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1. GKZ - thin simplices

Normalized volume
Let P C RY be a lattice polytope: polytope with vertices in Z9.

The normalized volume volz(P) is defined such that

volz(P) =1
—

P is the convex hull of an affine lattice basis of Z N aff(P).
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1. GKZ - thin simplices

Normalized volume
Let P C RY be a lattice polytope: polytope with vertices in Z9.

The normalized volume volz(P) is defined such that

volz(P) =1
—
P is the convex hull of an affine lattice basis of Z N aff(P).

@ If P has dimension d, then volz(P) = d!vol(P).
o Volz(P) S Zzl.
@ Special cases: volyz({point}) = 1; volz(0) := 1.
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1. GKZ - thin simplices

Let S € RY be d-dimensional lattice simplex.
Thin simplices (GKZ ‘'94)

S is thin if its Newton number vanishes:

v(S) = Y (~1)4mE)=mF) yol,(F) =0,
Fel0,S]

where [0, S] is the face poset of S.
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Let S € R? be d-dimensional lattice simplex.
Thin simplices (GKZ '94)
S is thin if its Newton number vanishes:
v(S) = Y (~1)4mE)=mF) yol,(F) =0,

Fel0,S]

where [0, S] is the face poset of S.

Example

p(S)=2-2-3.243.-1—1
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1. GKZ - thin simplices

Let S € R? be d-dimensional lattice simplex.
Thin simplices (GKZ '94)
S is thin if its Newton number vanishes:
v(S) = Y (~1)4mE)=mF) yol,(F) =0,

Fel0,S]

where [0, S] is the face poset of S.

Example

y(S)=21-2-3-243-1-1=4-6+3—1
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1. GKZ - thin simplices

Let S € R? be d-dimensional lattice simplex.
Thin simplices (GKZ '94)
S is thin if its Newton number vanishes:
v(S) = Y (~1)4mE)=mF) yol,(F) =0,

Fel0,S]

where [0, S] is the face poset of S.

Example

y(S)=212-3.2+43.1-1=4-6+3-1=0
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1. GKZ - thin simplices

S is called hollow if S has no lattice points in its relative interior.
Theorem (GKZ ‘94)
Let d > 1.

e v(S) > 0.

o S lattice pyramid — S thin — S hollow.

@ Ford=1o0ord=2: S thin < S hollow.
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1. GKZ - thin simplices

S is called hollow if S has no lattice points in its relative interior.
Theorem (GKZ ‘94)
Let d > 1.

e v(S) > 0.

o S lattice pyramid — S thin — S hollow.

@ Ford=1o0ord=2: S thin < S hollow.

(GKZ '94) "A classification of thin lattice simplices seems to be
an interesting problem in the geometry of numbers."”
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1. GKZ - thin simplices

Combinatorial viewpoint

volz(S) equals number of lattice points in half-open parallelepiped M(S)
spanned by S x {1}.

S x {1}
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1. GKZ - thin simplices

Combinatorial viewpoint

volz(S) equals number of lattice points in half-open parallelepiped M(S)
spanned by S x {1}.

S x {1}

v(S) equals number of interior lattice points in T1(S).
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1. GKZ - thin simplices

Questions:
@ Classification known for d = 2. What about d = 37
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1. GKZ - thin simplices

Questions:
@ Classification known for d = 2. What about d = 37
@ Formula sometimes negative for polytopes. What are thin polytopes?
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2. Stanley - local h*-polynomials

Background
(Stanley ‘87): Definition of (toric) g- and h-polynomials of (lower)

Eulerian posets. For P rational polytope, gjp p)(t) has nonnegative
coefficients; hyy p)(t) has nonnegative, palindromic, unimodal coefficients.
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2. Stanley - local h*-polynomials

Background

(Stanley ‘87): Definition of (toric) g- and h-polynomials of (lower)
Eulerian posets. For P rational polytope, gjp p)(t) has nonnegative
coefficients; hyy p)(t) has nonnegative, palindromic, unimodal coefficients.
(Stanley '92): h-vectors of triangulations of a polytope are monotone
under refinements.

Main tool: Nonnegativity, palindromicity [and unimodality] of local
h-polynomials /7-(t) of [regular] subdivisions T of polytopes.
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2. Stanley - local h*-polynomials

Background

(Stanley ‘87): Definition of (toric) g- and h-polynomials of (lower)
Eulerian posets. For P rational polytope, gjp p)(t) has nonnegative
coefficients; hyy p)(t) has nonnegative, palindromic, unimodal coefficients.
(Stanley '92): h-vectors of triangulations of a polytope are monotone
under refinements.

Main tool: Nonnegativity, palindromicity [and unimodality] of local
h-polynomials /7-(t) of [regular] subdivisions T of polytopes.

Let P C RY be d-dimensional lattice polytope.
P has h*-polynomial hi(t) € Z>o[t]:

n hp(t)
1+ |(nPynz9|t" = (1_Pt
n>1

with
hp(1) = volz(P).
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2. Stanley - local h*-polynomials

Definition (Stanley ‘92; Borisov-Mavlyutov ‘03; Katz-Stapledon ‘16)
P lattice polytope has local h*-polynomial:

B(t) = Y (~1)ImPIEmE) b (r) gie oy (1),
Felo,S]

Proposition: It is a palindromic polynomial (reflected at (d + 1)/2).
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2. Stanley - local h*-polynomials

Definition (Stanley ‘92; Borisov-Mavlyutov ‘03; Katz-Stapledon ‘16)
P lattice polytope has local h*-polynomial:

B(t) = Y (~1)ImPIEmE) b (r) gie oy (1),
Felo,S]

Proposition: It is a palindromic polynomial (reflected at (d + 1)/2).

If P =S is a simplex, then g(f s<(t) = 1. Thus:

Is(1) = v(3),
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2. Stanley - local h*-polynomials

Definition (Stanley ‘92; Borisov-Mavlyutov ‘03; Katz-Stapledon ‘16)
P lattice polytope has local h*-polynomial:

p(t) =Y (1) P =dmE) pe(6) g oy (2):
Feln,S]

Proposition: It is a palindromic polynomial (reflected at (d + 1)/2).

If P =S is a simplex, then g g«(t) = 1. Thus:
I5(1) = v(S),
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2. Stanley - local h*-polynomials

Definition (Stanley ‘92; Borisov-Mavlyutov ‘03; Katz-Stapledon ‘16)
P lattice polytope has local h*-polynomial:

B(t) = Y (~1)ImPIEmE) b (r) gie oy (1),
Felo,S]

Proposition: It is a palindromic polynomial (reflected at (d + 1)/2).

If P =S is a simplex, then g(f s<(t) = 1. Thus:

Is(1) = v(S),

I¢(t) is the box polynomial:
ith coefficient of /£(t) counts interior lattice points in I1(S) on height /.
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2. Stanley - local h*-polynomials

Theorem (Karu ‘06; Borisov-Mavlyutov ‘03)

I5(t) has nonnegative coefficients. J

(Batyrev, Borisov, Mavlyutov, Schepers): /5(t) (called S-polynomial) appears
naturally in computing the Hodge-Deligne polynomial (E-polynomial) of
generic hypersurface (and complete intersections) in toric varieties.
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I5(t) has nonnegative coefficients. J

(Batyrev, Borisov, Mavlyutov, Schepers): /5(t) (called S-polynomial) appears
naturally in computing the Hodge-Deligne polynomial (E-polynomial) of
generic hypersurface (and complete intersections) in toric varieties.
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2. Stanley - local h*-polynomials

Theorem (Karu ‘06; Borisov-Mavlyutov ‘03)

I5(t) has nonnegative coefficients. J

(Batyrev, Borisov, Mavlyutov, Schepers): /5(t) (called S-polynomial) appears
naturally in computing the Hodge-Deligne polynomial (E-polynomial) of
generic hypersurface (and complete intersections) in toric varieties.

Proposition (Stanley ‘92; ...)

hp(t) = > F(Derpy(t) =gop + Y, EB)ere)(t)+ (1),
Fel0,P] Fe(0,P)

In particular, [5(t) < hj(t) coefficientwise.

I5(t) should be seen as the ‘core’ of the h*-polynomial.
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3. Borger-Kretschmer-N. - thin polytopes

Definition

P lattice polytope is thin if /5(t) = 0, or equivalently, /5(1) = 0.

Proposition

Let d > 1.
@ P lattice pyramid = P thin = P hollow.
@ Ford=1or d=2: P thin <= P hollow.

Classification of thin polytopes known for d < 2.
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3. Borger-Kretschmer-N. - thin polytopes

Theorem (Borger-Kretschmer-N. ‘22)

Let d = 3. Then P is thin if and only if
@ h}(t) has degree at most one, or
@ P is a lattice pyramid.

Corollary

All thin lattice tetrahedra are lattice pyramids.
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3. Borger-Kretschmer-N. - thin polytopes

Theorem (Borger-Kretschmer-N. ‘22)

Let d = 3. Then P is thin if and only if
@ h}(t) has degree at most one, or
@ P is a lattice pyramid.

Corollary

All thin lattice tetrahedra are lattice pyramids.

Proof uses classification of 3-dimensional hollow lattice polytopes
(Averkov, Wagner, Weismantel '10) and

I5(t) = |int(P)NZ3| - t +

int2P)NZ3| — 4[int(P)NZ3 — > |int(F)nZ3 | - +
F<P facet
lint(P) N Z3| - 3.
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3. Borger-Kretschmer-N. - thin polytopes

Theorem (Borger-Kretschmer-N. '22)

Let d = 3. Then P is thin if and only if
@ hp(t) has degree at most one, or
@ P is a lattice pyramid.

What about higher dimensions?

Constructing thin polytopes

@ P is trivially thin if h;(t) has degree at most %.
@ P is thin if it is a Z-join of P; and P, with Py thin.

For d > 4, not all thin polytopes are given this way - but true generically?
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3. Borger-Kretschmer-N. - thin polytopes
P is called spanning if its lattice points affinely generate Z¢.

Motivating question
Is every spanning thin lattice polytope of types (1) or (2)? J
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3. Borger-Kretschmer-N. - thin polytopes

P is called spanning if its lattice points affinely generate Z9.

Motivating question
Is every spanning thin lattice polytope of types (1) or (2)?

Theorem (N.-Schepers ‘12; Borger-Kretschmer-N. ‘22)

Answer is YES for P Gorenstein (i.e., hj(t) is palindromic).
Moreover:
@ Thinness is invariant under duality of Gorenstein polytopes.

@ Thin Gorenstein polytopes have lattice width 1.

@ Thin Gorenstein simplices are lattice pyramids.
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3. Borger-Kretschmer-N. - thin polytopes
P is called spanning if its lattice points affinely generate Z¢.

Motivating question
Is every spanning thin lattice polytope of types (1) or (2)?

Theorem (N.-Schepers ‘12; Borger-Kretschmer-N. ‘22)

Answer is YES for P Gorenstein (i.e., hj(t) is palindromic).
Moreover:

@ Thinness is invariant under duality of Gorenstein polytopes.
@ Thin Gorenstein polytopes have lattice width 1.

@ Thin Gorenstein simplices are lattice pyramids.

Proof needs general crucial fact:
Thinness stays invariant under coarsening the lattice.
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4. Katz-Stapledon - decomposing /*
Let 7 be triangulation of P into lattice simplices.

Theorem (Betke-McMullen ‘85)

p(t) = 16(t) hiink(r,5)(1)-

SeT
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4. Katz-Stapledon - decomposing /*
Let 7 be triangulation of P into lattice simplices.

Theorem (Betke-McMullen ‘85)

hE (t) - Z IS hllnk TS)(t)

SeT

Theorem (N.-Schepers '12; Athanasiadis, Savvidou '12; Katz-Stapledon ‘16)

Ip(t) =Y I&(t) brs(t

SeT

where relative local h-polynomial I s(t) has nonnegative coefficients.
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4. Katz-Stapledon - decomposing /*
Let 7 be triangulation of P into lattice simplices.

Theorem (Betke-McMullen ‘85)

h* t) - Z IS hllnk TS)(t)

SeT

Theorem (N.-Schepers '12; Athanasiadis, Savvidou '12; Katz-Stapledon ‘16)

Ip(t) =Y I&(t) brs(t

SeT

where relative local h-polynomial I s(t) has nonnegative coefficients.

Consequences
@ Thinness stays invariant under coarsening the lattice.

@ If 7 is unimodular triangulation, then /5 = /7y = I is unimodal
(Stanley '92).
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