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Enumerate them with a computer.
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New:
R. 2022

Selected History

Flip-based symmetric BFS in flip-graph component;
(maple-code PUNTOS)

Flip-based symmetric BFS in flip-graph component;
simplex-by-simplex-based DFS for all triang’s;
(oriented-matroid-based C++-code TOPCOM 0.x.x).

The flip-graph of triangulations can be disconnected.

Flip-based reverse search for orbits of regular triang’s;
Stable-set-based enumeration of all triang’s.

Parallel flip-based reverse search for orbits
of sub-regular triang’s;
(C++-code MPTOPCOM).

Parallel symmetric lexicographic subset reverse search
for all triang’s
(new C++-code TOPCOM 1.x.x)
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Enumerate the nodes (= objects) of a graph (V, E) with
an objective function on V with unique opt v,;

a pivot function choosing a better neighbor on V' \ { vy }.

Reverse Search (RS) [Avis & Fukuda 1996]:
generate an arbitrary object
pivot to the optimum object

return ReverseSearch(optimum object)

ReverseSearch(object):
increase counter

for all neighbors of object do

if neighbor pivots to object
increase counter by ReverseSearch(object)

return counter.
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Reverse Search on Orbits
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Canonical Function “G-Orbits — Elements”, e.g.,

Representatives 27 Z i ‘i
H

RS-Consistent
Choice

Pivoting Orbits new pivot := canonical representative o old pivot.
Result Can enumerate orbits by RS on orbits [Imai et al. 2002].

Bottleneck Compute canonical representatives.
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Representation of Objects as Subsets

Observation Many objects have a representation as subsets
Sof {1,...,n}.

Idea Build objects by lex-extension.

Gain  Subset Reverse Search (SRS):
» Lex-order is an objective with easy opt ()
» Removing max-element ~» easily invertible pivot

= SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since
> all lex-leading subsets of objects are traversed
> there may be dead-ends w.r.t. lex-extension

> containment in an object may be difficult to tell early
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Generic Algorithm: Symmetric LSRS

Subset S lex-min in its orbit
= S\ max$§ lex-min in its orbit.

canonical = lex-min = canonicals connected

Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

if S not lex-extendable to an object, return 0
if S not lex-min in its orbit, return 0

if S is a complete object, return 1
for ifrommaxS+1,....m
increase counter by symLSRS(S U {i})

Conclusions/Question



The Problem Structures for Counting Structures for Counting Subsets

Observation

Punch Line

Gain

vVvyVvyy

Generic Algorithm: Symmetric LSRS

Subset S lex-min in its orbit
= S\ max$§ lex-min in its orbit.

canonical = lex-min = canonicals connected

Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

if S not lex-extendable to an object, return 0
if S not lex-min in its orbit, return 0

if S is a complete object, return 1
for ifrommaxS+1,....m
increase counter by symLSRS(S U {i})

return counter

Conclusions/Question



The Problem Structures for Counting Structures for Counting Subsets

Observation

Punch Line

Gain

vVvyVvyy

Conclusions/Question

Generic Algorithm: Symmetric LSRS

Subset S lex-min in its orbit
= S\ max$§ lex-min in its orbit.

canonical = lex-min = canonicals connected

Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:
Input: a subset S

if S not lex-extendable to an object, return 0
if S not lex-min in its orbit, return 0

if S is a complete object, return 1
for ifrommaxS+1,....m
increase counter by symLSRS(S U {i})

return counter

— symLSRS(0) lex-enumerates all orbit-lex-min objects
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Is a Subset Not Lex-Min in its Orbit?

Idea  Exploit lex-min property of S to check S U {i}!
Assumption Order of symmetry group G is managable.

Local Data Store with each subset its critical-element table:

[ G = {1 nu{e),
critg: { —  min(S A x(S)).

Observation A symmetry 7 lex-decreases a subset S
—
critg(m) € 7(9).
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The Problem Structures for Countin

Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit.
Then for all i € {maxS+1,...,n} we have:

S U {i} is not lex-min in its orbit
—
there is a 7 € G with:

crits(r) = oo and 7 (i) < max$§, or
crits(mr) # oo and x(i) < crits(r), or
crits(mr) = (i) and critsy iy () € m(SU {i}).

Gain  7(SU {i}) only needed if crits() = (i)
~» roughly % of the cases (amortized)
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Triangulations as Integer-Subsets

Representation  For a point configuration of n points in rank r:

S: the set of r-simplices, lex-ordered

¥ : the set of interior facets of r simplices, lex-ordered
ns = |S]: no. of simplices

ng = |¥]: no. of interior facets of simplices

simp: {1,...,n;} & 8 : s-index (order-preserving)
facet : {1,...,ns} & F : f-index (order-preserving)

T ={simp(s) :se T}for T C {1,...,n,}

T ={s-index(S) : Se T} forT C S

vV VvV VvV vV VY Y

Convention Allse {1,...,n;} and f € {1,...,ns}
are called simplices and facets, resp.
All T C {1,..., ng} with pairwise proper intersections
are called partial triangulations.
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Is a Subset Not Lex-Extendable?

Extendability [Ruppert & Seidel 1992]:
Check Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.
Global Data Preprocess for each simplex s
> its interior facets ~» ¥ (s)

> all simplices with proper intersection ~» A(s)

Local Data With each partial triangulation T store in lex-order:
> the free interior facets ~» 7 (T)
> the greater simplices that intersect properly ~» A(T)

Observation A partial triangulation T is not lex-extendable
R

there is {f € ¥(T)} not contained in any {s € A(T)}.
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Ingredient Il: Lex-pruning/Lex-Breaking

Theorem A partial triangulation T with free interior facets ¥ (T)
and properly intersecting greater simplices A(T)
is not lex-extendable to a triangulation
—

min{f € ¥(T)} < min{T(min{s € ?l(T)})}.

Theorem A partial triangulation T with free interior facets ¥ (T)
and properly intersecting greater simplices A(T)
is not lex-extendable to a triangulation
starting with some s’ > sin A(T)
—

min{f € F(T)} < min{?'(s)}.
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Ingredient Il: Lex-pruning/Lex-Breaking

Theorem A partial triangulation T with free interior facets ¥ (T)
and properly intersecting greater simplices A(T)
is not lex-extendable to a triangulation
—

min{f € ¥(T)} < min{T(min{s € ﬂ(T)})}.

Theorem A partial triangulation T with free interior facets ¥ (T)
and properly intersecting greater simplices A(T)
is not lex-extendable to a triangulation
starting with some s’ > sin A(T)
—

min{f € F(T)} < min{?’(s)}.

Gain  One integer comparison instead of many subset tests.
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Computational Results for Triangulations
MPTOPCOM  [Jordan & Joswig & Kastner 2018]

Flip-Based Point Conf. # Triang’s #Orbits  CPU time
CPU Times (hh:mmss]
(16/40 Threads) [0,1]* 92,487,256 247,451 00:01:56
3Ds 22,201,684,367 925,148,763 96:00:00

(reg./full/output)
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MPTOPCOM
Flip-Based
CPU Times
(16/40 Threads)

TOPCOM 1.0.8
Subset-Based
CPU Times

(16 Threads)

Computational Results for Triangulations

[Jordan & Joswig & Kastner 2018]

Point Conf. # Triang’s # Orbits CPU time

[hh:mm:ss]

[o, 114 92,487,256 247,451 00:01:56

3D3 22,201,684,367 925,148,763 96:00:00
(reg./full/output)

[R. 2022]

Point Conf. # Triang’s # Orbits CPU time

[hh:mm:ss]

[o, 1]4 92,487,256 247,451 00:00:04

3Ds (output) 22,201,684,367 925,148,763 01:05:11

3Dj3 (count) 22,201,684,367 925,148,763 00:21:02

3D; (regular) 21,861,522,799 910,974,879 20:21:53

3D (full) 511,052,427 21,302,400 00:01:01

3D3 (unimod.) 346,903,379 14,459,488 00:00:39

Dodecahedron 1,533,079,037,570 12,775,757,027 11:11:48

Pyritohedron 32,734,029,351,118 1,363,918,758,719 692:30:04

As X A3 442,472,050,753,920 25,606,173,722 1313:57:17

(M1Max8t)
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For Raman Triangulations with only simplices of min. vol.
of generalized hypersimplices [Manecke et al. 2020]:

A(5,1,3) has 27,780 (250 classes)

A(5,1,4) has 5 (1 class)

A(6,1,3) has more than 245,074,320 (340,381 classes)
A(6,1,4) has more than 249,295,320 (347,613 classes)
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Bonus Track |

Triangulations with only simplices of min. vol.
of generalized hypersimplices [Manecke et al. 2020]:

A(5,1,3) has 27,780 (250 classes)

A(5,1,4) has 5 (1 class)

A(6,1,3) has more than 245,074,320 (340,381 classes)
A(6,1,4) has more than 249,295,320 (347,613 classes)
A(6,2,4) has more than 7,248,961,080 (10,068,279 classes)
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Other Results Enumeration of (co-)circuits (different lex-min check):

» [0,1]% has
38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

> [0,1]° has
448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer & Aurnhammer 1996])

Sideline  Necessary conditions for lex-extendability
» found for cocircuits

»>  but not so far for circuits.
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“Geometry meets Combinatorics™

critical-element tables for lex-min check

minimal-element comparison for lex-extendability check

Questions Potential further research:
> Investigate the complexity of symLSRS.
>  Apply symLSRS to more examples.

> Represent flip-graph exploration in terms of subsets.
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