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In layman’s terms the Kepler Conjecture from 1611 is often phrased like “There
is no way to stack oranges better than greengrocers do at their fruit stands” and
one might add: all over the world and for centuries already. While it is not far
from the truth this is also an open invitation to a severe misunderstanding. The
true Kepler Conjecture speaks about infinitely many oranges while most grocers
deal with only finitely many. Packing finitely many objects, for instance, within
some kind of bin, is a well-studied subject in optimization. On the other hand,
turning the Kepler Conjecture into a finite optimization problem was a first
major step, usually attributed to László Fejes Tóth [5]. Finally, only a little bit
less than 400 years after Johannes Kepler, Thomas C. Hales in 1998 announced
a complete proof which he had obtained, partially with the help of his graduate
student Samuel P. Ferguson [7]. There are many very readable introductions
to the proof, its details, and the history, for instance, by Hales himself [8] [10].
Here I will make no attempt to compete with these presentations, but rather I
would like to share an opinion on the impact of the Kepler Conjecture and its
history for mathematics in general.

1 Packing Spheres

Yet we should start with the formal statement. In the following we will encode
a packing of congruent spheres in 3-space by collecting their centers in a set
Λ ⊂ R

3. If B(x, r) is the ball with center x ∈ R
3 and radius r > 0 and if c > 0

is the common radius of the spheres in the packing then

δ(r,Λ) =
3

4πr3

∑

x∈Λ

vol(B(0, r) ∩B(x, c)) ,

the fraction of the ball B(0, r) covered by the balls in the packing Λ, is the
finite packing density of Λ with radius r centered at the origin. Now the upper
limit

δ(Λ) = limr→∞δ(r,Λ)

does not depend on the constant c, and it is called the packing density of Λ.
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Theorem (Kepler Conjecture). The packing density δ(Λ) of any sphere pack-
ing Λ in R

3 does not exceed

π√
18

≈ 0.74048 .

It remains to explain where the oranges are. The standard pattern originates
from starting with three spheres whose centers form a regular triangle and
putting another on top such that it touches the first three. This can be extended
indefinitely in all directions. One way of describing this sphere packing in an
encoding like above is the following:

Λfcc = {a(1, 0, 0) + b(0, 1, 0) + c(1, 1, 1) | a, b, c ∈ Z} ,

This amounts to tiling 3-space with regular cubes of side length 2 and placing
spheres of radius 1/

√
2 on the vertices as well as on the mid-points of the

facets of each cube. This is why Λfcc is called the face-centered cubical packing.
Figure 1 (left) shows 14 spheres (significantly shrunk for better visibility) in
the cube, the black edges indicate spheres touching. To determine the packing
density it suffices to measure a single fundamental domain, that is, one of the
cubes. Each sphere at a vertex contributes 1/8 to each of the eight cubes which
contain it while each sphere on a facet contributes 1/2. We obtain

δ(Λfcc) = (8 · 1
8
+ 6 · 1

2
) · 4π

3(
√
2)

3
· 1

23
= 4 · 2π

3
√
2
· 1
8

=
π

3
√
2

=
π√
18

.

One thing which is remarkable about the Kepler Conjecture is that the optimum
is attained at a lattice packing, that is a sphere packing whose centers form a
Z
3-isomorphic subgroup of the additive group of R

3. This means that the
optimum is attained for a packing with a great deal of symmetry while the
statement itself does not mention any symmetry. It was already known to
Carl Friedrich Gauß that Λfcc is optimal among all lattice packings, but the
challenge for Hales to overcome was to show that there is no non-lattice packing
which is more dense.
As already mentioned I will not try to explain the proof, not even its overall

structure, but I would like to point out a few aspects. What also contributes
to the technical difficulty is that Λfcc is by no means the only sphere packing
with the optimal density π/

√
18. There are infinitely many others, including

another well-known example which is called the hexagonal-close packing. This
means that the naively phrased optimization problem

sup
{

δ(Λ)
∣

∣ Λ is a sphere packing in R
3
}

(1)

has infinitely many optimal solutions.
A key concept in discrete geometry is the Voronoi diagram of a set Λ of

points, say in R
3. The Voronoi region of x ∈ Λ is the set of points in R

3 which
is at least as close to x as to any other point in Λ. This notion makes sense for
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Figure 1: 14 balls of Λfcc in a cube and corresponding Voronoi regions

finite as well as infinite sets Λ. If Λ is finite or if the points are “sufficiently
spread out” then the Voronoi regions are convex polyhedra. The Voronoi di-
agram is the polyhedral complex formed from these polyhedra. For example,
the Voronoi region of any point in the face-centered cubical lattice Λfcc is a
rhombic dodecahedron, a 3-dimensional polytope whose twelve facets are con-
gruent rhombi. Figure 2 shows the rhombic dodecahedron, and Figure 1 (right)
shows how it tiles the space as Voronoi regions of Λfcc. Some 2-dimensional
cells (facets of Voronoi regions) are also shown in Figure 1 (left) to indicate
their relative position in the cube.
Here comes a side-line of the story: The volume of the rhombic dodecahedron

with inradius one equals
√
32 ≈ 5.65685, and this happens to be slightly larger

than the volume of the regular dodecahedron of inradius one, which amounts
to

10

√

130− 58
√
5 ≈ 5.55029 .

A potential counter-example to the Kepler Conjecture would have Voronoi
regions of volume smaller than

√
32. The statement that, conversely, each unit

sphere packing should have Voronoi regions of volume at least the volume of
the regular dodecahedron of inradius one, is the Dodecahedral Conjecture of
L. Fejes Tóth from 1943. This was proved, also in 1998, also by Hales together
with Sean McLaughlin [12, 13]. Despite the fact that quantitative results for one
of the conjectures imply bounds for the other, the Kepler Conjecture does not
directly imply the Dodecahedral Conjectures or conversely. Not surprisingly,
however, the proofs share many techniques.
We now come back to the Kepler Conjecture. The reduction of the infinite-

dimensional optimization problem (1) to finite dimensions is based on these
Voronoi regions. The observation of L. Fejes Tóth in 1953 was that in an opti-
mal sphere packing only finitely many different combinatorial types of Voronoi
regions can occur. This resulted in a non-linear optimization problem over a
compact set. Hales simplified this non-linear problem using linear approxima-
tions. In this manner each candidate for a sphere packing more dense than
the face-centered cubical packing gives rise to a linear program. Its infeasibil-
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Figure 2: Rhombic dodecahedron

ity refutes the potential counter-example. This idea was improved and further
extended by Hales and his co-authors such that this approach resulted in a
managable computation, albeit an enormous one.
What differs mathematics fundamentally from other fields of science is the

concept of a proof. A sequence of statements which establish the claim in a
step-by-step manner by applying the rules of logic to trace the result back to
a set of axioms. Once the proof is there the result holds indefinitely. The
traditional way to accept a proof is to have it scrutinized by peers who review
the work prior to publication in a mathematical journal. While neither the
author of a proof nor its reviewers are perfect it is rather rare that results are
published with a severe error. The mathematical community was content with
this proof paradigm for more than 100 years, since the logical foundations of
mathematics were laid at the turn from the 19th to the 20th century. The main
impact of Hales’ proof to mathematics in its generality is that it is about to
change this paradigm, most likely forever.
After obtaining his computer-based proof Hales submitted his result to the

highly esteemed journal Annals of Mathematics. The journal editors initiated
the reviewing process which involved a team of more than a dozen experts on
the subject, lead by Gábor Fejes Tóth, the son of László Fejes Tóth. It took
more than seven years until an outline version of the proof was finally accepted
and published [9]. To quote the guest editors of a special volume of Discrete &
Computational Geometry on more details of the proof, Gábor Fejes Tóth and
Jeffrey C. Lagarias [4]:

The main portion of the reviewing took place in a seminar run at
Eötvos University over a 3 year period. Some computer experi-
ments were done in a detailed check. The nature of this proof,
consisting in part of a large number of inequalities having little in-
ternal structure, and a complicated proof tree, makes it hard for
humans to check every step reliably. Detailed checking of specific

Documenta Mathematica · Extra Volume ISMP (2012) 439–446



From Kepler to Hales 443

assertions found them to be essentially correct in every case tested.
The reviewing process produced in the reviewers a strong degree of
conviction of the essential correctness of this proof approach, and
that the reduction method led to nonlinear programming problems
of tractable size. [. . . ] The reviewing of these papers was a partic-
ularly enormous and daunting task.

The standard paradigm for establishing proofs in mathematics was stretched
beyond its limits. There is also a personal aspect to this. Hales and his co-
authors had devoted a lot to the proof, and after waiting for a very long time
they had their papers published but only with a warning. The referees had
given up on the minute details and said so in public. The referees cannot be
blamed in any way, to the contrary, their effort was also immense. This was
widely acknowledged, also by Hales. But for him to see his results published
with the written hint that, well, a flaw cannot be entirely excluded, must have
been quite harsh nonetheless.

2 The Subsequent Challenge

It was David Hilbert who initiated a quest for provably reliable proofs in the
1920s. Ideally, he thought, proofs should be mechanized. The first trace to
what later became famous as the “Hilbert Program” is maybe the following
quote [16, p. 414]:

Diese speziellen Ausführungen zeigen [. . .], wie notwendig es ist,
das Wesen des mathematischen Beweises an sich zu studieren, wenn
man solche Fragen, wie die nach der Entscheidbarkeit durch endlich
viele Operationen mit Erfolg aufklären will.1

Hilbert’s work on this subject resulted in two books with his student Paul
Bernays [17, 18]. It is widely believed that the incompleteness theorems of Kurt
Gödel [6] put an end to Hilbert’s endeavor. However, this is not completely
true.
After his proof was published with disclaimers Hales set out to start the

Flyspeck project [2]. Its goal is to establish a formal proof of the Kepler
Conjecture, quite to Hilbert’s liking. The idea is to formalize the proof in
a way that it can be verified by a theorem prover. Hales settled for John
Harrison’s HOL Light [14] and now also uses Coq [1] as well as Isabelle [20].
A theorem prover like HOL Light is a program which takes a human-written

proof and validates that the rules of propositional logic are correctly applied
to obtain a chain of arguments from the axioms to the claim, without any
gap. In this way a theorem prover assists the mathematician in proving rather
than finding a proof on its own. Of course, such a theorem prover itself is a

1These special arguments show [. . .], how necessary it is to study the genuine nature of the
mathematical proof, if one wants to clarify questions like the decidability by finitely many
operations.
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piece of software which is written by humans. So, where is the catch? The
actual core of a theorem prover is very small, small enough to be verified by
a human, and this core verifies the rest of the system in a bootstrapping like
fashion. This is already much better in terms of reliability. Moreover, if this is
not enough, it is even possible to use several independent theorem provers for
mutual cross-certification. This way theorem provers help to establish proofs
in mathematics with a reliability unprecedented in the history of the subject.
For an introduction to automated theorem proving see [21].
To get an idea how such a formal proof may look alike, for example, here is

the HOL Light proof [15, p. 75] that
√
2 is irrational:

let NSQRT_2 = prove

(‘!p q. p * p = 2 * q * q ==> q = 0‘,

MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN

REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN

REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN

DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN

FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN

ASM_REWRITE_TAC[ARITH_RULE

‘q < 2 * m ==> q * q = 2 * m * m ==> m = 0 <=>

(2 * m) * 2 * m = 2 * q * q ==> 2 * m <= q‘] THEN

ASM_MESON_TAC[LE_MULT2; MULT_EQ_0;

ARITH_RULE ‘2 * x <= x <=> x = 0‘]);;

Modern theorem provers are already powerful enough to allow for formal proofs
of very substantial results such as the Jordan Curve Theorem or the Funda-
mental Theorem of Algebra. However, they are nowhere near to formally verify
large pieces of software such as a solver for linear programs. Yet an essential
step in the proof of the Kepler Conjecture is to verify the infeasibility of thou-
sands of linear programs. One good thing about linear programming is that
infeasibility has a certificate via Farkas’ Lemma. Now the idea is to check those
certificates from an external LP solver (which is allowed to be unreliable) via
formally verified interval arithmetic. Even if the formal proof of the Kepler
Conjecture is still incomplete it is now within reach.2 A revised version of the
proof which also describes the formalization aspects appeared in 2010 [11]. An
even newer approach to the Kepler conjecture, due to Christian Marchal [19]
reduces the number of cases to check but still requires computer support.
Here is a side remark which may sound amusing if you hear it for the first

time: Gödel’s first incompleteness theorem itself has been formalized in nqthm

by Natarajan Shankar in 1986 [3]. John Harrison’s HOL Light version of that
statement (without the proof) reads as follows:

2The Flyspeck web site claims 65% completeness of the proof of the Kepler Conjecture
by June 2010 [2].
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|- !A. consistent A /\

complete_for (SIGMA 1 INTER closed) A /\

definable_by (SIGMA 1) (IMAGE gform A)

==> ?G. PI 1 G /\ closed G /\ true G /\ ~(A |-- G) /\

(sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))

3 Conclusion

A minimalistic way to tell the story about the Kepler Conjecture is: “Kepler
meets Hilbert twice”. The first encounter is Hilbert’s 1900 address in Paris,
where he specifically mentioned the Kepler Conjecture in his 18th problem.
This way the Kepler Conjecture was ranked among the most eminent math-
ematical problems of the time. Later, at various stages in the history of the
proof several different flavors of mathematical software systems played and still
play a key role. The downside of the current state of affairs is that a computer
based proof seems to be unavoidable. The upside, however, is that a reliable
version of such a machine-assisted proof is, in fact, possible. Quite close to
what Hilbert had imagined.

Acknowledgment: I would like to thank Martin Henk and Günter M.
Ziegler for helpful comments.
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