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1. GKZ - thin simplices

Normalized volume

Let P ⊂ Rd be a lattice polytope: polytope with vertices in Zd .

The normalized volume volZ(P) is defined such that

volZ(P) = 1

⇐⇒

P is the convex hull of an affine lattice basis of Zd ∩ aff(P).

If P has dimension d , then volZ(P) = d! vol(P).

volZ(P) ∈ Z≥1.

Special cases: volZ({point}) = 1; volZ(∅) := 1.
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1. GKZ - thin simplices

Let S ⊂ Rd be d-dimensional lattice simplex.

Thin simplices (GKZ ‘94)

S is thin if its Newton number vanishes:

ν(S) :=
∑

F∈[∅,S]

(−1)dim(S)−dim(F ) volZ(F ) = 0,

where [∅,S ] is the face poset of S .

Example

ν(S) = 2! · 2− 3 · 2 + 3 · 1− 1 = 4− 6 + 3− 1 = 0

= 0
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1. GKZ - thin simplices

S is called hollow if S has no lattice points in its relative interior.

Theorem (GKZ ‘94)

Let d ≥ 1.

ν(S) ≥ 0.

S lattice pyramid =⇒ S thin =⇒ S hollow.

For d = 1 or d = 2: S thin ⇐⇒ S hollow.

(GKZ ’94) ”A classification of thin lattice simplices seems to be

an interesting problem in the geometry of numbers.”
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1. GKZ - thin simplices

Combinatorial viewpoint

volZ(S) equals number of lattice points in half-open parallelepiped Π(S)
spanned by S × {1}.

S × {1}

ν(S) equals number of interior lattice points in Π(S).
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1. GKZ - thin simplices

Questions:

1 Classification known for d = 2. What about d = 3?

2 Formula sometimes negative for polytopes. What are thin polytopes?
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2. Stanley - local h∗-polynomials

Background

(Stanley ‘87): Definition of (toric) g- and h-polynomials of (lower)
Eulerian posets. For P rational polytope, g[∅,P)(t) has nonnegative
coefficients; h[∅,P)(t) has nonnegative, palindromic, unimodal coefficients.

(Stanley ‘92): h-vectors of triangulations of a polytope are monotone
under refinements.
Main tool: Nonnegativity, palindromicity [and unimodality] of local
h-polynomials lT (t) of [regular] subdivisions T of polytopes.

Let P ⊂ Rd be d-dimensional lattice polytope.
P has h∗-polynomial h∗P(t) ∈ Z≥0[t]:

1 +
∑
n≥1

|(nP) ∩ Zd |tn =
h∗P(t)

(1− t)d+1

with
h∗P(1) = volZ(P).
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2. Stanley - local h∗-polynomials

Definition (Stanley ‘92; Borisov-Mavlyutov ‘03; Katz-Stapledon ‘16)

P lattice polytope has local h∗-polynomial:

l∗P(t) :=
∑

F∈[∅,S]

(−1)dim(P)−dim(F ) h∗F (t) g(F ,P]∗(t).

Proposition: It is a palindromic polynomial (reflected at (d + 1)/2).

If P = S is a simplex, then g(F ,S]∗(t) = 1. Thus:

l∗S(1) = ν(S),

l∗S(t) is the box polynomial:
ith coefficient of l∗S(t) counts interior lattice points in Π(S) on height i .
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2. Stanley - local h∗-polynomials

Theorem (Karu ‘06; Borisov-Mavlyutov ‘03)

l∗P(t) has nonnegative coefficients.

(Batyrev, Borisov, Mavlyutov, Schepers): l∗P(t) (called S̃-polynomial) appears
naturally in computing the Hodge-Deligne polynomial (E -polynomial) of
generic hypersurface (and complete intersections) in toric varieties.

Proposition (Stanley ‘92; ...)

h∗P(t) =
∑

F∈[∅,P]

l∗F (t)g[F ,P)(t) = g[∅,P) +
∑

F∈(∅,P)

l∗F (t)g[F ,P)(t) + l∗P(t).

In particular, l∗P(t) ≤ h∗P(t) coefficientwise.

l∗P(t) should be seen as the ‘core’ of the h∗-polynomial.
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3. Borger-Kretschmer-N. - thin polytopes

Definition

P lattice polytope is thin if l∗P(t) = 0, or equivalently, l∗P(1) = 0.

Proposition

Let d ≥ 1.

P lattice pyramid =⇒ P thin =⇒ P hollow.

For d = 1 or d = 2: P thin ⇐⇒ P hollow.

Classification of thin polytopes known for d ≤ 2.
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3. Borger-Kretschmer-N. - thin polytopes

Theorem (Borger-Kretschmer-N. ‘22)

Let d = 3. Then P is thin if and only if

1 h∗P(t) has degree at most one, or

2 P is a lattice pyramid.

Corollary

All thin lattice tetrahedra are lattice pyramids.

Proof uses classification of 3-dimensional hollow lattice polytopes
(Averkov, Wagner, Weismantel ’10) and

l∗P(t) = |int(P) ∩ Z3| · t +|int(2P) ∩ Z3| − 4 |int(P) ∩ Z3| −
∑

F≤P facet

|int(F ) ∩ Z3|

 · t2 +

|int(P) ∩ Z3| · t3.
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3. Borger-Kretschmer-N. - thin polytopes

Theorem (Borger-Kretschmer-N. ‘22)

Let d = 3. Then P is thin if and only if

1 h∗P(t) has degree at most one, or

2 P is a lattice pyramid.

What about higher dimensions?

Constructing thin polytopes

1 P is trivially thin if h∗P(t) has degree at most d
2 .

2 P is thin if it is a Z-join of P1 and P2 with P1 thin.

For d ≥ 4, not all thin polytopes are given this way - but true generically?
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3. Borger-Kretschmer-N. - thin polytopes

P is called spanning if its lattice points affinely generate Zd .

Motivating question

Is every spanning thin lattice polytope of types (1) or (2)?

Theorem (N.-Schepers ‘12; Borger-Kretschmer-N. ‘22)

Answer is YES for P Gorenstein (i.e., h∗P(t) is palindromic).
Moreover:

Thinness is invariant under duality of Gorenstein polytopes.

Thin Gorenstein polytopes have lattice width 1.

Thin Gorenstein simplices are lattice pyramids.

Proof needs general crucial fact:
Thinness stays invariant under coarsening the lattice.
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4. Katz-Stapledon - decomposing l∗

Let T be triangulation of P into lattice simplices.

Theorem (Betke-McMullen ‘85)

h∗P(t) =
∑
S∈T

l∗S(t) hlink(T ,S)(t).

Theorem (N.-Schepers ’12; Athanasiadis, Savvidou ’12; Katz-Stapledon ‘16)

l∗P(t) =
∑
S∈T

l∗S(t) lT ,S(t),

where relative local h-polynomial lT ,S(t) has nonnegative coefficients.

Consequences

Thinness stays invariant under coarsening the lattice.

If T is unimodular triangulation, then l∗P = lT ,∅ = lT is unimodal
(Stanley ‘92).
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