. The vast later research in trust region methods greatly improved
the algorithms, and research on this continues today.
The algorithm of SUMT was a pure primal algorithm. The use of the interior

point theory to derive primal-dual algorithms produced much better estimates
of the Lagrange multipliers.
Central to applying the method to very large linear programming problems

was the development of efficient sparse Cholesky decompositions to solve the
linear equations. The computers at the time this research was done had such
limited memories that this work had not yet been undertaken. At that time, it
was believed that only iterative methods could be used to solve very large
linear systems. The development of almost unlimited computer memories
and the development of sparsity preserving ordering algorithms has allowed
for very rapid solution of large sparse linear systems. These advances have
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also been applied to the solution of large sparse nonlinear programming prob-
lems.
Interior point algorithms require an initial feasible point x0. Finding such

a point for pure primal methods such as SUMT is often as difficult as solv-
ing the optimization problem. Development of primal-dual algorithms led to
reformulation of the problem in such a way that a feasible initial point is eas-
ily found for the reformulated problems [16], [17]. The resulting algorithm
approach feasibility and optimality simultaneously. This approach is now the
standard approach in modern interior-point linear programming codes. It has
also proved particularly important in improving interior-point algorithms for
nonlinear programming, the problem that originally interested Fiacco and Mc-
Cormick.
The salient point is that any great piece of original work is never close to

a finished product, but rather a starting point from which improvements can
be made continuously. It can also be extended to new areas of application.
Certainly the work of Fiacco and McCormick meets that test of time. I know
of no even vaguely comparable work on this topic.

References

[1] Adler, I., Karmarkar, N., Resende, M. and Veiga, G. (1989), An imple-
mentation of Karmarkar’s algorithm for linear programming,Mathematical

Programming 44, 297–335.

[2] Barnes, E. (1986), A variation on Karmarkar’s algorithm for solving linear
programming problems, Mathematical Programming 36, 174–182.

[3] Carrol, C. (1961), The created response surface technique for optimizing
restrained systems, Operations Research 9, 169–184.

[4] Cheng Y., Houck D., Liu J., Meketon M., Slutsman L., Vanderbei R.
and Wang P. (1989), The AT&T KORBX system. AT&T Tech. Journal,
68:7–19.

[5] Dantzig, G.(1963), Linear Programming and Extensions, Princeton Uni-
versity Press, Princeton, NJ.

[6] Dikin, I. (1967), Iterative solution of problems of linear and quadratic
programming, Soviet Mathematics Doklady 8, 674–675.

[7] Dikin, I. (1974), On the speed of an iterative process, Upravlyaemye Sis-

temi 12, 54–60.

[8] Fiacco, A. and McCormick, G. (1968), Nonlinear programming: Sequential

Unconstrained Minimization Techniques, John Wiley and Sons, New York.

[9] Frisch, K. (1955), The logarithmic potential method of convex program-
ming, Memorandum, University Institute of Economics, Oslo, Norway.

Documenta Mathematica · Extra Volume ISMP (2012) 55–64



64 David Shanno

[10] Gill, P., Murray, W., Saunders, M., Tomlin, J, and Wright, M. (1986), On
projected Newton barrier methods for linear programming and an equiv-
alence to Karmarkar’s projective method, Mathematical Programming 36,
183–209.

[11] Karmarkar, N. (1984), A new polynomial time algorithm for linear pro-
gramming, Combinatorica 4, 373–395.

[12] Karmarkar, N. (1988), Methods and apparatus for efficient resource allo-
cation, United States Patent Number 4744028.

[13] Khachian, L. (1979), A polynomial time algorithm in linear programming,
Soviet Mathematics Doklady 20, 191–194.

[14] Klee, V. and Minty, G. (1972), How good is the simplex algorithm? in O.
Shisha, ed. Inequalities – III, Academic Press, New York, 159–175.

[15] Kojima, M., Mizuno, S. and Yoshise, A. (1989), A primal-dual inte-
rior point method for linear programming, in N. Megiddo, ed. Progress
in Mathematical Programming: Interior Points and Related Methods,

Springer Verlag, New York, 29–47.

[16] Lustig, I. (1990), Feasibility issues in a primal-dual interior-point method
for linear programming, Mathematical Programming 49, 145–162.

[17] Lustig, I. Marsten, R. and Shanno, D. (1991), Computational experience
with a primal-dual interior point method for linear programming, Linear
Algebra and its Applications 152, 191–222.

[18] Shor, N. (1964), On the structure of algorithms for the numerical solu-
tion of optimal planning and design problems, Ph. D. Thesis, Cybernetic
Institute, Academy of Sciences of the Ukrainian SSR, Kiev.

[19] Todd, M. and Burrell, B. (1986), An extension of Karmarkar’s algorithm
for linear programming using dual variables, Algorithmica 1:4, 409–424.

[20] Vanderbei, R., Meketon, M. and Freedman, B. (1986), A modification on
Karmarkar’s linear programming algorithm, Algorithmica 1:4, 395–407.

[21] Vanderbei, R. (1988), Methods and apparatus for efficient resource allo-
cation, United States Patent Number 4744026.

[22] Vanderbei, R. (1989), Methods and apparatus for efficient resource allo-
cation, United States Patent Number 4885686.

David Shanno, Professor Emeritus
RUTCOR – Rutgers Center of
Operations Research

Rutgers University
New Brunswick, NJ 08903-5062
USA
shanno@rutcor.rutgers.edu

Documenta Mathematica · Extra Volume ISMP (2012) 55–64

shanno@rutcor.rutgers.edu
mailto:shanno@rutcor.rutgers.edu

