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How Many Triangulations Are There?

Given

A point configuration
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�estion 1 How many triangulations does it have?

�estion 2 How many triangulations does it have up to symmetry?

This Talk Enumerate them with a computer.
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Selected History

De Loera
1994

Flip-based symmetric BFS in flip-graph component;
(maple-code PUNTOS)

R. 2000 Flip-based symmetric BFS in flip-graph component;
simplex-by-simplex-based DFS for all triang’s;
(oriented-matroid-based C++-code TOPCOM 0.x.x).

Santos 2000 The flip-graph of triangulations can be disconnected.

Imai et al.
2002

Flip-based reverse search for orbits of regular triang’s;
Stable-set-based enumeration of all triang’s.

Jordan et al.
2018

Parallel flip-based reverse search for orbits
of sub-regular triang’s;
(C++-code MPTOPCOM).

New:
R. 2022

Parallel symmetric lexicographic subset reverse search
for all triang’s
(new C++-code TOPCOM 1.x.x)
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Reverse Search (RS)

Goal Enumerate the nodes (= objects) of a graph (V , E) with

I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with

I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;

I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:

I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object

I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object

I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):

I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):
I increase counter

I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):
I increase counter
I for all neighbors of object do

• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):
I increase counter
I for all neighbors of object do
• if neighbor pivots to object

• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):
I increase counter
I for all neighbors of object do
• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search (RS)
Goal Enumerate the nodes (= objects) of a graph (V , E) with
I an objective function on V with unique opt vopt;
I a pivot function choosing a be�er neighbor on V \ {vopt}.

Method Reverse Search (RS) [Avis & Fukuda 1996]:
I generate an arbitrary object
I pivot to the optimum object
I return ReverseSearch(optimum object)

Subroutine ReverseSearch(object):
I increase counter
I for all neighbors of object do
• if neighbor pivots to object
• increase counter by ReverseSearch(object)

I return counter.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6

2



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6

3



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6

5



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

666



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

666

4



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

666



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

666

5



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

55



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

55

2



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

55



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

55

3



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

3



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

33



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

33

1



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

33



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

332



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

322



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

322

0



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

322



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

322

1



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

11



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

11
0



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
0



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
00



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
00

1



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
00



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
00

2



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
0

1



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
0

1

2



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
0

1



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

1
0

1

3



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2 3



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2

4



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

32

0
1

2

5



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

3

0
1

2 3



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

3

0
1

2 3

5



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

0
1

2 3

5



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

0
1

2 3

5
4



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

0
1

2 3

4



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4

2



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4
5



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5
4

0
1

2 3

4

6



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

0
1

2 3

4
5



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

66

5

0
1

2 3

4
5

6



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

RS Example

0
1

2 3

4
5

6

0
1

2 3

4
5

6



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Reverse Search on Orbits

Canonical
Representatives

Function “G-Orbits→ Elements”, e.g.,

↦→

RS-Consistent
Choice

orbit ↦→ objective-minimal sink in orbit, e.g.,
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Pivoting Orbits new pivot := canonical representative ◦ old pivot.

Result Can enumerate orbits by RS on orbits [Imai et al. 2002].

Bo�leneck Compute canonical representatives.
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Representation of Objects as Subsets

Observation Many objects have a representation as subsets
S of {1, . . . , n}.

Idea Build objects by lex-extension.

Gain Subset Reverse Search (SRS):

I Lex-order is an objective with easy opt ∅
I Removing max-element easily invertible pivot

⇒ SRS enumerates subsets.

Crucial Need to recognize complete objects.

Overhead SRS takes additional time, since

I all lex-leading subsets of objects are traversed
I there may be dead-ends w.r.t. lex-extension
I containment in an object may be di�icult to tell early
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Generic Algorithm: Symmetric LSRS

Observation Subset S lex-min in its orbit
=⇒ S \max S lex-min in its orbit.

Punch Line canonical = lex-min =⇒ canonicals connected

Gain Symmetric Lexicographic Subset Reverse Search
(symLSRS) [equivalent: Pech & Reichard 2009]:

Input: a subset S
I if S not lex-extendable to an object, return 0
I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})

I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects
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I if S not lex-min in its orbit, return 0
I if S is a complete object, return 1
I for i from max S + 1, . . . , n:

• increase counter by symLSRS(S ∪ {i})
I return counter

→ symLSRS(∅) lex-enumerates all orbit-lex-min objects
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Is a Subset Not Lex-Min in its Orbit?

Idea Exploit lex-min property of S to check S ∪ {i}!

Assumption Order of symmetry group G is managable.

Local Data Store with each subset its critical-element table:

critS :

{
G → {1, . . . , n} ∪ {∞},
𝜋 ↦→ min(S 4 𝜋 (S)).

Observation A symmetry 𝜋 lex-decreases a subset S
⇐⇒

critS (𝜋) ∈ 𝜋 (S).
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Ingredient I: Critical Elements

Theorem Let S be a subset that is lex-min in its orbit.
Then for all i ∈ {max S + 1, . . . , n} we have:

S ∪ {i} is not lex-min in its orbit
⇐⇒

there is a 𝜋 ∈ G with:

I critS (𝜋) = ∞ and 𝜋 (i) < max S, or
I critS (𝜋) ≠ ∞ and 𝜋 (i) < critS (𝜋), or
I critS (𝜋) = 𝜋 (i) and critS∪{i } (𝜋) ∈ 𝜋 (S ∪ {i}).

Gain 𝜋 (S ∪ {i}) only needed if critS (𝜋) = 𝜋 (i)

 roughly 1
n of the cases (amortized)
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Triangulations as Integer-Subsets

Representation For a point configuration of n points in rank r :

I S: the set of r-simplices, lex-ordered
I F : the set of interior facets of r simplices, lex-ordered
I ns = |S|: no. of simplices
I nf = |F |: no. of interior facets of simplices

I simp : {1, . . . , ns}
∼↔ S : s-index (order-preserving)

I facet : {1, . . . , nf }
∼↔ F : f-index (order-preserving)

I T = {simp(s) : s ∈ T } for T ⊆ {1, . . . , ns}
I T = {s-index(S) : S ∈ T } for T ⊆ S

Convention All s ∈ {1, . . . , ns} and f ∈ {1, . . . , nf }
are called simplices and facets, resp.
All T ⊆ {1, . . . , ns} with pairwise proper intersections
are called partial triangulations.
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Is a Subset Not Lex-Extendable?

Extendability
Check

[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s

I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T )
I the greater simplices that intersect properly A(T )

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T )} not contained in any {s ∈ A(T )}.
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there is {f ∈ F (T )} not contained in any {s ∈ A(T )}.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T )
I the greater simplices that intersect properly A(T )

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T )} not contained in any {s ∈ A(T )}.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T )
I the greater simplices that intersect properly A(T )

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T )} not contained in any {s ∈ A(T )}.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:

I the free interior facets F (T )
I the greater simplices that intersect properly A(T )

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T )} not contained in any {s ∈ A(T )}.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:
I the free interior facets F (T )

I the greater simplices that intersect properly A(T )

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T )} not contained in any {s ∈ A(T )}.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:
I the free interior facets F (T )
I the greater simplices that intersect properly A(T )

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T )} not contained in any {s ∈ A(T )}.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Is a Subset Not Lex-Extendable?
Extendability

Check
[Ruppert & Seidel 1992]:
Extendability of partial triangulations is NP-complete.

Observation Each interior facet must be covered by additional
simplices to complete a triangulation.

Global Data Preprocess for each simplex s
I its interior facets F (s)
I all simplices with proper intersection A(s)

Local Data With each partial triangulation T store in lex-order:
I the free interior facets F (T )
I the greater simplices that intersect properly A(T )

Observation A partial triangulation T is not lex-extendable
⇐=

there is {f ∈ F (T )} not contained in any {s ∈ A(T )}.



The Problem Structures for Counting Structures for Counting Subsets New Results Conclusions/�estions

Ingredient II: Lex-pruning/Lex-Breaking

Theorem A partial triangulation T with free interior facets F (T )
and properly intersecting greater simplices A(T )

is not lex-extendable to a triangulation
⇐=

min{f ∈ F (T )} < min
{
F (min{s ∈ A(T )})

}
.

Theorem A partial triangulation T with free interior facets F (T )
and properly intersecting greater simplices A(T )

is not lex-extendable to a triangulation
starting with some s′ ≥ s in A(T )

⇐=

min{f ∈ F (T )} < min
{
F (s)

}
.

Gain One integer comparison instead of many subset tests.
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Computational Results for Triangulations

MPTOPCOM
Flip-Based
CPU Times

(16/40 Threads)

[Jordan & Joswig & Kastner 2018]
Point Conf. # Triang’s # Orbits CPU time

[hh:mm:ss]

[0, 1]4 92,487,256 247,451 00:01:56
3D3

(reg./full/output)
22,201,684,367 925,148,763 96:00:00

TOPCOM 1.0.8
Subset-Based
CPU Times
(16 Threads)

[R. 2022]
Point Conf. # Triang’s # Orbits CPU time

[hh:mm:ss]

[0, 1]4 92,487,256 247,451 00:00:04
3D3 (output) 22,201,684,367 925,148,763 01:05:11
3D3 (count) 22,201,684,367 925,148,763 00:21:02

3D3 (regular) 21,861,522,799 910,974,879 20:21:53
3D3 (full) 511,052,427 21,302,400 00:01:01

3D3 (unimod.) 346,903,379 14,459,488 00:00:39
Dodecahedron 1,533,079,037,570 12,775,757,027 11:11:48
Pyritohedron 32,734,029,351,118 1,363,918,758,719 692:30:04

Δ5 × Δ3 442,472,050,753,920 25,606,173,722 1313:57:17
(M1Max8t)
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Bonus Track I

For Raman Triangulations with only simplices of min. vol.
of generalized hypersimplices [Manecke et al. 2020]:

I Δ(5, 1, 3) has 27,780 (250 classes)
I Δ(5, 1, 4) has 5 (1 class)
I Δ(6, 1, 3) has more than 245,074,320 (340,381 classes)
I Δ(6, 1, 4) has more than 249,295,320 (347,613 classes)
I Δ(6, 2, 4) has more than 7,248,961,080 (10,068,279 classes)
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Bonus Track II

Other Results Enumeration of (co-)circuits (di�erent lex-min check):

I [0, 1]8 has
38,636,185,528,212,416 circuits in 3,858,105,362 classes
(CPU: 163:37:00)
(asked by Lisa Lamberti and Komei Fukuda)

I [0,1]9 has
448,691,419,804,586 cocircuits in 3,899,720 classes
(CPU: 13:30:12)
(extends [Aichholzer & Aurnhammer 1996])

Sideline Necessary conditions for lex-extendability

I found for cocircuits
I but not so far for circuits.
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Conclusions Enumeration of orbits of triangulations accelerated by
“Geometry meets Combinatorics”:

I critical-element tables for lex-min check
I minimal-element comparison for lex-extendability check

�estions Potential further research:

I Investigate the complexity of symLSRS.
I Apply symLSRS to more examples.
I Represent flip-graph exploration in terms of subsets.
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