Length and reflections: odds and ends

Angela Carnevale

Geometry meets Combinatorics in Bielefeld September 2022

What this talk is about

Permutations and length

$$S_n = permutations of El,...rd$$

 $\forall one-line \quad \sigma \in S_5 \quad \sigma = 51432$
 $inv(\sigma) = [l(ij): 1 \le i < j \le h : \sigma(i) > \sigma(j)])$
 $(W_1 S) \quad W generaled by S (involutions) + other rel.$
 $l_S(w) = min \{r: w = S_{i_1} ... S_{i_{T-1}} \le cS_j\}$
 $if_{S_1 = S_{i_1}} inv(\sigma)$

Bruhat order

$$T = \{ w \le w' \mid w \in w, s \in S \}$$

 $T = all transposition$

Bruhad graph

$$B(w) = (w, E)$$
 with $u \rightarrow v$ if $L(u) < l(v)$
 $a = 1$

"Odds"...

Joint with Francesco Brenti, and with Francesco Brenti and Bridget Tenner.

Odd length

$$\tau \in S_n$$

 $L(\sigma) = 1\{\ldots : \sigma(i) > \sigma(j) \neq j - i \equiv ((mod 2) \}$
 $L(s_1 + 32) = 4$

Some facts

 Odd length introduced in the context of zeta functions in algebra. (Klopsch - Voll '09, Stasinski - Voll '13)

Applications to the enumeration of matrices over finite fields.
 (Stasinski - Voll '13, Brenti - C. '17)

 Generalised to classical Weyl groups and finite Coxeter groups. (Brenti - C. '19)

Odd and even major indices were recently studied.
 (Brenti - Sentinelli '21)

 $\sigma = 562314$

graph of σ
 size of s = l(σ)

Odd diagrams

 $\sigma = 562314$

graph of σ
 s = odd diagram of σ

Odd diagrams (Brenti - C. 21)

 $\sigma = 562314$

graph of σ
 a odd diagram of σ

- $L(\sigma) = |\text{odd diagram of } \sigma|$
- "The usual kind of magic" works to define an odd Schubert variety associated with a permutation σ. of din L(σ)
- The diagram of a permutation knows everything about the permutation...

Odd diagrams

...how much does an **odd** diagram know about a permutation? Not so much!

Questions:

- How many odd diagrams are there?
- How do odd diagram classes look like?

How many odd diagrams are there?

The first values of the sequence $|\{\text{odd diagram of } \sigma : \sigma \in S_n\}|$ are:

1, 2, 5, 17, 70, 351, 2041, 13732, 103873, 882213.

 $\sigma = 562314$

 σ contains the pattern 213

Finding patterns

A **key fact** is the following:

If $\sigma \sim \tau$ with $\sigma \neq \tau$ then σ contains the pattern 213 and τ contains the pattern 312.

 $\sigma = 4362517$

 $\tau = 6352714$

Odd diagrams and permutation patterns

Theorem (Brenti - C. - Tenner '22)

Every odd diagram class contains

- at most one permutation avoiding the pattern 213, and
- at most one permutation avoiding 312.

If these permutations exist, they are the **longest** and **shortest** elements of the class, respectively.

Corollary. There are at least *n*-th-Catalan-many (and in fact, at least *n*-th-Bell-many) odd diagrams arising from permutations in S_n .

Odd diagrams and Bruhat order

Every odd diagram class contains a **unique minimal** and a **unique maximal element**.

*	*				•	
		*	*	*		•
*	*	•				
•						
	*		•			
	•					
				•		

*	*					•
		*	*	*	•	
*	*			•		
•						
	*		•			
	•					
		•				

$$\sigma = 6731425$$

 $\tau = 6751423$

Odd diagrams and Bruhat order

Odd diagrams and Bruhat order

Odd diagram classes are:

- Antichains in right weak order.
- ► Not self-dual in general.
- Rank-symmetric (Fan Guo '22). They show that the Poincaré polynomials of odd diagram classes are products of finite geometric progressions.

Length and reflections

Fact. The Coxeter length of an element can be written in terms of reflections:

$$\ell(\sigma) = |\{t \in T : \ell(\sigma t) < \ell(\sigma)\}|$$

Similarly, one can interpret the odd length written in terms of **odd reflections**:

$$L(\sigma) = |\{t \in T : \ell(t) \equiv 1 \pmod{4}, \, \ell(\sigma t) < \ell(\sigma)\}|$$

Joint with Matthew Dyer and Paolo Sentinelli.

k-analogues

Let (W, S) be a Coxeter system and T its set of reflections.

For
$$k \ge 0$$
 we let
 $T_k := \left\{ t \in T : \frac{\ell(t) - 1}{2} \le k \right\}.$

k=0 Tk=S k>70 & W finte Tk=T Set $u \triangleleft_k v$ if and only if $\ell(u) = \ell(v) - 1$ and $uv^{-1} \in T_k$.

Define \leq_k to be the transitive closure of \lhd_k .

We call \leq_k a *k*-intermediate order on *W*.

Intermediate orders

Intermediate orders

Intermediate orders

Theorem (C. - Dyer - Sentinelli '22)

The *k*-intermediate orders are graded by the Coxeter length ℓ .

- Special case of a more general result, pertaining to orders defined starting with more general sets of reflections.
- Projections to (left) parabolic quotients are order preserving.
- ▶ *k*-intermediate orders on *S*^{*n*} are Sperner.

k-Bruhat graphs, *k*-absolute length

Using the same idea, we define other *k*-analogues.

k-absolute length

$$d_k(w) = d_k(e, w)$$

2

Unimodality?

Example

$$\sum_{\sigma \in S_{4}} \frac{l_{1}(\sigma)}{\sigma} = 1 + 5 \times + 10 \times^{2} + 7 \times^{3} + \times^{4}$$

Conjecture (Brenti - C. '21)

```
\sum_{w \in S_n} x^{L(w)} \text{ is unimodal for all } n \ge 5.
```

Conjecture (C. - Dyer - Sentinelli '22)

 $\sum_{w \in W} x^{\ell_k(w)} \text{ is unimodal for any finite Coxeter group } W \text{ and all } k \ge 0.$

The end

		*	*	•	
*	*		•		
	•				
*					•
•					
		•			

		*	*	•	
*	*				•
	•				
*		•			
٠					
			•		

		*	*	•	
*	*				•
	•				
*			•		
•					
		•			