Stably Cayley Semisimple Groups

Mikhail Borovoi and Boris Kunyavskí

Received: July 9, 2014

Abstract

A linear algebraic group G over a field k is called a Cayley group if it admits a Cayley map, i.e., a G-equivariant birational isomorphism over k between the group variety G and its Lie algebra $\operatorname{Lie}(G)$. A prototypical example is the classical "Cayley transform" for the special orthogonal group $\mathbf{S O}_{n}$ defined by Arthur Cayley in 1846. A linear algebraic group G is called stably Cayley if $G \times S$ is Cayley for some split k-torus S. We classify stably Cayley semisimple groups over an arbitrary field k of characteristic 0 .

2010 Mathematics Subject Classification: 20G15, 20C10.
Keywords and Phrases: Linear algebraic group, stably Cayley group, quasi-permutation lattice.

To Alexander Merkurjev on the occasion of his 60th birthday

0 Introduction

Let k be a field of characteristic 0 and \bar{k} a fixed algebraic closure of k. Let G be a connected linear algebraic k-group. A birational isomorphism $\phi: G \xrightarrow{\simeq} \operatorname{Lie}(G)$ is called a Cayley map if it is equivariant with respect to the conjugation action of G on itself and the adjoint action of G on its Lie algebra Lie (G), respectively. A linear algebraic k-group G is called Cayley if it admits a Cayley map, and stably Cayley if $G \times_{k}\left(\mathbb{G}_{\mathrm{m}, k}\right)^{r}$ is Cayley for some $r \geq 0$. Here $\mathbb{G}_{\mathrm{m}, k}$ denotes the multiplicative group over k. These notions were introduced by Lemire, Popov and Reichstein [LPR]; for a more detailed discussion and numerous classical examples we refer the reader to [LPR, Introduction]. The main results of [LPR] are the classifications of Cayley and stably Cayley simple groups over an algebraically closed field k of characteristic 0 . Over an arbitrary field k of characteristic 0 stably Cayley simple k-groups, stably Cayley simply connected semisimple k-groups and stably Cayley adjoint semisimple k-groups were classified in the paper [BKLR] of Borovoi, Kunyavskiŭ, Lemire and Reichstein. In
the present paper, building on results of [LPR] and [BKLR], we classify all stably Cayley semisimple k-groups (not necessarily simple, or simply connected, or adjoint) over an arbitrary field k of characteristic 0 .

By a semisimple (or reductive) k-group we always mean a connected semisimple (or reductive) k-group. We shall need the following result of [BKLR] extending [LPR, Theorem 1.28].

Theorem 0.1 ([BKLR, Theorem 1.4]). Let k be a field of characteristic 0 and G an absolutely simple k-group. Then the following conditions are equivalent:
(a) G is stably Cayley over k;
(b) G is an arbitrary k-form of one of the following groups:

$$
\mathbf{S L}_{3}, \mathbf{P G L}_{2}, \mathbf{P G L}_{2 n+1}(n \geq 1), \mathbf{S O}_{n}(n \geq 5), \mathbf{S p}_{2 n}(n \geq 1), \mathbf{G}_{2},
$$

or an inner k-form of $\mathbf{P G L} \mathbf{2 n}_{2 n}(n \geq 2)$.
In this paper we classify stably Cayley semisimple groups over an algebraically closed field k of characteristic 0 (Theorem 0.2) and, more generally, over an arbitrary field k of characteristic 0 (Theorem 0.3). Note that Theorem 0.2 was conjectured in [BKLR, Remark 9.3].

ThEOREM 0.2. Let k be an algebraically closed field of characteristic 0 and G a semisimple k-group. Then G is stably Cayley if and only if G decomposes into a direct product $G_{1} \times_{k} \cdots \times_{k} G_{s}$ of its normal subgroups, where each G_{i} $(i=1, \ldots, s)$ either is a stably Cayley simple k-group (i.e., isomorphic to one of the groups listed in Theorem 0.1) or is isomorphic to the stably Cayley semisimple k-group $\mathbf{S O}_{4}$.

Theorem 0.3. Let G be a semisimple k-group over a field k of characteristic 0 (not necessarily algebraically closed). Then G is stably Cayley over k if and only if G decomposes into a direct product $G_{1} \times_{k} \cdots \times_{k} G_{s}$ of its normal k subgroups, where each $G_{i}(i=1, \ldots, s)$ is isomorphic to the Weil restriction $R_{l_{i} / k} G_{i, l_{i}}$ for some finite field extension l_{i} / k, and each $G_{i, l_{i}}$ is either a stably Cayley absolutely simple group over l_{i} (i.e., one of the groups listed in Theorem 0.1) or an l_{i}-form of the semisimple group $\mathbf{S O}_{4}$ (which is always stably Cayley, but is not absolutely simple and can be not l_{i}-simple).

Note that the "if" assertions in Theorems 0.2 and 0.3 follow immediately from the definitions.

The rest of the paper is structured as follows. In Section 1 we recall the definition of a quasi-permutation lattice and state some known results, in particular, an assertion from [LPR, Theorem 1.27] that reduces Theorem 0.2 to an assertion on lattices. In Sections 2 and 3 we construct certain families of non-quasi-permutation lattices. In particular, we correct an inaccuracy in [BKLR]; see Remark 2.5. In Section 4 we prove (in the language of lattices) Theorem
0.2 in the special case when G is isogenous to a direct product of simple groups of type \mathbf{A}_{n-1} with $n \geq 3$. In Section 5 we prove (again in the language of lattices) Theorem 0.2 in the general case. In Section 6 we deduce Theorem 0.3 from Theorem 0.2. In Appendix A we prove in terms of lattices only, that certain quasi-permutation lattices are indeed quasi-permutation.

1 Preliminaries on quasi-Permutation groups and on character Lattices

In this section we gather definitions and known results concerning quasipermutation lattices, quasi-invertible lattices and character lattices that we need for the proofs of Theorems 0.2 and 0.3 . For details see [BKLR, Sections 2 and 10] and [LPR, Introduction].
1.1. By a lattice we mean a pair (Γ, L) where Γ is a finite group acting on a finitely generated free abelian group L. We say also that L is a Γ-lattice. A Γ-lattice L is called a permutation lattice if it has a \mathbb{Z}-basis permuted by Γ. Following Colliot-Thélène and Sansuc [CTS], we say that two Γ-lattices L and L^{\prime} are equivalent, and write $L \sim L^{\prime}$, if there exist short exact sequences

$$
0 \rightarrow L \rightarrow E \rightarrow P \rightarrow 0 \quad \text { and } \quad 0 \rightarrow L^{\prime} \rightarrow E \rightarrow P^{\prime} \rightarrow 0
$$

with the same Γ-lattice E, where P and P^{\prime} are permutation Γ-lattices. For a proof that this is indeed an equivalence relation see [CTS, Lemma 8, p. 182] or [Sw, Section 8]. Note that if there exists a short exact sequence of Γ-lattices

$$
0 \rightarrow L \rightarrow L^{\prime} \rightarrow Q \rightarrow 0
$$

where Q is a permutation Γ-lattice, then, taking in account the trivial short exact sequence

$$
0 \rightarrow L^{\prime} \rightarrow L^{\prime} \rightarrow 0 \rightarrow 0
$$

we obtain that $L \sim L^{\prime}$. If Γ-lattices $L, L^{\prime}, M, M^{\prime}$ satisfy $L \sim L^{\prime}$ and $M \sim M^{\prime}$, then clearly $L \oplus M \sim L^{\prime} \oplus M^{\prime}$.

Definition 1.2. A Γ-lattice L is called a quasi-permutation lattice if there exists a short exact sequence

$$
\begin{equation*}
0 \rightarrow L \rightarrow P \rightarrow P^{\prime} \rightarrow 0 \tag{1.1}
\end{equation*}
$$

where both P and P^{\prime} are permutation Γ-lattices.
Lemma 1.3 (well-known). A Γ-lattice L is quasi-permutation if and only if $L \sim 0$.

Proof. If L is quasi-permutation, then sequence (1.1) together with the trivial short exact sequence

$$
0 \rightarrow 0 \rightarrow P \rightarrow P \rightarrow 0
$$

shows that $L \sim 0$. Conversely, if $L \sim 0$, then there are short exact sequences

$$
0 \rightarrow L \rightarrow E \rightarrow P \rightarrow 0 \quad \text { and } \quad 0 \rightarrow 0 \rightarrow E \rightarrow P^{\prime} \rightarrow 0
$$

where P and P^{\prime} are permutation lattices. From the second exact sequence we have $E \cong P^{\prime}$, hence E is a permutation lattice, and then the first exact sequence shows that L is a quasi-permutation lattice.

Definition 1.4. A Γ-lattice L is called quasi-invertible if it is a direct summand of a quasi-permutation Γ-lattice.

Note that if a Γ-lattice L is not quasi-invertible, then it is not quasipermutation.

Lemma 1.5 (well-known). If a Γ-lattice L is quasi-permutation (resp., quasiinvertible) and $L^{\prime} \sim L$, then L^{\prime} is quasi-permutation (resp., quasi-invertible) as well.

Proof. If L is quasi-permutation, then using Lemma 1.3 we see that $L^{\prime} \sim L \sim 0$, hence L^{\prime} is quasi-permutation. If L is quasi-invertible, then $L \oplus M$ is quasipermutation for some Γ-lattice M, and by Lemma 1.3 we have $L \oplus M \sim 0$. We see that $L^{\prime} \oplus M \sim L \oplus M \sim 0$, and by Lemma 1.3 we obtain that $L^{\prime} \oplus M$ is quasi-permutation, hence L^{\prime} is quasi-invertible.

Let $\mathbb{Z}[\Gamma]$ denote the group ring of a finite group Γ. We define the Γ-lattice J_{Γ} by the exact sequence

$$
0 \rightarrow \mathbb{Z} \xrightarrow{N} \mathbb{Z}[\Gamma] \rightarrow J_{\Gamma} \rightarrow 0
$$

where N is the norm map, see [BKLR, before Lemma 10.4]. We refer to [BKLR, Proposition 10.6] for a proof of the following result, due to Voskresenskiĭ [Vo1, Corollary of Theorem 7]:

Proposition 1.6. Let $\Gamma=\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$, where p is a prime. Then the Γ lattice J_{Γ} is not quasi-invertible.

Note that if $\Gamma=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, then $\operatorname{rank} J_{\Gamma}=3$.
We shall use the following lemma from [BKLR]:
Lemma 1.7 ([BKLR, Lemma 2.8]). Let W_{1}, \ldots, W_{m} be finite groups. For each $i=1, \ldots, m$, let V_{i} be a finite-dimensional \mathbb{Q}-representation of W_{i}. Set $V:=$ $V_{1} \oplus \cdots \oplus V_{m}$. Suppose $L \subset V$ is a free abelian subgroup, invariant under $W:=W_{1} \times \cdots \times W_{m}$. If L is a quasi-permutation W-lattice, then for each $i=1, \ldots, m$ the intersection $L_{i}:=L \cap V_{i}$ is a quasi-permutation W_{i}-lattice.

We shall need the notion, due to [LPR] and [BKLR], of the character lattice of a reductive k-group G over a field k. Let \bar{k} be a separable closure of k. Let $T \subset G$ be a maximal torus (defined over k). Set $\bar{T}=T \times_{k} \bar{k}, \bar{G}=G \times_{k} \bar{k}$. Let $\mathrm{X}(\bar{T})$
denote the character group of $\bar{T}:=T \times{ }_{k} \bar{k}$. Let $W=W(\bar{G}, \bar{T}):=\mathcal{N}_{G}(\bar{T}) / \bar{T}$ denote the Weyl group, it acts on $\mathrm{X}(\bar{T})$. Consider the canonical Galois action on $\mathrm{X}(\bar{T})$, it defines a homomorphism $\operatorname{Gal}(\bar{k} / k) \rightarrow \operatorname{Aut} \mathrm{X}(\bar{T})$. The image im $\rho \subset$ Aut $\mathrm{X}(\bar{T})$ normalizes W, hence $\operatorname{im} \rho \cdot W$ is a subgroup of Aut $\mathrm{X}(\bar{T})$. By the character lattice of G we mean the pair $\mathcal{X}(G):=(\operatorname{im} \rho \cdot W, \mathrm{X}(\bar{T}))$ (up to an isomorphism it does not depend on the choice of T). In particular, if k is algebraically closed, then $\mathcal{X}(G)=(W, \mathrm{X}(T))$.

We shall reduce Theorem 0.2 to an assertion about quasi-permutation lattices using the following result due to [LPR]:

Proposition 1.8 ([LPR, Theorem 1.27], see also [BKLR, Theorem 1.3]). A reductive group G over an algebraically closed field k of characteristic 0 is stably Cayley if and only if its character lattice $\mathcal{X}(G)$ is quasi-permutation, i.e., $\mathrm{X}(T)$ is a quasi-permutation $W(G, T)$-lattice.

We shall use the following result due to Cortella and Kunyavskiĭ [CK] and to Lemire, Popov and Reichstein [LPR].

Proposition 1.9 ([CK], [LPR]). Let D be a connected Dynkin diagram. Let $R=R(D)$ denote the corresponding root system, $W=W(D)$ denote the Weyl group, $Q=Q(D)$ denote the root lattice, and $P=P(D)$ denote the weight lattice. We say that L is an intermediate lattice between Q and P if $Q \subset L \subset P$ (note that $L=Q$ and $L=P$ are possible). Then the following list gives (up to an isomorphism) all the pairs (D, L) such that L is a quasi-permutation intermediate $W(D)$-lattice between $Q(D)$ and $P(D)$:

$$
\left.Q\left(\mathbf{A}_{n}\right), Q\left(\mathbf{B}_{n}\right), P\left(\mathbf{C}_{n}\right), \mathcal{X}\left(\mathbf{S O}_{2 n}\right) \text { (then } D=\mathbf{D}_{n}\right)
$$

or D is any connected Dynkin diagram of rank 1 or 2 (i.e. $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{B}_{2}$, or \mathbf{G}_{2}) and L is any lattice between $Q(D)$ and $P(D)$, (i.e., either $L=P(D)$ or $L=Q(D)$.

Proof. The positive result (the assertion that the lattices in the list are indeed quasi-permutation) follows from the assertion that the corresponding groups are stably Cayley (or that their generic tori are stably rational), see the references in [CK], Section 3. See Appendix A below for a proof of this positive result in terms of lattices only. The difficult part of Proposition 1.9 is the negative result (the assertion that all the other lattices are not quasi-permutation). This was proved in [CK, Theorem 0.1] in the cases when $L=Q$ or $L=P$, and in [LPR, Propositions 5.1 and 5.2] in the cases when $Q \subsetneq L \subsetneq P$ (this can happen only when $D=\mathbf{A}_{n}$ or $D=\mathbf{D}_{n}$).

Remark 1.10. It follows from Proposition 1.9 that, in particular, the following lattices are quasi-permutation: $Q\left(\mathbf{A}_{1}\right), P\left(\mathbf{A}_{1}\right), P\left(\mathbf{A}_{2}\right), P\left(\mathbf{B}_{2}\right), Q\left(\mathbf{C}_{2}\right)$, $Q\left(\mathbf{G}_{2}\right)=P\left(\mathbf{G}_{2}\right), Q\left(\mathbf{D}_{3}\right)=Q\left(\mathbf{A}_{3}\right), \mathcal{X}\left(\mathbf{S L}_{4} / \mu_{2}\right)=\mathcal{X}\left(\mathbf{S O}_{6}\right)$.

2 A FAMILY OF NON-QUASI-PERMUTATION LATTICES

In this section we construct a family of non-quasi-permutation (even non-quasiinvertible) lattices.
2.1. We consider a Dynkin diagram $D \sqcup \Delta$ (disjoint union). We assume that $D=\bigsqcup_{i \in I} D_{i}$ (a finite disjoint union), where each D_{i} is of type $\mathbf{B}_{l_{i}}\left(l_{i} \geq 1\right)$ or $\mathbf{D}_{l_{i}}\left(l_{i} \geq 2\right)$ (and where $\mathbf{B}_{1}=\mathbf{A}_{1}, \mathbf{B}_{2}=\mathbf{C}_{2}, \mathbf{D}_{2}=\mathbf{A}_{1} \sqcup \mathbf{A}_{1}$, and $\mathbf{D}_{3}=\mathbf{A}_{3}$ are permitted). We denote by m the cardinality of the finite index set I. We assume that $\Delta=\bigsqcup_{\iota=1}^{\mu} \Delta_{\iota}$ (disjoint union), where Δ_{ι} is of type $\mathbf{A}_{2 n_{\iota}-1}, n_{\iota} \geq 2$ $\left(\mathbf{A}_{3}=\mathbf{D}_{3}\right.$ is permitted). We assume that $m \geq 1$ and $\mu \geq 0$ (in the case $\mu=0$ the diagram Δ is empty).

For each $i \in I$ we realize the root system $R\left(D_{i}\right)$ of type $\mathbf{B}_{l_{i}}$ or $\mathbf{D}_{l_{i}}$ in the standard way in the space $V_{i}:=\mathbb{R}^{l_{i}}$ with basis $\left(e_{s}\right)_{s \in S_{i}}$ where S_{i} is an index set consisting of l_{i} elements; cf. [Bou, Planche II] for $\mathbf{B}_{l}(l \geq 2)$ (the relevant formulas for \mathbf{B}_{1} are similar) and [Bou, Planche IV] for $\mathbf{D}_{l}(l \geq 3)$ (again, the relevant formulas for \mathbf{D}_{2} are similar). Let $M_{i} \subset V_{i}$ denote the lattice generated by the basis vectors $\left(e_{s}\right)_{s \in S_{i}}$. Let $P_{i} \supset M_{i}$ denote the weight lattice of the root system D_{i}. Set $S=\bigsqcup_{i} S_{i}$ (disjoint union). Consider the vector space $V=\bigoplus_{i} V_{i}$ with basis $\left(e_{s}\right)_{s \in S}$. Let $M_{D} \subset V$ denote the lattice generated by the basis vectors $\left(e_{s}\right)_{s \in S}$, then $M_{D}=\bigoplus_{i} M_{i}$. Set $P_{D}=\bigoplus_{i} P_{i}$.
For each $\iota=1, \ldots, \mu$ we realize the root system $R\left(\Delta_{\iota}\right)$ of type $\mathbf{A}_{2 n_{\iota}-1}$ in the standard way in the subspace V_{ι} of vectors with zero sum of the coordinates in the space $\mathbb{R}^{2 n_{\iota}}$ with basis $\varepsilon_{\iota, 1}, \ldots, \varepsilon_{\iota, 2 n_{\iota}}$; cf. [Bou, Planche I]. Let Q_{ι} be the root lattice of $R\left(\Delta_{\iota}\right)$ with basis $\varepsilon_{\iota, 1}-\varepsilon_{\iota, 2}, \varepsilon_{\iota, 2}-\varepsilon_{\iota, 3}, \ldots, \varepsilon_{\iota, 2 n_{\iota}-1}-\varepsilon_{\iota, 2 n_{\iota}}$, and let $P_{\iota} \supset Q_{\iota}$ be the weight lattice of $R\left(\Delta_{\iota}\right)$. Set $Q_{\Delta}=\bigoplus_{\iota} Q_{\iota}, P_{\Delta}=\bigoplus_{\iota} P_{\iota}$.

Set

$$
W:=\prod_{i \in I} W\left(D_{i}\right) \times \prod_{\iota=1}^{\mu} W\left(\Delta_{\iota}\right), \quad L^{\prime}=M_{D} \oplus Q_{\Delta}=\bigoplus_{i \in I} M_{i} \oplus \bigoplus_{\iota=1}^{\mu} Q_{\iota}
$$

then W acts on L^{\prime} and on $L^{\prime} \otimes_{\mathbb{Z}} \mathbb{R}$. For each i consider the vector

$$
x_{i}=\sum_{s \in S_{i}} e_{s} \in M_{i}
$$

then $\frac{1}{2} x_{i} \in P_{i}$. For each ι consider the vector

$$
\xi_{\iota}=\varepsilon_{\iota, 1}-\varepsilon_{\iota, 2}+\varepsilon_{\iota, 3}-\varepsilon_{\iota, 4}+\cdots+\varepsilon_{\iota, 2 n_{\iota}-1}-\varepsilon_{\iota, 2 n_{\iota}} \in Q_{\iota},
$$

then $\frac{1}{2} \xi_{\iota} \in P_{\iota}$; see [Bou, Planche I]. Write

$$
\xi_{\iota}^{\prime}=\varepsilon_{\iota, 1}-\varepsilon_{\iota, 2}, \quad \xi_{\iota}^{\prime \prime}=\varepsilon_{\iota, 3}-\varepsilon_{\iota, 4}+\cdots+\varepsilon_{\iota, 2 n_{\iota}-1}-\varepsilon_{\iota, 2 n_{\iota}},
$$

then $\xi_{\iota}=\xi_{\iota}^{\prime}+\xi_{\iota}^{\prime \prime}$. Consider the vector

$$
v=\frac{1}{2} \sum_{i \in I} x_{i}+\frac{1}{2} \sum_{\iota=1}^{\mu} \xi_{\iota}=\frac{1}{2} \sum_{s \in S} e_{s}+\frac{1}{2} \sum_{\iota=1}^{\mu} \xi_{\iota} \in P_{D} \oplus P_{\Delta}
$$

Set

$$
\begin{equation*}
L=\left\langle L^{\prime}, v\right\rangle \tag{2.1}
\end{equation*}
$$

then $\left[L: L^{\prime}\right]=2$ because $v \in \frac{1}{2} L^{\prime} \backslash L^{\prime}$. Note that the sublattice $L \subset P_{D} \oplus P_{\Delta}$ is W-invariant. Indeed, the group W acts on $\left(P_{D} \oplus P_{\Delta}\right) /\left(M_{D} \oplus Q_{\Delta}\right)$ trivially.

Proposition 2.2. We assume that $m \geq 1, m+\mu \geq 2$. If $\mu=0$, we assume that not all of D_{i} are of types \mathbf{B}_{1} or \mathbf{D}_{2}. Then the W-lattice L as in (2.1) is not quasi-invertible, hence not quasi-permutation.

Proof. We consider a group $\Gamma=\left\{e, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ of order 4, where $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are of order 2 . The idea of our proof is to construct an embedding

$$
j: \Gamma \rightarrow W
$$

in such a way that L, viewed as a Γ-lattice, is equivalent to its Γ-sublattice L_{1}, and L_{1} is isomorphic to a direct sum of a Γ-sublattice $L_{0} \simeq J_{\Gamma}$ of rank 3 and a number of Γ-lattices of rank 1 . Since by Proposition $1.6 J_{\Gamma}$ is not quasiinvertible, this will imply that L_{1} and L are not quasi-invertible Γ-lattices, and hence L is not quasi-invertible as a W-lattice. We shall now fill in the details of this argument in four steps.
Step 1. We begin by partitioning each S_{i} for $i \in I$ into three (non-overlapping) subsets $S_{i, 1}, S_{i, 2}$ and $S_{i, 3}$, subject to the requirement that

$$
\begin{equation*}
\left|S_{i, 1}\right| \equiv\left|S_{i, 2}\right| \equiv\left|S_{i, 3}\right| \equiv l_{i}(\bmod 2) \text { if } D_{i} \text { is of type } \mathbf{D}_{l_{i}} \tag{2.2}
\end{equation*}
$$

We then set U_{1} to be the union of the $S_{i, 1}, U_{2}$ to be the union of the $S_{i, 2}$, and U_{3} to be the union of the $S_{i, 3}$, as i runs over I.
Lemma 2.3. (i) If $\mu \geq 1$, the subsets $S_{i, 1}, S_{i, 2}$ and $S_{i, 3}$ of S_{i} can be chosen, subject to (2.2), so that $U_{1} \neq \emptyset$.
(ii) If $\mu=0$ (and $m \geq 2$), the subsets $S_{i, 1}, S_{i, 2}$ and $S_{i, 3}$ of S_{i} can be chosen, subject to (2.2), so that $U_{1}, U_{2}, U_{3} \neq \emptyset$.

To prove the lemma, first consider case (i). For all i such that D_{i} is of type $\mathbf{D}_{l_{i}}$ with odd l_{i}, we partition S_{i} into three non-empty subsets of odd cardinalities. For all the other i we take $S_{i, 1}=S_{i}, S_{i, 2}=S_{i, 3}=\emptyset$. Then $U_{1} \neq \emptyset$ (note that $m \geq 1$) and (2.2) is satisfied.

In case (ii), if one of the D_{i} is of type $\mathbf{D}_{l_{i}}$ where $l_{i} \geq 3$ is odd, then we partition S_{i} for each such D_{i} into three non-empty subsets of odd cardinalities. We partition all the other S_{i} as follows:

$$
\begin{equation*}
S_{i, 1}=S_{i, 2}=\emptyset \text { and } S_{i, 3}=S_{i} \tag{2.3}
\end{equation*}
$$

Clearly $U_{1}, U_{2}, U_{3} \neq \emptyset$ and (2.2) is satisfied.
If there is no D_{i} of type $\mathbf{D}_{l_{i}}$ with odd $l_{i} \geq 3$, but one of the D_{i}, say for $i=i_{0}$, is \mathbf{D}_{l} with even $l \geq 4$, then we partition $S_{i_{0}}$ into two non-empty subsets $S_{i_{0}, 1}$ and
$S_{i_{0}, 2}$ of even cardinalities, and set $S_{i_{0}, 3}=\emptyset$. We partition the sets S_{i} for $i \neq i_{0}$ as in (2.3) (note that by our assumption $m \geq 2$). Once again, $U_{1}, U_{2}, U_{3} \neq \emptyset$ and (2.2) is satisfied.
If there is no D_{i} of type $\mathbf{D}_{l_{i}}$ with $l_{i} \geq 3$ (odd or even), but one of the D_{i}, say for $i=i_{0}$, is of type \mathbf{B}_{l} with $l \geq 2$, we partition $S_{i_{0}}$ into two non-empty subsets $S_{i_{0}, 1}$ and $S_{i_{0}, 2}$, and set $S_{i_{0}, 3}=\emptyset$. We partition the sets S_{i} for $i \neq i_{0}$ as in (2.3) (again, note that $m \geq 2$). Once again, $U_{1}, U_{2}, U_{3} \neq \emptyset$ and (2.2) is satisfied.
Since by our assumption not all of D_{i} are of type \mathbf{B}_{1} or \mathbf{D}_{2}, we have exhausted all the cases. This completes the proof of Lemma 2.3.
Step 2. We continue proving Proposition 2.2. We construct an embedding $\Gamma \hookrightarrow W$.

For $s \in S$ we denote by c_{s} the automorphism of L taking the basis vector e_{s} to $-e_{s}$ and fixing all the other basis vectors. For $\iota=1, \ldots, \mu$ we define $\tau_{\iota}^{(12)}=\operatorname{Transp}((\iota, 1),(\iota, 2)) \in W_{\iota}$ (the transposition of the basis vectors $\varepsilon_{\iota, 1}$ and $\left.\varepsilon_{\iota, 2}\right)$. Set

$$
\tau_{\iota}^{>2}=\operatorname{Transp}((\iota, 3),(\iota, 4)) \cdot \cdots \cdot \operatorname{Transp}\left(\left(\iota, 2 n_{\iota}-1\right),\left(\iota, 2 n_{\iota}\right)\right) \in W_{\iota}
$$

Write $\Gamma=\left\{e, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ and define an embedding $j: \Gamma \hookrightarrow W$ as follows:

$$
\begin{aligned}
& j\left(\gamma_{1}\right)=\prod_{s \in S \backslash U_{1}} c_{s} \cdot \prod_{\iota=1}^{\mu} \tau_{\iota}^{(12)} \tau_{\iota}^{>2} \\
& j\left(\gamma_{2}\right)=\prod_{s \in S \backslash U_{2}} c_{s} \cdot \prod_{\iota=1}^{\mu} \tau_{\iota}^{(12)} \\
& j\left(\gamma_{3}\right)=\prod_{s \in S \backslash U_{3}} c_{s} \cdot \prod_{\iota=1}^{\mu} \tau_{\iota}^{>2}
\end{aligned}
$$

Note that if D_{i} is of type $\mathbf{D}_{l_{i}}$, then by (2.2) for $\varkappa=1,2,3$ the cardinality $\#\left(S_{i} \backslash S_{i, \varkappa}\right)$ is even, hence the product of c_{s} over $s \in S_{i} \backslash S_{i, \varkappa}$ is contained in $W\left(D_{i}\right)$ for all such i, and therefore, $j\left(\gamma_{\varkappa}\right) \in W$. Since $j\left(\gamma_{1}\right), j\left(\gamma_{2}\right)$ and $j\left(\gamma_{3}\right)$ commute, are of order 2 , and $j\left(\gamma_{1}\right) j\left(\gamma_{2}\right)=j\left(\gamma_{3}\right)$, we see that j is a homomorphism. If $\mu \geq 1$, then, since $2 n_{1} \geq 4$, clearly $j\left(\gamma_{\varkappa}\right) \neq 1$ for $\varkappa=1,2,3$, hence j is an embedding. If $\mu=0$, then the sets $S \backslash U_{1}, S \backslash U_{2}$ and $S \backslash U_{3}$ are nonempty, and again $j\left(\gamma_{\varkappa}\right) \neq 1$ for $\varkappa=1,2,3$, hence j is an embedding.
Step 3. We construct a Γ-sublattice L_{0} of rank 3 . Write a vector $\mathbf{x} \in L$ as

$$
\mathbf{x}=\sum_{s \in S} b_{s} e_{s}+\sum_{\iota=1}^{\mu} \sum_{\nu=1}^{2 n_{\iota}} \beta_{\iota, \nu} \varepsilon_{\iota, \nu}
$$

where $b_{s}, \beta_{\iota, \nu} \in \frac{1}{2} \mathbb{Z}$. Set $n^{\prime}=\sum_{\iota=1}^{\mu}\left(n_{\iota}-1\right)$. Define a Γ-equivariant homomorphism

$$
\phi: L \rightarrow \mathbb{Z}^{n^{\prime}}, \quad \mathbf{x} \mapsto\left(\beta_{\iota, 2 \lambda-1}+\beta_{\iota, 2 \lambda}\right)_{\iota=1, \ldots, \mu, \lambda=2, \ldots, n_{\iota}}
$$

(we skip $\lambda=1$). We obtain a short exact sequence of Γ-lattices

$$
0 \rightarrow L_{1} \rightarrow L \xrightarrow{\phi} \mathbb{Z}^{n^{\prime}} \rightarrow 0,
$$

where $L_{1}:=\operatorname{ker} \phi$. Since Γ acts trivially on $\mathbb{Z}^{n^{\prime}}$, we have $L_{1} \sim L$. Therefore, it suffices to show that L_{1} is not quasi-invertible.

Recall that

$$
v=\frac{1}{2} \sum_{s \in S} e_{s}+\frac{1}{2} \sum_{\iota=1}^{\mu} \xi_{\iota} .
$$

Set $v_{1}=\gamma_{1} \cdot v, v_{2}=\gamma_{2} \cdot v, v_{3}=\gamma_{3} \cdot v$. Set

$$
L_{0}=\left\langle v, v_{1}, v_{2}, v_{3}\right\rangle
$$

We have

$$
v_{1}=\frac{1}{2} \sum_{s \in U_{1}} e_{s}-\frac{1}{2} \sum_{s \in U_{2} \cup U_{3}} e_{s}-\frac{1}{2} \sum_{\iota=1}^{\mu} \xi_{\iota}
$$

whence

$$
\begin{equation*}
v+v_{1}=\sum_{s \in U_{1}} e_{s} \tag{2.4}
\end{equation*}
$$

We have

$$
v_{2}=\frac{1}{2} \sum_{s \in U_{2}} e_{s}-\frac{1}{2} \sum_{s \in U_{1} \cup U_{3}} e_{s}+\frac{1}{2} \sum_{\iota=1}^{\mu}\left(-\xi_{\iota}^{\prime}+\xi_{\iota}^{\prime \prime}\right),
$$

whence

$$
\begin{equation*}
v+v_{2}=\sum_{s \in U_{2}} e_{s}+\sum_{\iota=1}^{\mu} \xi_{\iota}^{\prime \prime} \tag{2.5}
\end{equation*}
$$

We have

$$
v_{3}=\frac{1}{2} \sum_{s \in U_{3}} e_{s}-\frac{1}{2} \sum_{s \in U_{1} \cup U_{2}} e_{s}+\frac{1}{2} \sum_{\iota=1}^{\mu}\left(\xi_{\iota}^{\prime}-\xi_{\iota}^{\prime \prime}\right),
$$

whence

$$
\begin{equation*}
v+v_{3}=\sum_{s \in U_{3}} e_{s}+\sum_{\iota=1}^{\mu} \xi_{\iota}^{\prime} . \tag{2.6}
\end{equation*}
$$

Clearly, we have

$$
v+v_{1}+v_{2}+v_{3}=0 .
$$

Since the set $\left\{v, v_{1}, v_{2}, v_{3}\right\}$ is the orbit of v under Γ, the sublattice $L_{0}=$ $\left\langle v, v_{1}, v_{2}, v_{3}\right\rangle \subset L$ is Γ-invariant. If $\mu \geq 1$, then $U_{1} \neq \emptyset$, and we see from (2.4), (2.5) and (2.6) that $\operatorname{rank} L_{0} \geq 3$. If $\mu=0$, then $U_{1}, U_{2}, U_{3} \neq \emptyset$, and again we see from (2.4), (2.5) and (2.6) that rank $L_{0} \geq 3$. Thus rank $L_{0}=3$ and $L_{0} \simeq J_{\Gamma}$, whence by Proposition 1.6 L_{0} is not quasi-invertible.

Step 4. We show that L_{0} is a direct summand of L_{1}. Set $m^{\prime}=|S|$.

First assume that $\mu \geq 1$. Choose $u_{1} \in U_{1} \subset S$. Set $S^{\prime}=S \backslash\left\{u_{1}\right\}$. For each $s \in S^{\prime}$ (i.e., $s \neq u_{1}$) consider the one-dimensional (i.e., of rank 1) lattice $X_{s}=\left\langle e_{s}\right\rangle$. We obtain $m^{\prime}-1 \Gamma$-invariant one-dimensional sublattices of L_{1}.

Denote by Υ the set of pairs (ι, λ) such that $1 \leq \iota \leq \mu, 1 \leq \lambda \leq n_{\iota}$, and if $\iota=1$, then $\lambda \neq 1,2$. For each $(\iota, \lambda) \in \Upsilon$ consider the one-dimensional lattice

$$
\Xi_{\iota, \lambda}=\left\langle\varepsilon_{\iota, 2 \lambda-1}-\varepsilon_{\iota, 2 \lambda}\right\rangle .
$$

We obtain $-2+\sum_{\iota=1}^{\mu} n_{\iota}$ one-dimensional Γ-invariant sublattices of L_{1}.
We show that

$$
\begin{equation*}
L_{1}=L_{0} \oplus \bigoplus_{s \in S^{\prime}} X_{s} \oplus \bigoplus_{(\iota, \lambda) \in \Upsilon} \Xi_{\iota, \lambda} . \tag{2.7}
\end{equation*}
$$

Set $L_{1}^{\prime}=\left\langle L_{0},\left(X_{s}\right)_{s \neq u_{1}},\left(\Xi_{\iota, \lambda}\right)_{(\iota, \lambda) \in \Upsilon}\right\rangle$, then
$\operatorname{rank} L_{1}^{\prime} \leq 3+\left(m^{\prime}-1\right)-2+\sum_{\iota=1}^{\mu} n_{\iota}=m^{\prime}+\sum_{\iota=1}^{\mu}\left(2 n_{\iota}-1\right)-\sum_{\iota=1}^{\mu}\left(n_{\iota}-1\right)=\operatorname{rank} L_{1}$.
Therefore, it suffices to check that $L_{1}^{\prime} \supset L_{1}$. The set

$$
\{v\} \cup\left\{e_{s} \mid s \in S\right\} \cup\left\{\varepsilon_{\iota, 2 \lambda-1}-\varepsilon_{\iota, 2 \lambda} \mid 1 \leq \iota \leq \mu, 1 \leq \lambda \leq n_{\iota}\right\}
$$

is a set of generators of L_{1}. By construction $v, v_{1}, v_{2}, v_{3} \in L_{0} \subset L_{1}^{\prime}$. We have $e_{s} \in X_{s} \subset L_{1}^{\prime}$ for $s \neq u_{1}$. By (2.4) $\sum_{s \in U_{1}} e_{s} \in L_{1}^{\prime}$, hence $e_{u_{1}} \in L_{1}^{\prime}$. By construction

$$
\varepsilon_{\iota, 2 \lambda-1}-\varepsilon_{\iota, 2 \lambda} \in L_{1}^{\prime}, \text { for all }(\iota, \lambda) \neq(1,1),(1,2)
$$

From (2.6) and (2.5) we see that

$$
\sum_{\iota=1}^{\mu}\left(\varepsilon_{\iota, 1}-\varepsilon_{\iota, 2}\right) \in L_{1}^{\prime}, \quad \sum_{\iota=1}^{\mu} \xi_{\iota}^{\prime \prime} \in L_{1}^{\prime}
$$

Thus

$$
\varepsilon_{1,1}-\varepsilon_{1,2} \in L_{1}^{\prime}, \quad \varepsilon_{1,3}-\varepsilon_{1,4} \in L_{1}^{\prime}
$$

We conclude that $L_{1}^{\prime} \supset L_{1}$, hence $L_{1}=L_{1}^{\prime}$. From dimension count (2.8) we see that (2.7) holds.

Now assume that $\mu=0$. Then for each $\varkappa=1,2,3$ we choose an element $u_{\varkappa} \in U_{\varkappa}$ and set $U_{\varkappa}^{\prime}=U_{\varkappa} \backslash\left\{u_{\varkappa}\right\}$. We set $S^{\prime}=U_{1}^{\prime} \cup U_{2}^{\prime} \cup U_{3}^{\prime}=S \backslash\left\{u_{1}, u_{2}, u_{3}\right\}$. Again for $s \in S^{\prime}$ (i.e., $s \neq u_{1}, u_{2}, u_{3}$) consider the one-dimensional lattice $X_{s}=\left\langle e_{s}\right\rangle$. We obtain $m^{\prime}-3$ one-dimensional Γ-invariant sublattices of $L_{1}=L$. We show that

$$
\begin{equation*}
L_{1}=L_{0} \oplus \bigoplus_{s \in S^{\prime}} X_{s} \tag{2.9}
\end{equation*}
$$

Set $L_{1}^{\prime}=\left\langle L_{0},\left(X_{s}\right)_{s \in S^{\prime}}\right\rangle$, then

$$
\begin{equation*}
\operatorname{rank} L_{1}^{\prime} \leq 3+m^{\prime}-3=m^{\prime}=\operatorname{rank} L_{1} \tag{2.10}
\end{equation*}
$$

Therefore, it suffices to check that $L_{1}^{\prime} \supset L_{1}$. The set $\{v\} \cup\left\{e_{s} \mid s \in S\right\}$ is a set of generators of $L_{1}=L$. By construction $v, v_{1}, v_{2}, v_{3} \in L_{1}^{\prime}$ and $e_{s} \in L_{1}^{\prime}$ for $s \neq u_{1}, u_{2}, u_{3}$. We see from (2.4), (2.5), (2.6) that $e_{s} \in L_{1}^{\prime}$ also for $s=u_{1}, u_{2}, u_{3}$. Thus $L_{1}^{\prime} \supset L_{1}$, hence $L_{1}^{\prime}=L_{1}$. From dimension count (2.10) we see that (2.9) holds.

We see that in both cases $\mu \geq 1$ and $\mu=0$, the sublattice L_{0} is a direct summand of L_{1}. Since by Proposition $1.6 L_{0}$ is not quasi-invertible as a Γ lattice, it follows that L_{1} and L are not quasi-invertible as Γ-lattices. Thus L is not quasi-invertible as a W-lattice. This completes the proof of Proposition 2.2.

Remark 2.4. Since $\amalg^{2}\left(\Gamma, J_{\Gamma}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$ (Voskresenskiĭ, see [BKLR, Section 10] for the notation and the result), our argument shows that $\amalg^{2}(\Gamma, L) \cong \mathbb{Z} / 2 \mathbb{Z}$.
Remark 2.5. The proof of [BKLR, Lemma 12.3] (which is a version with $\mu=0$ of Lemma 2.3 above) contains an inaccuracy, though the lemma as stated is correct. Namely, in [BKLR] we write that if there exists i such that Δ_{i} is of type $\mathbf{D}_{l_{i}}$ where $l_{i} \geq 3$ is odd, then we partition S_{i} for one such i into three non-empty subsets $S_{i, 1}, S_{i, 2}$ and $S_{i, 3}$ of odd cardinalities, and we partition all the other S_{i} as in [BKLR, (12.4)]. However, this partitioning of the sets S_{i} into three subsets does not satisfy [BKLR, (12.3)] for other i such that Δ_{i} is of type $\mathbf{D}_{l_{i}}$ with odd l_{i}. This inaccuracy can be easily corrected: we should partition S_{i} for each i such that Δ_{i} is of type $\mathbf{D}_{l_{i}}$ with odd l_{i} into three non-empty subsets of odd cardinalities.

3 More non-QUASI-PERMUTATION LATTICES

In this section we construct another family of non-quasi-permutation lattices.
3.1. For $i=1, \ldots, r$ let $Q_{i}=\mathbb{Z} \mathbf{A}_{n_{i}-1}$ and $P_{i}=\Lambda_{n_{i}}$ denote the root lattice and the weight lattice of $\mathbf{S L}_{n_{i}}$, respectively, and let $W_{i}=\mathfrak{S}_{n_{i}}$ denote the corresponding Weyl group (the symmetric group on n_{i} letters) acting on P_{i} and Q_{i}. Set $F_{i}=P_{i} / Q_{i}$, then W_{i} acts trivially on F_{i}. Set

$$
Q=\bigoplus_{i=1}^{r} Q_{i}, \quad P=\bigoplus_{i=1}^{r} P_{i}, \quad W=\prod_{i=1}^{r} W_{i}
$$

then $Q \subset P$ and the Weyl group W acts on Q and P. Set

$$
F=P / Q=\bigoplus_{i=1}^{r} F_{i}
$$

then W acts trivially on F.

We regard $Q_{i}=\mathbb{Z} \mathbf{A}_{n_{i}-1}$ and $P_{i}=\Lambda_{n_{i}}$ as the lattices described in Bourbaki [Bou, Planche I]. Then we have an isomorphism $F_{i} \cong \mathbb{Z} / n_{i} \mathbb{Z}$. Note that for each $1 \leq i \leq r$, the set $\left\{\alpha_{\varkappa, i} \mid 1 \leq \varkappa \leq n_{i}-1\right\}$ is a \mathbb{Z}-basis of Q_{i}.

Set $c=\operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right)$; we assume that $c>1$. Let $d>1$ be a divisor of c. For each $i=1, \ldots, r$, let $\nu_{i} \in \mathbb{Z}$ be such that $1 \leq \nu_{i}<d, \operatorname{gcd}\left(\nu_{i}, d\right)=1$, and assume that $\nu_{1}=1$. We write $\boldsymbol{\nu}=\left(\nu_{i}\right)_{i=1}^{r} \in \mathbb{Z}^{r}$. Let $\overline{\boldsymbol{\nu}}$ denote the image of $\boldsymbol{\nu}$ in $(\mathbb{Z} / d \mathbb{Z})^{r}$. Let $S_{\boldsymbol{\nu}} \subset(\mathbb{Z} / d \mathbb{Z})^{r} \subset \bigoplus_{i=1}^{r} \mathbb{Z} / n_{i} \mathbb{Z}=F$ denote the cyclic subgroup of order d generated by $\overline{\boldsymbol{\nu}}$. Let $L_{\boldsymbol{\nu}}$ denote the preimage of $S_{\boldsymbol{\nu}} \subset F$ in P under the canonical epimorphism $P \rightarrow F$, then $Q \subset L_{\boldsymbol{\nu}} \subset P$.

Proposition 3.2. Let W and the W-lattice L_{ν} be as in Subsection 3.1. In the case $d=2^{s}$ we assume that $\sum n_{i}>4$. Then L_{ν} is not quasi-permutation.

This proposition follows from Lemmas 3.3 and 3.8 below.
Lemma 3.3. Let $p \mid d$ be a prime. Then for any subgroup $\Gamma \subset W$ isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{m}$ for some natural m, the Γ-lattices L_{ν} and $L_{\mathbf{1}}:=L_{(1, \ldots, 1)}$ are equivalent for any $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{r}\right)$ as above (in particular, we assume that $\left.\nu_{1}=1\right)$.

Note that this lemma is trivial when $d=2$.
3.4. We compute the lattice $L_{\boldsymbol{\nu}}$ explicitly. First let $r=1$. We have $Q=Q_{1}$, $P=P_{1}$. Then P_{1} is generated by Q_{1} and an element $\omega \in P_{1}$ whose image in P_{1} / Q_{1} is of order n_{1}. We may take

$$
\omega=\frac{1}{n_{1}}\left[\left(n_{1}-1\right) \alpha_{1}+\left(n_{1}-2\right) \alpha_{2}+\cdots+2 \alpha_{n_{1}-2}+\alpha_{n_{1}-1}\right],
$$

where $\alpha_{1}, \ldots, \alpha_{n_{1}-1}$ are the simple roots, see [Bou, Planche I]. There exists exactly one intermediate lattice L between Q_{1} and P_{1} such that $\left[L: Q_{1}\right]=d$, and it is generated by Q_{1} and the element

$$
w=\frac{n_{1}}{d} \omega=\frac{1}{d}\left[\left(n_{1}-1\right) \alpha_{1}+\left(n_{1}-2\right) \alpha_{2}+\cdots+2 \alpha_{n_{1}-2}+\alpha_{n_{1}-1}\right] .
$$

Now for any natural r, the lattice L_{ν} is generated by Q and the element

$$
w_{\boldsymbol{\nu}}=\frac{1}{d} \sum_{i=1}^{r} \nu_{i}\left[\left(n_{i}-1\right) \alpha_{1, i}+\left(n_{i}-2\right) \alpha_{2, i}+\cdots+2 \alpha_{n_{i}-2, i}+\alpha_{n_{i}-1, i}\right] .
$$

In particular, $L_{\mathbf{1}}$ is generated by Q and

$$
w_{\mathbf{1}}=\frac{1}{d} \sum_{i=1}^{r}\left[\left(n_{i}-1\right) \alpha_{1, i}+\left(n_{i}-2\right) \alpha_{2, i}+\cdots+2 \alpha_{n_{i}-2, i}+\alpha_{n_{i}-1, i}\right]
$$

3.5. Proof of Lemma 3.3. Recall that $L_{\boldsymbol{\nu}}=\left\langle Q, w_{\boldsymbol{\nu}}\right\rangle$ with

$$
Q=\left\langle\alpha_{\varkappa, i}\right\rangle, \quad \text { where } \quad i=1, \ldots, r, \varkappa=1, \ldots, n_{i}-1
$$

Set $Q_{\nu}=\left\langle\nu_{i} \alpha_{\varkappa, i}\right\rangle$. Denote by \mathfrak{T}_{ν} the endomorphism of Q that acts on Q_{i} by multiplication by ν_{i}. We have $Q_{1}=Q, Q_{\nu}=\mathfrak{T}_{\nu} Q_{1}, w_{\nu}=\mathfrak{T}_{\nu} w_{1}$. Consider

$$
\mathfrak{T}_{\boldsymbol{\nu}} L_{\mathbf{1}}=\left\langle Q_{\boldsymbol{\nu}}, w_{\boldsymbol{\nu}}\right\rangle .
$$

Clearly the W-lattices $L_{\mathbf{1}}$ and $\mathfrak{T}_{\nu} L_{\mathbf{1}}$ are isomorphic. We have an embedding of W-lattices $Q \hookrightarrow L_{\nu}$, in particular, an embedding $Q \hookrightarrow L_{\mathbf{1}}$, which induces an embedding $\mathfrak{T}_{\boldsymbol{\nu}} Q \hookrightarrow \mathfrak{T}_{\boldsymbol{\nu}} L_{\mathbf{1}}$. Set $M_{\boldsymbol{\nu}}=L_{\boldsymbol{\nu}} / \mathfrak{T}_{\boldsymbol{\nu}} L_{\mathbf{1}}$, then we obtain a homomorphism of W-modules $Q / \mathfrak{T}_{\boldsymbol{\nu}} Q \rightarrow M_{\boldsymbol{\nu}}$, which is an isomorphism by Lemma 3.6 below.

Now let $p \mid d$ be a prime. Let $\Gamma \subset W$ be a subgroup isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{m}$ for some natural m. As in [LPR, Proof of Proposition 2.10], we use Roiter's version [Ro, Proposition 2] of Schanuel's lemma. We have exact sequences of Γ-modules

$$
\begin{gathered}
0 \rightarrow \mathfrak{T}_{\nu} L_{1} \rightarrow L_{\nu} \rightarrow M_{\nu} \rightarrow 0 \\
0 \rightarrow Q \xrightarrow{\mathfrak{T}_{\nu}} Q \rightarrow M_{\nu} \rightarrow 0 .
\end{gathered}
$$

Since all ν_{i} are prime to p, we have $|\Gamma| \cdot M_{\nu}=p^{m} M_{\nu}=M_{\nu}$, and by [Ro, Corollary of Proposition 3] the morphisms of $\mathbb{Z}[\Gamma]$-modules $L_{\nu} \rightarrow M_{\nu}$ and $Q \rightarrow M_{\nu}$ are projective in the sense of [Ro, §1]. Now by [Ro, Proposition 2] there exists an isomorphism of Γ-lattices $L_{\boldsymbol{\nu}} \oplus Q \simeq \mathfrak{T}_{\boldsymbol{\nu}} L_{\mathbf{1}} \oplus Q$. Since Q is a quasi-permutation W-lattice, it is a quasi-permutation Γ-lattice, and by Lemma 3.7 below, $L_{\boldsymbol{\nu}} \sim \mathfrak{T}_{\boldsymbol{\nu}} L_{\mathbf{1}}$ as Γ-lattices. Since $\mathfrak{T}_{\boldsymbol{\nu}} L_{\mathbf{1}} \simeq L_{\mathbf{1}}$, we conclude that $L_{\boldsymbol{\nu}} \sim L_{\mathbf{1}}$.

LEMmA 3.6. With the above notation $L_{\nu} / \mathfrak{T}_{\nu} L_{\mathbf{1}} \simeq Q / \mathfrak{T}_{\nu} Q=\bigoplus_{i=2}^{r} Q_{i} / \nu_{i} Q_{i}$.
Proof. We have $\mathfrak{T}_{\boldsymbol{\nu}} L_{\mathbf{1}}=\left\langle S_{\boldsymbol{\nu}}\right\rangle$, where $S_{\boldsymbol{\nu}}=\left\{\nu_{i} \alpha_{\varkappa, i}\right\}_{i, \varkappa} \cup\left\{w_{\boldsymbol{\nu}}\right\}$. Note that

$$
d w_{\boldsymbol{\nu}}=\sum_{i=1}^{r} \nu_{i}\left[\left(n_{i}-1\right) \alpha_{1, i}+\left(n_{i}-2\right) \alpha_{2, i}+\cdots+2 \alpha_{n_{i}-2, i}+\alpha_{n_{i}-1, i}\right]
$$

We see that $d w_{\nu}$ is a linear combination with integer coefficients of $\nu_{i} \alpha_{\varkappa, i}$ and that $\alpha_{n_{1}-1,1}$ appears in this linear combination with coefficient 1 (because $\nu_{1}=$ 1). Set $B_{\nu}^{\prime}=S_{\nu} \backslash\left\{\alpha_{n_{1}-1,1}\right\}$, then $\left\langle B_{\nu}^{\prime}\right\rangle \ni \alpha_{n_{1}-1,1}$, hence $\left\langle B_{\nu}^{\prime}\right\rangle=\left\langle S_{\nu}\right\rangle=\mathfrak{T}_{\nu} L_{\mathbf{1}}$, thus B_{ν}^{\prime} is a basis of $\mathfrak{T}_{\boldsymbol{\nu}} L_{\mathbf{1}}$. Similarly, the set $B_{\boldsymbol{\nu}}:=\left\{\alpha_{\varkappa, i}\right\}_{i_{, \varkappa}} \cup\left\{w_{\boldsymbol{\nu}}\right\} \backslash\left\{\alpha_{n_{1}-1,1}\right\}$ is a basis of $L_{\boldsymbol{\nu}}$. Both bases $B_{\boldsymbol{\nu}}$ and $B_{\boldsymbol{\nu}}^{\prime}$ contain $\alpha_{1,1}, \ldots, \alpha_{n_{1}-2,1}$ and $w_{\boldsymbol{\nu}}$. For all $i=2, \ldots, r$ and all $\varkappa=1, \ldots, n_{i}-1$, the basis B_{ν} contains $\alpha_{\varkappa, i}$, while B_{ν}^{\prime} contains $\nu_{i} \alpha_{\varkappa, i}$. We see that the homomorphism of W-modules $Q / \mathfrak{T}_{\nu} Q=$ $\bigoplus_{i=2}^{r} Q_{i} / \nu_{i} Q_{i} \rightarrow L_{\boldsymbol{\nu}} / \mathfrak{T}_{\boldsymbol{\nu}} L_{\mathbf{1}}$ is an isomorphism.

Lemma 3.7. Let Γ be a finite group, A and A^{\prime} be Γ-lattices. If $A \oplus B \sim A^{\prime} \oplus B^{\prime}$, where B and B^{\prime} are quasi-permutation Γ-lattices, then $A \sim A^{\prime}$.
Proof. Since B and B^{\prime} are quasi-permutation, by Lemma 1.3 they are equivalent to 0 , and we have

$$
A=A \oplus 0 \sim A \oplus B \sim A^{\prime} \oplus B^{\prime} \sim A^{\prime} \oplus 0=A^{\prime}
$$

This completes the proof of Lemma 3.7 and hence of Lemma 3.3.
To complete the proof of Proposition 3.2 it suffices to prove the next lemma.
Lemma 3.8. Let $p \mid d$ be a prime. Then there exists a subgroup $\Gamma \subset W$ isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{m}$ for some natural m such that the Γ-lattice $L_{\mathbf{1}}:=L_{(1, \ldots, 1)}$ is not quasi-permutation.
3.9. Denote by U_{i} the space $\mathbb{R}^{n_{i}}$ with canonical basis $\varepsilon_{1, i}, \varepsilon_{2, i}, \ldots, \varepsilon_{n_{i}, i}$. Denote by V_{i} the subspace of codimension 1 in U_{i} consisting of vectors with zero sum of the coordinates. The group $W_{i}=\mathfrak{S}_{n_{i}}$ (the symmetric group) permutes the basis vectors $\varepsilon_{1, i}, \varepsilon_{2, i}, \ldots, \varepsilon_{n_{i}, i}$ and thus acts on U_{i} and V_{i}. Consider the homomorphism of vector spaces

$$
\chi_{i}: U_{i} \rightarrow \mathbb{R}, \quad \sum_{\lambda=1}^{n_{i}} \beta_{\lambda, i} \varepsilon_{\lambda, i} \mapsto \sum_{\lambda=1}^{n_{i}} \beta_{\lambda, i}
$$

taking a vector to the sum of its coordinates. Clearly this homomorphism is W_{i}-equivariant, where W_{i} acts trivially on \mathbb{R}. We have short exact sequences

$$
0 \rightarrow V_{i} \rightarrow U_{i} \xrightarrow{\chi_{i}} \mathbb{R} \rightarrow 0
$$

Set $U=\bigoplus_{i=1}^{r} U_{i}, V=\bigoplus_{i=1}^{r} V_{i}$. The group $W=\prod_{i=1}^{r} W_{i}$ naturally acts on U and V, and we have an exact sequence of W-spaces

$$
\begin{equation*}
0 \rightarrow V \rightarrow U \xrightarrow{\chi} \mathbb{R}^{r} \rightarrow 0, \tag{3.1}
\end{equation*}
$$

where $\chi=\left(\chi_{i}\right)_{i=1, \ldots, r}$ and W acts trivially on \mathbb{R}^{r}.
Set $n=\sum_{i=1}^{r} n_{i}$. Consider the vector space $\bar{U}:=\mathbb{R}^{n}$ with canonical basis $\bar{\varepsilon}_{1}, \bar{\varepsilon}_{2}, \ldots, \bar{\varepsilon}_{n}$. Consider the natural isomorphism

$$
\varphi: U=\bigoplus_{i} U_{i} \xrightarrow{\sim} \bar{U}
$$

that takes $\varepsilon_{1,1}, \varepsilon_{2,1}, \ldots, \varepsilon_{n_{1}, 1}$ to $\bar{\varepsilon}_{1}, \bar{\varepsilon}_{2}, \ldots, \bar{\varepsilon}_{n_{1}}$, takes $\varepsilon_{1,2}, \varepsilon_{2,2}, \ldots, \varepsilon_{n_{2}, 2}$ to $\bar{\varepsilon}_{n_{1}+1}, \bar{\varepsilon}_{n_{1}+2}, \ldots, \bar{\varepsilon}_{n_{1}+n_{2}}$, and so on. Let \bar{V} denote the subspace of codimension 1 in \bar{U} consisting of vectors with zero sum of the coordinates. Sequence (3.1) induces an exact sequence of W-spaces

$$
\begin{equation*}
0 \rightarrow \varphi(V) \rightarrow \bar{V} \xrightarrow{\psi} \mathbb{R}^{r} \xrightarrow{\Sigma} \mathbb{R} \rightarrow 0 \tag{3.2}
\end{equation*}
$$

Here $\psi=\left(\psi_{i}\right)_{i=1, \ldots, r}$, where ψ_{i} takes a vector $\sum_{j=1}^{n} \beta_{j} \bar{\varepsilon}_{j} \in \bar{V}$ to $\sum_{\lambda=1}^{n_{i}} \beta_{n_{1}+\cdots+n_{i-1}+\lambda}$, and the map Σ takes a vector in \mathbb{R}^{r} to the sum of its coordinates. Note that W acts trivially on \mathbb{R}^{r} and \mathbb{R}.
We have a lattice $Q_{i} \subset V_{i}$ for each $i=1, \ldots, r$, a lattice $Q=\bigoplus_{i} Q_{i} \subset$ $\bigoplus_{i} V_{i}$, and a lattice $\bar{Q}:=\mathbb{Z} \mathbf{A}_{n-1}$ in \bar{V} with basis $\bar{\varepsilon}_{1}-\bar{\varepsilon}_{2}, \ldots, \bar{\varepsilon}_{n-1}-\bar{\varepsilon}_{n}$. The isomorphism φ induces an embedding of $Q=\bigoplus_{i} Q_{i}$ into \bar{Q}. Under this embedding

$$
\begin{aligned}
& \alpha_{1,1} \mapsto \bar{\alpha}_{1}, \alpha_{2,1} \mapsto \bar{\alpha}_{2}, \ldots, \alpha_{n_{1}-1,1} \mapsto \bar{\alpha}_{n_{1}-1}, \\
& \alpha_{1,2} \mapsto \bar{\alpha}_{n_{1}+1}, \alpha_{2,2} \mapsto \bar{\alpha}_{n_{1}+2}, \ldots, \alpha_{n_{2}-1,2} \mapsto \bar{\alpha}_{n_{1}+n_{2}-1}, \\
& \alpha_{1, r} \mapsto \bar{\alpha}_{n_{1}+n_{2}+\cdots+n_{r-1}+1}, \ldots, \alpha_{n_{r}-1, r} \mapsto \bar{\alpha}_{n-1},
\end{aligned}
$$

while $\bar{\alpha}_{n_{1}}, \bar{\alpha}_{n_{1}+n_{2}}, \ldots, \bar{\alpha}_{n_{1}+n_{2}+\cdots+n_{r-1}}$ are skipped.
3.10. We write L for $L_{\mathbf{1}}$ and w for $w_{\mathbf{1}} \in \frac{1}{d} Q$, where $Q=\bigoplus_{i} Q_{i}$. Then

$$
w=\sum_{i=1}^{r} w_{i}, \quad w_{i}=\frac{1}{d}\left[\left(n_{i}-1\right) \alpha_{1, i}+\cdots+\alpha_{n_{i}-1, i}\right] .
$$

Recall that

$$
Q_{i}=\mathbb{Z} \mathbf{A}_{n_{i}-1}=\left\{\left(a_{j}\right) \in \mathbb{Z}^{n_{i}} \mid \sum_{j=1}^{n_{i}} a_{j}=0\right\} .
$$

Set

$$
\bar{w}=\frac{1}{d} \sum_{j=1}^{n-1}(n-j) \bar{\alpha}_{j} .
$$

Set $\Lambda_{n}(d)=\langle\bar{Q}, \bar{w}\rangle$. Note that $\Lambda_{n}(d)=Q_{n}(n / d)$ with the notation of [LPR, Subsection 6.1]. Set

$$
N=\varphi\left(Q \otimes_{\mathbb{Z}} \mathbb{R}\right) \cap \Lambda_{n}(d)=\varphi(V) \cap \Lambda_{n}(d)
$$

Lemma 3.11. $\varphi(L)=N$.
Proof. Write $j_{1}=n_{1}, j_{2}=n_{1}+n_{2}, \ldots, j_{r-1}=n_{1}+\cdots+n_{r-1}$. Set $J=$ $\{1,2, \ldots, n-1\} \backslash\left\{j_{1}, j_{2}, \ldots, j_{r-1}\right\}$. Set

$$
\mu=\frac{1}{d} \sum_{j \in J}(n-j) \bar{\alpha}_{j}=\bar{w}-\sum_{i=1}^{r-1} \frac{n-j_{i}}{d} \bar{\alpha}_{j_{i}}
$$

Note that $d \mid n$ and $d \mid j_{i}$ for all i, hence the coefficients $\left(n-j_{i}\right) / d$ are integral, and therefore $\mu \in \Lambda_{n}(d)$. Since also $\mu \in \varphi\left(Q \otimes_{\mathbb{Z}} \mathbb{R}\right)$, we see that $\mu \in N$.
Let $y \in N$. Then

$$
y=b \bar{w}+\sum_{j=1}^{n-1} a_{j} \bar{\alpha}_{j}
$$

where $b, a_{j} \in \mathbb{Z}$, because $y \in \Lambda_{n}(d)$. We see that in the basis $\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{n-1}$ of $\Lambda_{n}(d) \otimes_{\mathbb{Z}} \mathbb{R}$, the element y contains $\bar{\alpha}_{j_{i}}$ with coefficient

$$
b \frac{n-j_{i}}{d}+a_{j_{i}} .
$$

Since $y \in \varphi\left(Q \otimes_{\mathbb{Z}} \mathbb{R}\right)$, this coefficient must be 0 :

$$
b \frac{n-j_{i}}{d}+a_{j_{i}}=0
$$

Consider

$$
\begin{aligned}
y-b \mu=y-b\left(\bar{w}-\sum_{i=1}^{r-1} \frac{n-j_{i}}{d} \bar{\alpha}_{j_{i}}\right) & =y-b \bar{w}+\sum_{i=1}^{r-1} \frac{b\left(n-j_{i}\right)}{d} \bar{\alpha}_{j_{i}} \\
= & \sum_{j=1}^{n-1} a_{j} \bar{\alpha}_{j}+\sum_{i=1}^{r-1} \frac{b\left(n-j_{i}\right)}{d} \bar{\alpha}_{j_{i}}=\sum_{j \in J} a_{j} \bar{\alpha}_{j}
\end{aligned}
$$

where $a_{j} \in \mathbb{Z}$. We see that $y \in\left\langle\bar{\alpha}_{j}(j \in J), \mu\right\rangle$ for any $y \in N$, hence $N \subset$ $\left\langle\bar{\alpha}_{j}(j \in J), \mu\right\rangle$. Conversely, $\mu \in N$ and $\bar{\alpha}_{j} \in N$ for $j \in J$, hence $\left\langle\bar{\alpha}_{j}(j \in\right.$ $J), \mu\rangle \subset N$, thus

$$
\begin{equation*}
N=\left\langle\bar{\alpha}_{j}(j \in J), \mu\right\rangle \tag{3.3}
\end{equation*}
$$

Now
$\varphi(w)=\frac{1}{d}\left[\sum_{j=1}^{n_{1}-1}\left(n_{1}-j\right) \bar{\alpha}_{j}+\sum_{j=1}^{n_{2}-1}\left(n_{2}-j\right) \bar{\alpha}_{n_{1}+j}+\cdots+\sum_{j=1}^{n_{r}-1}\left(n_{r}-j\right) \bar{\alpha}_{j_{r-1}+j}\right]$
while
$\mu=\frac{1}{d}\left[\sum_{j=1}^{n_{1}-1}(n-j) \bar{\alpha}_{j}+\sum_{j=1}^{n_{2}-1}\left(n-n_{1}-j\right) \bar{\alpha}_{n_{1}+j}+\cdots+\sum_{j=1}^{n_{r}-1}\left(n_{r}-j\right) \bar{\alpha}_{j_{r-1}+j}\right]$.
Thus
$\mu=\varphi(w)+\frac{n-n_{1}}{d} \sum_{j=1}^{n_{1}-1} \bar{\alpha}_{j}+\frac{n-n_{1}-n_{2}}{d} \sum_{j=1}^{n_{2}-1} \bar{\alpha}_{n_{1}+j}+\cdots+\frac{n_{r}}{d} \sum_{j=1}^{n_{r}-1} \bar{\alpha}_{j_{r-1}+j}$,
where the coefficients

$$
\frac{n-n_{1}}{d}, \quad \frac{n-n_{1}-n_{2}}{d}, \quad \ldots, \quad \frac{n_{r}}{d}
$$

are integral. We see that

$$
\begin{equation*}
\left\langle\bar{\alpha}_{j}(j \in J), \mu\right\rangle=\left\langle\bar{\alpha}_{j}(j \in J), \varphi(w)\right\rangle \tag{3.4}
\end{equation*}
$$

From (3.3) and (3.4) we obtain that

$$
N=\left\langle\bar{\alpha}_{j}(j \in J), \mu\right\rangle=\left\langle\bar{\alpha}_{j}(j \in J), \varphi(w)\right\rangle=\varphi(L)
$$

3.12. Now let $p \mid \operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right)$. Recall that $W=\prod_{i=1}^{r} \mathfrak{S}_{n_{i}}$. Since $p \mid n_{i}$ for all i, we can naturally embed $\left(\mathfrak{S}_{p}\right)^{n_{i} / p}$ into $\mathfrak{S}_{n_{i}}$. We obtain a natural embedding

$$
\Gamma:=(\mathbb{Z} / p \mathbb{Z})^{n / p} \hookrightarrow\left(\mathfrak{S}_{p}\right)^{n / p} \hookrightarrow W
$$

In order to prove Lemma 3.8, it suffices to prove the next Lemma 3.13. Indeed, if n has an odd prime factor p, then by Lemma $3.13 L$ is not quasi-permutation. If $n=2^{s}$, then we take $p=2$. By the assumptions of Proposition 3.2, $n>4=$ 2^{2}, and again by Lemma $3.13 L$ is not quasi-permutation. This proves Lemma 3.8.

Lemma 3.13. If either p odd or $n>p^{2}$, then L is not quasi-permutation as a Γ-lattice.

Proof. By Lemma 3.11 it suffices to show that N is not quasi-permutation. Since $N=\Lambda_{n}(d) \cap \varphi(V)$, we have an embedding

$$
\Lambda_{n}(d) / N \hookrightarrow \bar{V} / \varphi(V)
$$

By (3.2) $\bar{V} / \varphi(V) \simeq \mathbb{R}^{r-1}$ and W acts on $\bar{V} / \varphi(V)$ trivially. Thus $\Lambda_{n}(d) / N \simeq$ \mathbb{Z}^{r-1} and W acts on \mathbb{Z}^{r-1} trivially. We have an exact sequence of W-lattices

$$
0 \rightarrow N \rightarrow \Lambda_{n}(d) \rightarrow \mathbb{Z}^{r-1} \rightarrow 0
$$

with trivial action of W on \mathbb{Z}^{r-1}. We obtain that $N \sim \Lambda_{n}(d)$ as a W-lattice, and hence, as a Γ-lattice. Therefore, it suffices to show that $\Lambda_{n}(d)=Q_{n}(n / d)$ is not quasi-permutation as a Γ-lattice if either p is odd or $n>p^{2}$. This is done in [LPR] in the proofs of Propositions 7.4 and 7.8. This completes the proof of Lemma 3.13 and hence those of Lemma 3.8 and Proposition 3.2.

4 Quasi-permutation lattices - Case \mathbf{A}_{n-1}

In this section we prove Theorem 0.2 in the special case when G is isogenous to a direct product of groups of type \mathbf{A}_{n-1} for $n \geq 3$.
We maintain the notation of Subsection 3.1. Let L be an intermediate lattice between Q and P, i.e., $Q \subset L \subset P(L=Q$ are $L=P$ are possible). Let S denote the image of L in F, then L is the preimage of $S \subset F$ in P. Since W acts trivially on F, the subgroup $S \subset F$ is W-invariant, and therefore, the sublattice $L \subset P$ is W-invariant.

Theorem 4.1. With the notation of Subsection 3.1 assume that $n_{i} \geq 3$ for all $i=1,2, \ldots, r$. Let L between Q and P be an intermediate lattice, and assume that $L \cap P_{i}=Q_{i}$ for all i such that $n_{i}=3$ or $n_{i}=4$. If L is a quasi-permutation W-lattice, then $L=Q$.

Proof. We prove the theorem by induction on r. The case $r=1$ follows from our assumptions if $n_{1}=3$ or $n_{1}=4$, and from Proposition 1.9 if $n_{1}>4$.

We assume that $r>1$ and that the assertion is true for $r-1$. We prove it for r.

For i between 1 and r we set

$$
Q_{i}^{\prime}=\bigoplus_{j \neq i} Q_{j}, \quad P_{i}^{\prime}=\bigoplus_{j \neq i} P_{j}, \quad F_{i}^{\prime}=\bigoplus_{j \neq i} F_{j}, \quad W_{i}^{\prime}=\prod_{j \neq i} W_{j}
$$

then $Q_{i}^{\prime} \subset Q, P_{i}^{\prime} \subset P, F_{i}^{\prime} \subset F$ and $W_{i}^{\prime} \subset W$. If L is a quasi-permutation W-lattice, then by Lemma 1.7 $L \cap P_{i}^{\prime}$ is a quasi-permutation W_{i}^{\prime}-lattice, and by the induction hypothesis $L \cap P_{i}^{\prime}=Q_{i}^{\prime}$.
Now let $Q \subset L \subset P$, and assume that $L \cap P_{i}^{\prime}=Q_{i}^{\prime}$ for all $i=1, \ldots, r$. We shall show that if $L \neq Q$ then L is not a quasi-permutation W-lattice. This will prove Theorem 4.1.
Assume that $L \neq Q$. Set $S=L / Q \subset F$, then $S \neq 0$. We first show that $\left(L \cap P_{i}^{\prime}\right) / Q_{i}^{\prime}=S \cap F_{i}^{\prime}$. Indeed, clearly $\left(L \cap P_{i}^{\prime}\right) / Q_{i}^{\prime} \subset L / Q \cap P_{i}^{\prime} / Q_{i}^{\prime}=S \cap F_{i}^{\prime}$. Conversely, let $f \in S \cap F_{i}^{\prime}$, then f can be represented by some $l \in L$ and by some $p \in P_{i}^{\prime}$, and $q:=l-p \in Q$. Since $L \supset Q$, we see that $p=l-q \in L \cap P_{i}^{\prime}$, hence $f \in\left(L \cap P_{i}^{\prime}\right) / Q_{i}^{\prime}$, and therefore $S \cap F_{i}^{\prime} \subset\left(L \cap P_{i}^{\prime}\right) / Q_{i}^{\prime}$. Thus $\left(L \cap P_{i}^{\prime}\right) / Q_{i}^{\prime}=S \cap F_{i}^{\prime}$.

By assumption we have $L \cap P_{i}^{\prime}=Q_{i}^{\prime}$, and we obtain that $S \cap F_{i}^{\prime}=0$ for all $i=1, \ldots, r$. Let $S_{(i)}$ denote the image of S under the projection $F \rightarrow F_{i}$. We have a canonical epimorphism $p_{i}: S \rightarrow S_{(i)}$ with kernel $S \cap F_{i}^{\prime}$. Since $S \cap F_{i}^{\prime}=0$, we see that $p_{i}: S \rightarrow S_{(i)}$ is an isomorphism. Set $q_{i}=p_{i} \circ p_{1}^{-1}: S_{(1)} \rightarrow S_{(i)}$, it is an isomorphism.
We regard $Q_{i}=\mathbb{Z} \mathbf{A}_{n_{i}-1}$ and $P_{i}=\Lambda_{n_{i}}$ as the lattices described in [Bou, Planche I]. Then we have an isomorphism $F_{i} \cong \mathbb{Z} / n_{i} \mathbb{Z}$. Since $S_{(i)}$ is a subgroup of the cyclic group $F_{i} \cong \mathbb{Z} / n_{i} \mathbb{Z}$ and $S \cong S_{(i)}$, we see that S is a cyclic group, and we see also that $|S|$ divides n_{i} for all i, hence $d:=|S|$ divides $c:=\operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right)$.

We describe all subgroups S of order d in $\bigoplus_{i=1}^{r} \mathbb{Z} / n_{i} \mathbb{Z}$ such that $S \cap$ $\left(\bigoplus_{j \neq i} \mathbb{Z} / n_{j} \mathbb{Z}\right)=0$ for all i. The element $a_{i}:=n_{i} / d+n_{i} \mathbb{Z}$ is a generator of $S_{(i)} \subset F_{i}=\mathbb{Z} / n_{i} \mathbb{Z}$. Set $b_{i}=q_{i}\left(a_{1}\right)$. Since b_{i} is a generator of $S_{(i)}$, we have $b_{i}=\bar{\nu}_{i} a_{i}$ for some $\bar{\nu}_{i} \in(\mathbb{Z} / d \mathbb{Z})^{\times}$. Let $\nu_{i} \in \mathbb{Z}$ be a representative of $\bar{\nu}_{i}$ such that $1 \leq \nu_{i}<d$, then $\operatorname{gcd}\left(\nu_{i}, d\right)=1$. Moreover, since $q_{1}=\mathrm{id}$, we have $b_{1}=a_{1}$, hence $\bar{\nu}_{1}=1$ and $\nu_{1}=1$. We obtain an element $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{r}\right)$. With the notation of Subsection 3.1 we have $S=S_{\boldsymbol{\nu}}$ and $L=L_{\nu}$.
By Proposition 3.2 L_{ν} is not a quasi-permutation W-lattice. Thus L is not quasi-permutation, which completes the proof of Theorem 4.1.

5 Proof of Theorem 0.2

Lemma 5.1 (well-known). Let P_{1} and P_{2} be abelian groups. Set $P=P_{1} \oplus P_{2}=$ $P_{1} \times P_{2}$, and let $\pi_{1}: P \rightarrow P_{1}$ denote the canonical projection. Let $L \subset P$ be a
subgroup. If $\pi_{1}(L)=L \cap P_{1}$, then

$$
L=\left(L \cap P_{1}\right) \oplus\left(L \cap P_{2}\right) .
$$

Proof. Let $x \in L$. Set $x_{1}=\pi_{1}(x) \in \pi_{1}(L)$. Since $\pi_{1}(L)=L \cap P_{1}$, we have $x_{1} \in L \cap P_{1}$. Set $x_{2}=x-x_{1}$, then $x_{2} \in L \cap P_{2}$. We have $x=x_{1}+x_{2}$. This completes the proof of Lemma 5.1.
5.2. Let I be a finite set. For any $i \in I$ let D_{i} be a connected Dynkin diagram. Let $D=\bigsqcup_{i} D_{i}$ (disjoint union). Let Q_{i} and P_{i} be the root and weight lattices of D_{i}, respectively, and W_{i} be the Weyl group of D_{i}. Set

$$
Q=\bigoplus_{i \in I} Q_{i}, \quad P=\bigoplus_{i \in I} P_{i}, \quad W=\prod_{i \in I} W_{i} .
$$

5.3. We construct certain quasi-permutation lattices L such that $Q \subset L \subset P$.

Let $\left\{\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{s}, j_{s}\right\}\right\}$ be a set of non-ordered pairs in I such that $D_{i_{l}}$ and $D_{j_{l}}$ for all $l=1, \ldots, s$ are of type $\mathbf{B}_{1}=\mathbf{A}_{1}$ and all the indices $i_{1}, j_{1}, \ldots, i_{s}, j_{s}$ are distinct. Fix such an l. We write $\{i, j\}$ for $\left\{i_{l}, j_{l}\right\}$ and we set $D_{i, j}:=D_{i} \sqcup D_{j}$, $Q_{i, j}:=Q_{i} \oplus Q_{j}, P_{i, j}:=P_{i} \oplus P_{j}$. We regard $D_{i, j}$ as a Dynkin diagram of type \mathbf{D}_{2}, and we denote by $M_{i, j}$ the intermediate lattice between $Q_{i, j}$ and $P_{i, j}$ isomorphic to $\mathcal{X}\left(\mathbf{S O}_{4}\right)$, the character lattice of the group $\mathbf{S O}_{4}$; see Section 1 , after Lemma 1.7. Let f_{i} be a generator of the lattice Q_{i} of rank 1 , and let f_{j} be a generator of Q_{j}, then $P_{i}=\left\langle\frac{1}{2} f_{i}\right\rangle$ and $P_{j}=\left\langle\frac{1}{2} f_{j}\right\rangle$. Set $e_{1}^{(l)}=\frac{1}{2}\left(f_{i}+f_{j}\right)$, $e_{2}^{(l)}=\frac{1}{2}\left(f_{i}-f_{j}\right)$, then $\left\{e_{1}^{(l)}, e_{2}^{(l)}\right\}$ is a basis of $M_{i, j}$, and

$$
\begin{equation*}
M_{i, j}=\left\langle Q_{i, j}, e_{1}^{(l)}\right\rangle, \quad P_{i, j}=\left\langle M_{i, j}, \frac{1}{2}\left(e_{1}^{(l)}+e_{2}^{(l)}\right)\right\rangle \tag{5.1}
\end{equation*}
$$

We have $M_{i, j} \cap P_{i}=Q_{i}, M_{i, j} \cap P_{j}=Q_{j}$, and $\left[M_{i, j}: Q_{i, j}\right]=2$. Concerning the Weyl group, we have

$$
W\left(D_{i, j}\right)=W\left(D_{i}\right) \times W\left(D_{j}\right)=W\left(\mathbf{D}_{2}\right)=\mathfrak{S}_{2} \times\{ \pm 1\}
$$

where the symmetric group \mathfrak{S}_{2} permutes the basis vectors $e_{1}^{(l)}$ and $e_{2}^{(l)}$ of $M_{i, j}$, while the group $\{ \pm 1\}$ acts on $M_{i, j}$ by multiplication by scalars. We say that $M_{i, j}$ is an indecomposable quasi-permutation lattice (it corresponds to the semisimple Cayley group $\mathbf{S O}_{4}$ which does not decompose into a direct product of its normal subgroups).
Set $I^{\prime}=I \backslash \bigcup_{l=1}^{s}\left\{i_{l}, j_{l}\right\}$. For $i \in I^{\prime}$ let M_{i} be any quasi-permutation intermediate lattice between Q_{i} and P_{i} (such an intermediate lattice exists if and only if D_{i} is of one of the types $\mathbf{A}_{n}, \mathbf{B}_{n}, \mathbf{C}_{n}, \mathbf{D}_{n}, \mathbf{G}_{2}$, see Proposition 1.9). We say that M_{i} is a simple quasi-permutation lattice (it corresponds to a stably Cayley simple group). We set

$$
\begin{equation*}
L=\bigoplus_{l=1}^{s} M_{i_{l}, j_{l}} \oplus \bigoplus_{i \in I^{\prime}} M_{i} \tag{5.2}
\end{equation*}
$$

We say that a lattice L as in (5.2) is a direct sum of indecomposable quasipermutation lattices and simple quasi-permutation lattices. Clearly L is a quasipermutation W-lattice.
Theorem 5.4. Let D, Q, P, W be as in Subsection 5.2. Let L be an intermediate lattice between Q and P, i.e., $Q \subset L \subset P$ (where $L=Q$ and $L=P$ are possible). If L is a quasi-permutation W-lattice, then L is as in (5.2). Namely, then L is a direct sum of indecomposable quasi-permutation lattices $M_{i, j}$ for some set of pairs $\left\{\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{s}, j_{s}\right\}\right\}$ and some family of simple quasi-permutation intermediate lattices M_{i} between Q_{i} and P_{i} for $i \in I^{\prime}$.

Remark 5.5. The set of pairs $\left\{\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{s}, j_{s}\right\}\right\}$ in Theorem 5.4 is uniquely determined by L. Namely, a pair $\{i, j\}$ belongs to this set if and only if the Dynkin diagrams D_{i} and D_{j} are of type $\mathbf{B}_{1}=\mathbf{A}_{1}$ and

$$
L \cap P_{i}=Q_{i}, \quad L \cap P_{j}=Q_{j}, \quad \text { while } L \cap\left(P_{i} \oplus P_{j}\right) \neq Q_{i} \oplus Q_{j} .
$$

Proof of Theorem 5.4. We prove the theorem by induction on $m=|I|$, where I is as in Subsection 5.2. The case $m=1$ is trivial.
We assume that $m \geq 2$ and that the theorem is proved for all $m^{\prime}<m$. We prove it for m. First we consider three special cases.

Split case. Assume that for some subset $A \subset I, A \neq I, A \neq \emptyset$, we have $\pi_{A}(L)=$ $L \cap P_{A}$, where $P_{A}=\bigoplus_{i \in A} P_{i}$ and $\pi_{A}: P \rightarrow P_{A}$ is the canonical projection. Then by Lemma 5.1 we have $L=\left(L \cap P_{A}\right) \oplus\left(L \cap P_{A^{\prime}}\right)$, where $A^{\prime}=I \backslash A$. By Lemma 1.7 $L \cap P_{A}$ is a quasi-permutation W_{A}-lattice, where $W_{A}=\prod_{i \in A} W_{i}$. By the induction hypothesis the lattice $L \cap P_{A}$ is a direct sum of indecomposable quasi-permutation lattices and simple quasi-permutation lattices. Similarly, $L \cap P_{A^{\prime}}$ is such a direct sum. We conclude that $L=\left(L \cap P_{A}\right) \oplus\left(L \cap P_{A^{\prime}}\right)$ is such a direct sum, and we are done.
\mathbf{A}_{n-1}-case. Assume that all D_{i} are of type $\mathbf{A}_{n_{i}-1}$, where $n_{i} \geq 3$ (so \mathbf{A}_{1} is not permitted). We assume also that when $n_{i}=3$ and when $n_{i}=4$ (that is, for \mathbf{A}_{2} and for $\mathbf{A}_{3}=\mathbf{D}_{3}$) we have $L \cap P_{i}=Q_{i}$ (for $n_{i}>4$ this is automatic because $L \cap P_{i}$ is a quasi-permutation W_{i}-lattice, see Proposition 1.9). In this case by Theorem 4.1 we have $L=Q=\bigoplus Q_{i}$, hence L is a direct sum of simple quasi-permutation lattices, and we are done.
\mathbf{A}_{1}-case. Assume that all D_{i} are of type \mathbf{A}_{1}. Then by [BKLR, Theorem 18.1] the lattice L is a direct sum of indecomposable quasi-permutation lattices and simple quasi-permutation lattices, and we are done.
Now we shall show that these three special cases exhaust all the quasipermutation lattices. In other words, we shall show that if $Q \subset L \subset P$ and L is not as in one of these three cases, then L is not quasi-permutation. This will complete the proof of the theorem.
For the sake of contradiction, let us assume that $Q \subset L \subset P$, that L is not in one of the three special cases above, and that L is a quasi-permutation W-lattice.

We shall show in three steps that L is as in Proposition 2.2. By Proposition $2.2, L$ is not quasi-permutation, which contradicts our assumptions. This contradiction will prove the theorem.

Step 1. For $i \in I$ consider the intersection $L \cap P_{i}$, it is a quasi-permutation W_{i}-lattice (by Lemma 1.7), hence D_{i} is of one of the types $\mathbf{A}_{n-1}, \mathbf{B}_{n}, \mathbf{C}_{n}, \mathbf{D}_{n}$, \mathbf{G}_{2} (by Proposition 1.9). Note that $\pi_{i}(L) \neq L \cap P_{i}$ (otherwise we are in the split case).
Now assume that for some $i \in I$, the Dynkin diagram D_{i} is of type \mathbf{G}_{2} or \mathbf{C}_{n} for some $n \geq 3$, or D_{i} is of type \mathbf{A}_{2} and $L \cap P_{i} \neq Q_{i}$. Then $L \cap P_{i}$ is a quasipermutation W_{i}-lattice (by Lemma 1.7), hence $L \cap P_{i}=P_{i}$ (by Proposition 1.9). Since $P_{i} \supset \pi_{i}(L) \supset L \cap P_{i}$, we obtain that $\pi_{i}(L)=L \cap P_{i}$, which is impossible. Thus no D_{i} can be of type \mathbf{G}_{2} or $\mathbf{C}_{n}, n \geq 3$, and if D_{i} is of type \mathbf{A}_{2} for some i, then $L \cap P_{i}=Q_{i}$.
Thus all D_{i} are of types $\mathbf{A}_{n-1}, \mathbf{B}_{n}$ or \mathbf{D}_{n}, and if D_{i} is of type \mathbf{A}_{2} for some $i \in I$, then $L \cap P_{i}=Q_{i}$. Since L is not as in the \mathbf{A}_{n-1}-case, we may assume that one of the D_{i}, say D_{1}, is of type \mathbf{B}_{n} for some $n \geq 1\left(\mathbf{B}_{1}=\mathbf{A}_{1}\right.$ is permitted), or of type \mathbf{D}_{n} for some $n \geq 4$, or of type \mathbf{D}_{3} with $L \cap P_{1} \neq Q_{1}$. Indeed, otherwise all D_{i} are of type $\mathbf{A}_{n_{i}-1}$ for $n_{i} \geq 3$, and in the cases $\mathbf{A}_{2}\left(n_{i}=3\right)$ and \mathbf{A}_{3} $\left(n_{i}=4\right)$ we have $L \cap P_{i}=Q_{i}$, i.e., we are in the \mathbf{A}_{n-1}-case, which contradicts our assumptions.

Step 2. In this step, using the Dynkin diagram D_{1} of type \mathbf{B}_{n} or \mathbf{D}_{n} from the previous step, we construct a quasi-permutation sublattice $L^{\prime} \subset L$ of index 2 such that L^{\prime} is as in (5.2). First we consider the cases \mathbf{B}_{n} and \mathbf{D}_{n} separately.
Assume that D_{1} is of type \mathbf{B}_{n} for some $n \geq 1\left(\mathbf{B}_{1}=\mathbf{A}_{1}\right.$ is permitted). We have $\left[P_{1}: Q_{1}\right]=2$. Since $P_{1} \supset \pi_{1}(L) \supsetneq L \cap P_{1} \supset Q_{1}$, we see that $\pi_{1}(L)=P_{1}$ and $L \cap P_{1}=Q_{1}$. Set $M_{1}=Q_{1}$. We have $\pi_{1}(L)=P_{1}, L \cap P_{1}=M_{1}$, and $\left[P_{1}: M_{1}\right]=2$.
Now assume that D_{1} is of type \mathbf{D}_{n} for some $n \geq 4$, or of type \mathbf{D}_{3} with $L \cap P_{1} \neq$ Q_{1}. Set $M_{1}=L \cap P_{1}$, then M_{1} is a quasi-permutation W_{1}-lattice by Lemma 1.7, and it follows from Proposition 1.9 that $\left(W_{1}, M_{1}\right) \simeq \mathcal{X}\left(\mathbf{S O}_{2 n}\right)$, where $\mathcal{X}\left(\mathbf{S O}_{2 n}\right)$ denotes the character lattice of $\mathbf{S O}_{2 n}$; see Section 1, after Lemma 1.7. It follows that $\left[M_{1}: Q_{1}\right]=2$ and $\left[P_{1}: M_{1}\right]=2$. Since $P_{1} \supset \pi_{1}(L) \supsetneq L \cap P_{1}=M_{1}$, we see that $\pi_{1}(L)=P_{1}$. Again we have $\pi_{1}(L)=P_{1}, L \cap P_{1}=M_{1}$, and $\left[P_{1}: M_{1}\right]=2$.

Now we consider together the cases when D_{1} is of type \mathbf{B}_{n} for some $n \geq 1$ and when D_{1} is of type \mathbf{D}_{n} for some $n \geq 3$, where in the case \mathbf{D}_{3} we have $L \cap P_{1} \neq Q_{1}$. Set

$$
L^{\prime}:=\operatorname{ker}\left[L \xrightarrow{\pi_{1}} P_{1} \rightarrow P_{1} / M_{1}\right] .
$$

Since $\pi_{1}(L)=P_{1}$, and $\left[P_{1}: M_{1}\right]=2$, we have $\left[L: L^{\prime}\right]=2$. Clearly we have $\pi_{1}\left(L^{\prime}\right)=M_{1}$. Set

$$
L_{1}^{\dagger}:=\operatorname{ker}\left[\pi_{1}: L \rightarrow P_{1}\right]=L \cap P_{1}^{\prime}
$$

where $P_{1}^{\prime}=\bigoplus_{i \neq 1} P_{i}$. Since L is a quasi-permutation W-lattice, by Lemma 1.7 the lattice L_{1}^{\dagger} is a quasi-permutation W_{1}^{\prime}-lattice, where $W_{1}^{\prime}=\prod_{i \neq 1} W_{i}$. By the induction hypothesis, L_{1}^{\dagger} is a direct sum of indecomposable quasi-permutation lattices and simple quasi-permutation lattices as in (5.2). Since $M_{1}=L \cap P_{1}$, we have $M_{1} \subset L^{\prime} \cap P_{1}$, and $L^{\prime} \cap P_{1} \subset L \cap P_{1}=M_{1}$, hence $L^{\prime} \cap P_{1}=M_{1}=$ $\pi_{1}\left(L^{\prime}\right)$, and by Lemma 5.1 we have $L^{\prime}=M_{1} \oplus L_{1}^{\dagger}$. Since M_{1} is a simple quasipermutation lattice, we conclude that L^{\prime} is a direct sum of indecomposable quasi-permutation lattices and simple quasi-permutation lattices as in (5.2), and $\left[L: L^{\prime}\right]=2$.

Step 3. In this step we show that L is as in Proposition 2.2. We write

$$
L^{\prime}=\bigoplus_{l=1}^{s}\left(L^{\prime} \cap P_{i_{l}, j_{l}}\right) \oplus \bigoplus_{i \in I^{\prime}}\left(L^{\prime} \cap P_{i}\right)
$$

where $P_{i_{l}, j_{l}}=P_{i_{l}} \oplus P_{j_{l}}$, the Dynkin diagrams $D_{i_{l}}$ and $D_{j_{l}}$ are of type $\mathbf{A}_{1}=\mathbf{B}_{1}$, and $L^{\prime} \cap P_{i_{l}, j_{l}}=M_{i_{l}, j_{l}}$ as in (5.1). For any $i \in I^{\prime}$, we have $\left[\pi_{i}(L): \pi_{i}\left(L^{\prime}\right)\right] \leq 2$, because $\left[L: L^{\prime}\right]=2$. Furthermore, for $i \in I^{\prime}$ we have

$$
\pi_{i}\left(L^{\prime}\right)=L^{\prime} \cap P_{i} \subset L \cap P_{i} \subsetneq \pi_{i}(L)
$$

hence $\left[\pi_{i}(L):\left(L \cap P_{i}\right)\right]=2$ and $L^{\prime} \cap P_{i}=L \cap P_{i}$. Similarly, for any $l=1, \ldots, s$, if we write $i=i_{l}, j=j_{l}$, then we have

$$
M_{i, j}=L^{\prime} \cap P_{i, j} \subset L \cap P_{i, j} \subsetneq \pi_{i, j}(L) \subset P_{i, j}, \quad\left[P_{i, j}: M_{i, j}\right]=2
$$

whence $\pi_{i, j}(L)=P_{i, j}, L \cap P_{i, j}=M_{i, j}$, and therefore $\left[\pi_{i, j}(L):\left(L \cap P_{i, j}\right)\right]=$ $\left[P_{i, j}: M_{i, j}\right]=2$ and $L^{\prime} \cap P_{i, j}=M_{i, j}=L \cap P_{i, j}$.
We view the Dynkin diagram $D_{i_{l}} \sqcup D_{j_{l}}$ of type $\mathbf{A}_{1} \sqcup \mathbf{A}_{1}$ corresponding to the pair $\left\{i_{l}, j_{l}\right\}(l=1, \ldots, s)$ as a Dynkin diagram of type \mathbf{D}_{2}. Thus we view L^{\prime} as a direct sum of indecomposable quasi-permutation lattices and simple quasi-permutation lattices corresponding to Dynkin diagrams of type $\mathbf{B}_{n}, \mathbf{D}_{n}$ and \mathbf{A}_{n}.
We wish to show that L is as in Proposition 2.2. We change our notation in order to make it closer to that of Proposition 2.2.
As in Subsection 2.1, we now write D_{i} for Dynkin diagrams of types $\mathbf{B}_{l_{i}}$ and $\mathbf{D}_{l_{i}}$ only, appearing in L^{\prime}, where $\mathbf{B}_{1}=\mathbf{A}_{1}, \mathbf{B}_{2}=\mathbf{C}_{2}, \mathbf{D}_{2}=\mathbf{A}_{1} \sqcup \mathbf{A}_{1}$ and $\mathbf{D}_{3}=\mathbf{A}_{3}$ are permitted, but for $\mathbf{D}_{l_{i}}$ with $l_{i}=2,3$ we require that

$$
L \cap P_{i}=M_{i}:=\mathcal{X}\left(\mathbf{S O}_{2 l_{i}}\right)
$$

We write $L_{i}^{\prime}:=L \cap P_{i}=L^{\prime} \cap P_{i}$. We have $\left[\pi_{i}(L): L_{i}^{\prime}\right]=2$, hence $\left[P_{i}: L_{i}^{\prime}\right] \geq 2$. If D_{i} is of type $\mathbf{B}_{l_{i}}$, then $\left[P_{i}: L_{i}^{\prime}\right]=2$. If D_{i} is of type $\mathbf{D}_{l_{i}}$, then $L_{i}^{\prime}=L \cap P_{i} \neq Q_{i}$, for \mathbf{D}_{2} and \mathbf{D}_{3} by our assumption and for $\mathbf{D}_{l_{i}}$ with $l_{i} \geq 4$ because $L \cap P_{i}$ is a quasi-permutation W_{i}-lattice (see Proposition 1.9); again we have $\left[P_{i}: L_{i}^{\prime}\right]=2$.

We see that for all i we have $\left[P_{i}: L_{i}^{\prime}\right]=2, \pi_{i}(L)=P_{i}$, and the lattice $L_{i}^{\prime}=M_{i}$ is as in Subsection 2.1. We realize the root system $R\left(D_{i}\right)$ of type $\mathbf{B}_{l_{i}}$ or $\mathbf{D}_{l_{i}}$ in the standard way (cf. [Bou, Planches II, IV]) in the space $V_{i}:=\mathbb{R}^{l_{i}}$ with basis $\left(e_{s}\right)_{s \in S_{i}}$, then L_{i}^{\prime} is the lattice generated by the basis vectors $\left(e_{s}\right)_{s \in S_{i}}$ of V_{i}, and we have $P_{i}=\left\langle L_{i}^{\prime}, \frac{1}{2} x_{i}\right\rangle$, where

$$
x_{i}=\sum_{s \in S_{i}} e_{s} \in L_{i}^{\prime} .
$$

In particular, when D_{i} is of type \mathbf{D}_{2} we have $x_{i}=e_{1}^{(l)}+e_{2}^{(l)}$ with the notation of formula (5.1).

As in Subsection 2.1, we write Δ_{ι} for Dynkin diagrams of type $\mathbf{A}_{n_{t}^{\prime}-1}$ appearing in L^{\prime}, where $n_{\iota}^{\prime} \geq 3$ and for $\mathbf{A}_{3}=\mathbf{D}_{3}$ we require that $L \cap P_{\iota}=Q_{\iota}$. We write $L_{\iota}^{\prime}:=L \cap P_{\iota}=L^{\prime} \cap P_{\iota}$. Then $L_{\iota}^{\prime}=Q_{\iota}$ for all ι, for \mathbf{A}_{2} by Step 1 , for \mathbf{A}_{3} by our assumption, and for other $\mathbf{A}_{n_{\iota}^{\prime}-1}$ because L_{ι}^{\prime} is a quasi-permutation $W_{\iota}{ }^{-}$ lattice; see Proposition 1.9. We have $\pi_{\iota}(L) \supsetneq L \cap P_{\iota}=L_{\iota}^{\prime}$ and $\left[\pi_{\iota}(L): L_{\iota}^{\prime}\right]=$ $\left[\pi_{\iota}(L): \pi_{\iota}\left(L^{\prime}\right)\right] \leq 2$ (because $\left[L: L^{\prime}\right]=2$). It follows that $\left[\pi_{\iota}(L): L_{\iota}^{\prime}\right]=2$, i.e., $\left[\pi_{\iota}(L): Q_{\iota}\right]=2$. We know that P_{ι} / Q_{ι} is a cyclic group of order n_{ι}^{\prime}. Since it has a subgroup $\pi_{\iota}(L) / Q_{\iota}$ of order 2 , we conclude that n_{ι}^{\prime} is even, $n_{\iota}^{\prime}=2 n_{\iota}$ (where $2 n_{\iota} \geq 4$), and $\pi_{\iota}(L) / Q_{\iota}$ is the unique subgroup of order 2 of the cyclic group P_{ι} / Q_{ι} of order $2 n_{\iota}$. As in Subsection 2.1, we realize the root system Δ_{ι} of type $\mathbf{A}_{2 n_{\iota}-1}$ in the standard way (cf. [Bou, Planche I]) in the subspace V_{ι} of vectors with zero sum of the coordinates in the space $\mathbb{R}^{2 n_{\iota}}$ with basis $\varepsilon_{\iota, 1}, \ldots, \varepsilon_{\iota, 2 n_{\iota}}$. We set

$$
\xi_{\iota}=\varepsilon_{\iota, 1}-\varepsilon_{\iota, 2}+\varepsilon_{\iota, 3}-\varepsilon_{\iota, 4}+\cdots+\varepsilon_{\iota, 2 n_{\iota}-1}-\varepsilon_{\iota, 2 n_{\iota}},
$$

then $\xi_{\iota} \in L_{\iota}^{\prime}$ and $\frac{1}{2} \xi_{\iota} \in \pi_{\iota}(L) \backslash L_{\iota}^{\prime}$ (cf. [Bou, Planche I, formula (VI)]), hence $\pi_{\iota}(L)=\left\langle L_{\iota}^{\prime}, \frac{1}{2} \xi_{\iota}\right\rangle$.
Now we set

$$
v=\frac{1}{2} \sum_{i \in I} x_{i}+\frac{1}{2} \sum_{\iota=1}^{\mu} \xi_{\iota} .
$$

We claim that

$$
L=\left\langle L^{\prime}, v\right\rangle
$$

Proof of the claim. Let $w \in L \backslash L^{\prime}$, then $L=\left\langle L^{\prime}, w\right\rangle$, because $\left[L: L^{\prime}\right]=2$. Set $z_{i}=\frac{1}{2} x_{i}-\pi_{i}(w)$, then $z_{i} \in L_{i}^{\prime} \subset L^{\prime}$, because $\frac{1}{2} x_{i}, \pi_{i}(w) \in \pi_{i}(L) \backslash L_{i}^{\prime}$. Similarly, we set $\zeta_{\iota}=\frac{1}{2} \xi_{\iota}-\pi_{\iota}(w)$, then $\zeta_{\iota} \in L_{\iota}^{\prime} \subset L^{\prime}$. We see that

$$
v=w+\sum_{i} z_{i}+\sum_{\iota} \zeta_{\iota},
$$

where $\sum_{i} z_{i}+\sum_{\iota} \zeta_{\iota} \in L^{\prime}$, and the claim follows.

It follows from the claim that L is as in Proposition 2.2 (we use the assumption that we are not in the \mathbf{A}_{1}-case). Now by Proposition $2.2 L$ is not quasiinvertible, hence not quasi-permutation, which contradicts our assumptions. This contradiction proves Theorem 5.4.

Proof of Theorem 0.2. Theorem 0.2 follows immediately from Theorem 5.4 by virtue of Proposition 1.8.

6 Proof of Theorem 0.3

In this section we deduce Theorem 0.3 from Theorem 0.2.
Let G be a stably Cayley semisimple k-group. Then $\bar{G}:=G \times_{k} \bar{k}$ is stably Cayley over an algebraic closure \bar{k} of k. By Theorem $0.2, G_{\bar{k}}=\prod_{j \in J} G_{j, \bar{k}}$ for some finite index set J, where each $G_{j, \bar{k}}$ is either a stably Cayley simple group or is isomorphic to $\mathbf{S O}_{4, \bar{k}}$. (Recall that $\mathbf{S O}_{4, \bar{k}}$ is stably Cayley and semisimple, but is not simple.) Here we write $G_{j, \bar{k}}$ for the factors in order to emphasize that they are defined over \bar{k}. By Remark 5.5 the collection of direct factors $G_{j, \bar{k}}$ is determined uniquely by \bar{G}. The Galois group $\operatorname{Gal}(\bar{k} / k)$ acts on $G_{\bar{k}}$, hence on J. Let Ω denote the set of orbits of $\operatorname{Gal}(\bar{k} / k)$ in J. For $\omega \in \Omega$ set $G_{\bar{k}}^{\omega}=\prod_{j \in \omega} G_{j, \bar{k}}$, then $\bar{G}=\prod_{\omega \in \Omega} G_{\bar{k}}^{\omega}$. Each $G_{\bar{k}}^{\omega}$ is $\operatorname{Gal}(\bar{k} / k)$-invariant, hence it defines a k-form G_{k}^{ω} of $G_{\bar{k}}^{\omega}$. We have $G=\prod_{\omega \in \Omega} G_{k}^{\omega}$.

For each $\omega \in \Omega$ choose $j=j_{\omega} \in \omega$. Let l_{j} / k denote the Galois extension in \bar{k} corresponding to the stabilizer of j in $\operatorname{Gal}(\bar{k} / k)$. The subgroup $G_{j, \bar{k}}$ is $\operatorname{Gal}\left(\bar{k} / l_{j}\right)$-invariant, hence it comes from an l_{j}-form $G_{j, l_{j}}$. By the definition of Weil's restriction of scalars (see e.g. [Vo2, Subsection 3.12]) $G_{k}^{\omega} \cong R_{l_{j} / k} G_{j, l_{j}}$, hence $G \cong \prod_{\omega \in \Omega} R_{l_{j} / k} G_{j, l_{j}}$. Each $G_{j, l_{j}}$ is either absolutely simple or an l_{j}-form of $\mathbf{S O}_{4}$.

We complete the proof using an argument from [BKLR, Proof of Lemma 11.1]. We show that $G_{j, l_{j}}$ is a direct factor of $G_{l_{j}}:=G \times_{k} l_{j}$. It is clear from the definition that $G_{j, \bar{k}}$ is a direct factor of $G_{\bar{k}}$ with complement $G_{\bar{k}}^{\prime}=\prod_{i \in J \backslash\{j\}} G_{i, \bar{k}}$. Then $G_{\bar{k}}^{\prime}$ is $\operatorname{Gal}\left(\bar{k} / l_{j}\right)$-invariant, hence it comes from some l_{j}-group $G_{l_{j}}^{\prime}$. We have $G_{l_{j}}=G_{j, l_{j}} \times{ }_{l_{j}} G_{l_{j}}^{\prime}$, hence $G_{j, l_{j}}$ is a direct factor of $G_{l_{j}}$.
Recall that $G_{j, l_{j}}$ is either a form of $\mathbf{S O}_{4}$ or absolutely simple. If it is a form of SO_{4}, then clearly it is stably Cayley over l_{j}. It remains to show that if $G_{j, l_{j}}$ is absolutely simple, then $G_{j, l_{j}}$ is stably Cayley over l_{j}. The group $G_{\bar{k}}$ is stably Cayley over \bar{k}. Since $G_{j, \bar{k}}$ is a direct factor of the stably Cayley \bar{k} group $G_{\bar{k}}$ over the algebraically closed field \bar{k}, by [LPR, Lemma 4.7] $G_{j, \bar{k}}$ is stably Cayley over \bar{k}. Comparing [LPR, Theorem 1.28] and [BKLR, Theorem 1.4], we see that $G_{j, l_{j}}$ is either stably Cayley over l_{j} (in which case we are done) or an outer form of $\mathbf{P G L} \mathbf{L}_{2 n}$ for some $n \geq 2$. Thus assume by the way of contradiction that $G_{j, l_{j}}$ is an outer form of $\mathbf{P} \mathbf{G L}_{2 n}$ for some $n \geq 2$. Then by [BKLR, Example 10.7] the character lattice of $G_{j, l_{j}}$ is not quasi-invertible,
and by [BKLR, Proposition 10.8] the group $G_{j, l_{j}}$ cannot be a direct factor of a stably Cayley l_{j}-group. This contradicts the fact that $G_{j, l_{j}}$ is a direct factor of the stably Cayley l_{j}-group $G_{l_{j}}$. We conclude that $G_{j, l_{j}}$ cannot be an outer form of $\mathbf{P G L}{ }_{2 n}$ for any $n \geq 2$. Thus $G_{j, l_{j}}$ is stably Cayley over l_{j}, as desired.

A Appendix: Some quasi-Permutation character lattices

The positive assertion of Proposition 1.9 above is well known. It is contained in [CK, Theorem 0.1] and in [BKLR, Theorem 1.4]. However, [BKLR] refers to [CK, Theorem 0.1], and [CK] refers to a series of results on rationality (rather than only stable rationality) of corresponding generic tori. In this appendix for the reader's convenience we provide a proof of the following positive result in terms of lattices only.

Proposition A.1. Let G be any form of one of the following groups

$$
\mathbf{S L}_{3}, \mathbf{P G L}_{n}(n \text { odd }), \mathbf{S O}_{n}(n \geq 3), \mathbf{S p}_{2 n}, \mathbf{G}_{2}
$$

or an inner form of $\mathbf{P G L} \mathbf{L}_{n}$ (n even). Then the character lattice of G is quasipermutation.

Proof. $\mathbf{S O}_{2 n+1}$. Let L be the character lattice of $\mathbf{S O}_{2 n+1}$ (including $\mathbf{S O}_{3}$). Then the Dynkin diagram is $D=\mathbf{B}_{n}$. The Weyl group is $W=\mathfrak{S}_{n} \ltimes(\mathbb{Z} / 2 \mathbb{Z})^{n}$. Then $L=\mathbb{Z}^{n}$ with the standard basis e_{1}, \ldots, e_{n}. The group \mathfrak{S}_{n} naturally permutes e_{1}, \ldots, e_{n}, while $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ acts by sign changes. Since W permutes the basis up to \pm sign, the W-lattice L is quasi-permutation, see [Lo, § 2.8].
$\mathbf{S O}_{2 n}$, any form, inner or outer. Let L be the character lattice of $\mathbf{S O}_{2 n}$ (including $\mathbf{S O}_{4}$). Then the Dynkin diagram is $D=\mathbf{D}_{n}$, with root system $R=R(D)$. We consider the pair (A, L) where $A=\operatorname{Aut}(R, L)$, then (A, L) is isomorphic to the character lattice of $\mathbf{S O}_{2 n+1}$, hence is quasi-permutation.
$\mathbf{S p}_{2 n}$. The character lattice of $\mathbf{S} \mathbf{p}_{2 n}$ is isomorphic to the character lattice of $\mathbf{S O}_{2 n+1}$, hence is quasi-permutation.
$\mathbf{P G L} \mathbf{L}_{n}$, inner form. The character lattice of $\mathbf{P G L} \mathbf{L}_{n}$ is the root lattice $L=Q$ of \mathbf{A}_{n-1}. It is a quasi-permutation \mathfrak{S}_{n}-lattice, cf. [Lo, Example 2.8.1].
$\mathbf{P G L} \mathbf{L}_{n}$, outer form, n odd. Let P be the weight lattice of \mathbf{A}_{n-1}, where $n \geq 3$ is odd. Then P is generated by elements e_{1}, \ldots, e_{n} subject to the relation

$$
e_{1}+\cdots+e_{n}=0
$$

The automorphism group $A=\operatorname{Aut}\left(\mathbf{A}_{n-1}\right)$ is the product of \mathfrak{S}_{n} and \mathfrak{S}_{2}. The group A acts on P as follows: \mathfrak{S}_{n} permutes e_{1}, \ldots, e_{n}, and the nontrivial element of \mathfrak{S}_{2} takes each e_{i} to $-e_{i}$.
We denote by M the A-lattice of rank $2 n+1$ with basis $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n}, u$. The group \mathfrak{S}_{n} permutes s_{i} and permutes $t_{i}(i=1, \ldots, n)$, and the nontrivial
element of \mathfrak{S}_{2} permutes s_{i} and t_{i} for each i. The group A acts trivially on u. Clearly M is a permutation lattice.

We define an A-epimorphism $\pi: M \rightarrow P$ as follows:

$$
\pi: \quad s_{i} \mapsto e_{i}, \quad t_{i} \mapsto-e_{i}, \quad u \mapsto 0
$$

Set $M^{\prime}=\operatorname{ker} \pi$, it is an A-lattice of rank $n+2$. We show that it is a permutation lattice. We write down a set of $n+3$ generators of M^{\prime} :

$$
\rho_{i}=s_{i}+t_{i}, \quad \sigma=s_{1}+\cdots+s_{n}, \quad \tau=t_{1}+\cdots+t_{n}, \quad u .
$$

There is a relation

$$
\rho_{1}+\cdots+\rho_{n}=\sigma+\tau
$$

We define a new set of $n+2$ generators:

$$
\tilde{\rho}_{i}=\rho_{i}+u, \quad \tilde{\sigma}=\sigma+\frac{n-1}{2} u, \quad \tilde{\tau}=\tau+\frac{n-1}{2} u
$$

where $\frac{n-1}{2}$ is integral because n is odd. We have

$$
\tilde{\rho}_{1}+\cdots+\tilde{\rho}_{n}-\tilde{\sigma}-\tilde{\tau}=u
$$

hence this new set indeed generates M^{\prime}, hence it is a basis. The group \mathfrak{S}_{n} permutes $\tilde{\rho}_{1}, \ldots, \tilde{\rho}_{n}$, while \mathfrak{S}_{2} permutes $\tilde{\sigma}$ and $\tilde{\tau}$. Thus A permutes our basis, and therefore M^{\prime} is a permutation lattice. We have constructed a left resolution of P :

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow P \rightarrow 0
$$

(with permutation lattices M and M^{\prime}), which by duality gives a right resolution of the root lattice $Q \cong P^{\vee}$ of \mathbf{A}_{n-1} :

$$
0 \rightarrow Q \rightarrow M^{\vee} \rightarrow\left(M^{\prime}\right)^{\vee} \rightarrow 0
$$

with permutation lattices M^{\vee} and $\left(M^{\prime}\right)^{\vee}$. Thus the character lattice Q of $\mathbf{P G L} L_{n}$ is a quasi-permutation A-lattice for odd n.

The assertion that the character lattice of G is quasi-permutation in the remaining cases $\mathbf{S L}_{3}$ and \mathbf{G}_{2} follows from the next Lemma A.2.
Lemma A. 2 ([BKLR, Lemma 2.5]). Let Γ be a finite group and L be any Γ lattice of rank $r=1$ or 2 . Then L is quasi-permutation.

This lemma, which is a version of [Vo2, §4.9, Examples 6 and 7], was stated in [BKLR] without proof. For the sake of completeness we supply a short proof here.
We may assume that Γ is a maximal finite subgroup of $\mathbf{G} \mathbf{L}_{r}(\mathbb{Z})$. If $r=1$, then $\mathbf{G L} \mathbf{L}_{1}(\mathbb{Z})=\{ \pm 1\}$, and the lemma reduces to the case of the character lattice of SO_{3} treated above.

Now let $r=2$. Up to conjugation there are two maximal finite subgroups of $\mathbf{G L}_{2}(\mathbb{Z})$, they are isomorphic to the dihedral groups D_{8} (of order 8) and to D_{12} (of order 12), resp., see e.g. [Lo, $\S 1.10 .1$, Table 1.2]. The group D_{8} is the group of symmetries of a square, and in this case it suffices to show that the character lattice of $\mathbf{S O}_{5}$ is quasi-permutation, which we have done above. The group D_{12} is the group of symmetries of a regular hexagon, and in this case it suffices to show that the character lattice of $\mathbf{P G L}_{3}$ (outer form) is quasi-permutation, which we have done above as well. This completes the proofs of Lemma A. 2 and Proposition A.1.

Acknowledgements. The authors are very grateful to the anonymous referee for prompt and thorough refereeing the paper and for noticing a (correctable) error in Theorem 4.1 and in the proof of Theorem 5.4. The authors thank Rony A. Bitan for his help in proving Lemma 3.8. The first-named author was supported in part by the Hermann Minkowski Center for Geometry. The second-named author was supported in part by the Israel Science Foundation, grant $1207 / 12$, and by the Minerva Foundation through the Emmy Noether Institute for Mathematics.

References

[BKLR] M. Borovoi, B. Kunyavskiĭ, N. Lemire and Z. Reichstein, Stably Cayley groups in characteristic 0, Int. Math. Res. Not. 2014, no. 19, 53405397.
[Bou] N. Bourbaki, Groupes et algèbres de Lie. Chap. IV-VI, Hermann, Paris, 1968.
[CTS] J.-L. Colliot-Thélène et J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), 175-229.
[CK] A. Cortella and B. Kunyavskiĭ, Rationality problem for generic tori in simple groups, J. Algebra 225 (2000), 771-793.
[LPR] N. Lemire, V.L. Popov and Z. Reichstein, Cayley groups, J. Amer. Math. Soc. 19 (2006), 921-967.
[Lo] M. Lorenz, Multiplicative Invariant Theory, Encyclopaedia of Mathematical Sciences, 135, Invariant Theory and Algebraic Transformation Groups, VI, Springer-Verlag, Berlin, 2005.
[Ro] A. V. Roiter, On integral representations belonging to one genus, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 1315-1324; English transl.: Amer. Math. Soc. Transl. (2) 71 (1968), 49-59.
[Sw] R. G. Swan, Noether's problem in Galois theory, in: Emmy Noether in Bryn Mawr (Bryn Mawr, Pa., 1982), 21-40, Springer, New York, 1983.
[Vo1] V.E. Voskresenskiĭ, Birational properties of linear algebraic groups, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 3-19; English transl.: Math. USSR Izv. 4 (1970), 1-17.
[Vo2] V.E. Voskresenskiŭ, Algebraic Groups and Their Birational Invariants, Transl. Math. Monographs, vol. 179, Amer. Math. Soc., Providence, RI, 1998.

Mikhail Borovoi
Raymond and Beverly
Sackler School of
Boris Kunyavskiĭ
Department of Mathematics
Mathematical Sciences, Tel Aviv University 6997801 Tel Aviv
Israel
borovoi@post.tau.ac.il
Bar-Ilan University
5290002 Ramat Gan
Israel
kunyav@macs.biu.ac.il

