Elementare Geometrie

SS 2007

Übung 10

1) Es seien g und g' zwei Geraden. Es sei x ein Maßstab auf g und x' ein Maßstab auf g'. Es seien $P,Q \in g$ die Punkte mit den Koordinaten x(P)=3 und x(Q)=4 und es seien $P',Q' \in g'$ die Punkte mit den Koordinaten x'(P')=5 und x'(Q')=7.

Es gibt eine eindeutige bestimmte affine Abbildung $f: g \to g'$, so dass f(P) = P' und f(Q) = Q'. Es sei $R \in g$ der Punkt mit x(R) = 1. Man berechne f(R).

2) Es seien A, B, C drei Punkte der Ebene, die nicht auf einer Geraden liegen. Es sei S ein Vektor mit S(A) = F. Dann gibt es eine Relation

$$S = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}, \quad \lambda, \mu \in \mathbb{R}.$$

Wie kann man die Vektoren $\lambda \overrightarrow{AB}$ und $\mu \overrightarrow{AC}$ geometrisch konstruieren, wenn der Punkt F gegeben ist?

Man berechne die Zahlen λ und μ aus den Seitenlängen und Winkeln des Dreiecks ABC in den folgenden Fällen:

- 1) F ist der Mittelpunkt von BC.
- 2) $F \in \overline{BC}$ ist der Schnittpunkt der Winkelhalbierenden durch A mit \overline{BC} .
- 3) Es seien g und h zwei parallele Geraden. Es sei P ein Punkt, der auf keiner der Geraden liegt. Dann definiert man eine Abbildung $f:g\to h$ durch die folgende Vorschrift: Es sei $A\in g$. Es sei B der Schnittpunkt der Geraden PA mit h. Dann setzt man f(A)=B. Man beweise, dass f eine affine Abbildung ist.
- 4) Es sei ABC ein Dreieck. Es sei g eine Parallele zu AB, die die Seite \overline{AC} in einem Punkt E und die Seite \overline{BC} in einem Punkt F schneidet. Man beweise, dass sich die Geraden AF und BE und die Seitenhalbierende von AB in einem Punkt schneiden. (**Hinweis:** Ceva)