Pruned inside-out polytopes, combinatorial
reciprocity theorems, and generalized
permutahedra

Sophie Rehberg,
joint work (in progress) with Matthias Beck

Geometry meets Combinatorics in Bielefeld 2022

o
[ ]
(e}
[ ]
o
o
[ ]
(e}
L ]
(e}
o
(]
o o @
[ ]
o



Motivation
Stanley (1973): For a graph g, m € Z~¢
Xg(m) = #proper m-colorings of g
is a polynomial in m and

(—1)ng(—m) = #£pairs of compatible m-colorings

and acyclic orientations.

A

Inside-out polytopes
(Beck-Zaslavsky 2006):

“polytope minus
hyperplanes”

X =X,
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Ehrhart theory

Let Q be a polytope in RY, t € Z~,.
tQ::{tXE[Rd: x € Q}

eth(t) = #(tQ N Zd) . . $ 00
Example: square Q = [-1,1]?

ehri_y 12(t) = (2t +1)°
Theorem (Ehrhart, 1962)

For Q an integer polytope ehrq(t) agrees with a polynomial of
degree dim(Q).

Theorem (Ehrhart-Macdonald reciprocity, 1971)
(—1)9m(Q) ehrq(—t) = ehrqo(t).
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Polytopes and fans

Py

polytope P in RY
Py maximal face
P, maximal vertex

normal fan AN'(P) in (R?)*
y € (RY)* a direction

z € (RY)* a generic direc-
tion

Ne(F) = {y € (R%)" : P, D F}
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Polyhedral fans

For a complete fan AV in RY define the codimension-one fan \/<°!

Nel={NeN: codimN > 1}
—{(NeN: dmN<d—1}.

For a normal fan N'(P) we get

N©L(P) = {Np(F) : F aface of P with dim(F) > 1}.
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Pruned inside-out polytopes

For a polytope Q € R? and a complete fan N in R? we call

Q\ (Uneert) = ICNCULE

N full-dimensional

a pruned inside-out polytope and we call the connected
components in Q\ (A1) regions.

Ry

Q Nanchol Q\UNcol Qo\UNcol
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Pruned inside-out counting

For t € Z~¢ define the inner pruned Ehrhart function as

inQ o1 (t) =# <t- (Q\UNC°1> mzd> :
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inQ, Arco1 inQo Arco1

Note: k
inQo veo1(t) = Y _ ehrgo(t)
i=1

and it is a polynomial if regions R; are integral.
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Pruned inside-out counting

Define the cumulative pruned Ehrhart function for t € Z- as

cuguei(t) = > #(NeEN, Nfulldim, y e N).

yctQnzd
[ ° ° ° o
s @ o @ Note: k
I cuq e (t) = > ehrg (t)

=

/ O . O % . . . . I . . .

and it is a polynomial if regions R; are is integral.
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Pruned inside-out reciprocity

Theorem
For a polytope Q € R? and a complete fan NV in RY we have

( 1)d|mQ |nQo Ncol( t) = CUQ /\/’col(t) °

Proof.
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(—1)%inge peer(—t) = Y (—1)7 ehrgo(— ZehrR = cuqrre1(t) .
i=1
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Standard permutahedra (in type A)

The standard permutahedron 74 is the convex hull of d!
vertices, namely, all the permutations of the point (1,...,d).

Piop's, reciprocity, & applications Matthias Beck, Sophie Rehberg



Braid fan and standard permutahedron (in type A)

The braid arrangement By is the set of hyperplanes
H;; = {x € (RY)*: x; = x;}. The braid fan is the fan induced by B,.
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Generalized Permutahedra (in type A)

A polytope P C R? is a generalized permutahedron if its normal
fan NV (P) is a coarsening of the braid fan.

Graphically:
all deformations of standard permutahedron by translating facets.
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Reciprocity for generalized permutahedra (in type A)

Theorem (Aguiar, Ardila 2017; Billera, Jia, Reiner 2009)
For generalized permutahedra P € RY, m € Z+

xd(P)(m) = # (P-generic directions y € ([Rd)* with y € [m]d)

agrees with a polynomial in m of degree d.
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Reciprocity for generalized permutahedra (in type A)

Theorem (Aguiar, Ardila 2017; Billera, Jia, Reiner 2009)
For generalized permutahedra P € RY, m € Z+

xd(P)(m) = # (P-generic directions y € ([Rd)* with y € [m]d>

agrees with a polynomial in m of degree d. Moreover,
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y€[m]d
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Reciprocity for generalized permutahedra (in type A)

Theorem (Aguiar, Ardila 2017; Billera, Jia, Reiner 2009)
For generalized permutahedra P € RY, m € Z+

Xd(P)(m) = # (P—generic directions y € (RY)* with y € [m]d)
agrees with a polynomial in m of degree d. Moreover,

(—1)7xa(P)(—=m) = ) # (vertices of P,) .

y€[m]d

Special cases:

e Stanley's reciprocity theorem for graphs, Billera-Jia-Reiner's
reciprocity theorem for matroids, Stanley’s reciprocity
theorem for posets, Bergman polynomial reciprocity for
matroids (Aguiar, Ardila 2017)

® Aval-Karaboghossian-Tanasa’s reciprocity theorem for
hypergraphs (S.R. 2021+)
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Type B generalized Coxeter permutahedra
Type B Coxeter permutahedron  Type B Coxeter arrangement:
{x € (R)*: x; = £x;},
{x € (RY)*: x; = 0}

Type B generalized Coxeter permutahedra:

ApE A
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Reciprocity in type B

Theorem
For type B generalized Coxeter permutahedra P € RY, m € Z~

Xd(P)(m) = # (P—generic directions y € (R?)*

Withye{—m,...,—l,O,l,...,m}d>

agrees with a polynomial in m of degree d. Moreover,

(—1)xa(P)(—m) = Z # (vertices of P,) .

y€{-m+1,..,—-1,0,1,....m—1}d
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Final Remarks

® Ongoing work: Minkowski sums of certain faces of the
crosspolytope and combinatorial interpretation as some
hypergraphic structure

® Other combinatorial descriptions/applications?

® more general set-up possible — applications?
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Thank you for your attention!

) . o 0 e o© . o . o e e @ o .
® e O e e O e O e O e e O e o
e e o0 - - O O O O O e 0o @ O @

Piop's, reciprocity, & applications Matthias Beck, Sophie Rehberg 15



