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Groups, classifying spaces, and fusion systems

Groups, classifying spaces, and fusion systems

Fix a prime p.

Fp(G) ↤ G ↦ BG ↦ BG∧
p

fusion finite classifying p-completed

system group space classifying space
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Groups, classifying spaces, and fusion systems

Classifying spaces

Given a finite group G there is a universal contractible free G-space EG.

The classifying space of G is the space of orbits

BG = EG/G.

It is determined by G, up to homotopy.

Examples

G = Z/2, EZ/2 ≃ S∞ and BZ/2 ≃ RP∞.

G discrete, BG ≃K(G,1). Determined by πi(K(G,1)) =

⎧
⎪⎪
⎨
⎪⎪
⎩

G if i = 1,

0 otherwise.

There are different ways to construct BG:

For a discrete group G, take a wedge of circles indexed by a set of generators of the
group, then attach 2-cells corresponding to the relations, so that the fundamental
group of the complex is G, then attach higher cells to kill all higher homotopy
groups. The resulting complex is BG.

Bar construction is a functorial construction of BG. A homomorphism ϕ∶GÐ→H
induces a continuous map Bϕ∶BGÐ→ BH.
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Carles Broto (Universitat Autònoma de Barcelona) Fusion systems March 2012 4 / 18



Groups, classifying spaces, and fusion systems

p-equivalences and p-completion

Fix a prime p.

Two spaces X and Y are p-equivalent if there is a 3rd space Z and maps

X Ð→ Z ←Ð Y

that induce isomorphisms in cohomology with coefficients in Fp.

Bousfield-Kan p-completion is a coaugmented functor `X ∶X Ð→X∧
p that turns

p-equivalences into homotopy equivalences.

That is, a map f ∶X Ð→ Y induces and isomorphism in mod p cohomology

f∗∶H∗
(Y ;Fp)

≅
−−−→ H∗

(X;Fp)

if and only if it induces a homotopy equivalence after p-completion:

f∧p ∶X
∧
p

≃
−−−→ Y ∧

p

Example:

For S1
≃ BZ, we have (S1

)
∧
p ≃ BZp and the coaugmentation `BZ∶BZÐ→ BZp is

given by the inclusion of the integers in the p-adic integers.
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Groups, classifying spaces, and fusion systems

The p-completion of BG

1 If P is a finite p-group, then BP is p-complete.

2 In general, BG is not p-complete:

π1(BG
∧
p) ≅ G/Op(G), where OpG is the maximal normal p-perfect subgroup of

G.

The universal cover is BOp(G)
∧
p . Usually, it carries a rich higher homotopy

structure, with non-trivial homotopy groups in arbitrarily large dimensions.

Example:

Fix an odd prime p. Form the semidirect product Z/pr ⋊ Z/2. Then:

Ω(B(Z/pr ⋊ Z/2))∧
p
≃ S3

{pr}

(homotopy fibre of the degree pr self map of S3.) and therefore that

(B(Z/pr ⋊ Z/2))∧
p

supports the p-primary part of the homotopy groups of S3.
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Groups, classifying spaces, and fusion systems

Fusion system of a finite group

Definition

Let G be a finite group, fix a prime p and S ∈ Sylp(G), then the fusion system of G,
Fp(G), is a category with

Objects: P ≤ S, the subgroups of S, and

Morphisms:

homFp(G)(P,Q) = {ϕ∶P → Q ∣∃g ∈ G,ϕ(x) = gxg−1
} ≅ NG(P,Q)/CG(P )

Fusion preserving isomorphisms

If H is another finite group we will say that the fusion systems of G and H are equivalent:

Fp(G) ≃ Fp(H)

if there is R ∈ Sylp(H) and an isomorphism f ∶S Ð→ R that preserves fusion:

ϕ ∈ homFp(G)(P,Q)Ô⇒ (f ∣Q) ○ ϕ ○ (f ∣P )
−1

∈ HomFp(H)(f(P ), f(Q))
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Groups, classifying spaces, and fusion systems

Martino-Priddy conjecture

Fix a prime p.

Fp(G) ↤ G ↦ BG ↦ BG∧
p ↦ Fp(G)

fusion finite classifying p-completed fusion

system group space classifying space system

Martino-Priddy: The fusion system can be reconstructed from the p-completed
classifying space. Given finite groups G and H, if BG∧

p ≃ BH
∧
p then Fp(G) ≃ Fp(H).

M-P conjecture (1996):

BG∧
p ≃ BH

∧
p ⇐⇒ Fp(G) ≃ Fp(H)

Oliver (2004, 2006): M-P conjecture is true. (The proof depends on the classification of
finite simple groups.)
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Equivalences between fusion systems of finite groups of Lie type

Equivalences between fusion systems of finite groups of Lie type at
primes different from the defining characteristic

Theorem (B-Møller-Oliver)

Let G be a connected reductive group scheme over Z. Fix a prime p, and finite fields Fq,
Fq′ of char ≠ p, then:

(a) Fp(G(q)) ≃ Fp(G(q′)) if ⟨q⟩ = ⟨q′⟩ ≤ Z×p

(b) Fp(
τG(q)) ≃ Fp(

τG(q′)) if G = An,Dn,E6, τ a graph automorphism, and ⟨q⟩ = ⟨q′⟩.

(c) In case the Weyl group of G contains an element which acts on the maximal torus by
inverting all elements: ψ−1, then

Fp(G(q)) ≃ Fp(G(q′)) , Fp(
τG(q)) ≃ Fp(

τG(q′)) if G and τ are as in (b)

provided ⟨−1, q⟩ = ⟨−1, q′⟩ ≤ Z×p .

(d) For G of type An, Dn with n odd, or E6, and τ a graph automorphism of order 2,

Fp(
τG(q)) ≃ Fp(G(q′)) if ⟨−q⟩ = ⟨q′⟩ ≤ Z×p
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Equivalences between fusion systems of finite groups of Lie type

Equivalences between fusion systems of finite groups of Lie type at
primes different from the defining characteristic

Some additional cases:

If q ≡ 1 mod p, then

for p ≠ 3, Fp(G2(q)) ≃ Fp(
3D4(q)), and

for p ≠ 2, Fp(F4(q)) ≃ Fp(
2E6(q))
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Equivalences between fusion systems of finite groups of Lie type

Ingridients of the proof

(A) Results by Friedlander and by Jacksowski-McClure-Oliver:

If G is a connected reductive group scheme over Z and (p, q) = 1, there is a homotopy
pull-back square

BτG(q)∧p //

��

BG(C)
∧
p

∆

��
BG(C)

∧
p

1×τψq

// BG(C)
∧
p ×BG(C)

∧
p

where ψq is the unstable Adams map of exponent q and τ a graph automorphism.
(BG(C)

∧
p ≃ BG

∧
p , G the unitary form of G(C).)

The case G = GL was first considered by Quillen in order to compute H∗
(GLn(q),Fp).

(Related to his work on K-theory of finite fields.)
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Equivalences between fusion systems of finite groups of Lie type

Ingridients of the proof

(B) Homotopy fixed points: BτG(q)∧p ≃ (BG∧
p)
h⟨τψq⟩.

In a homotopy pull-back diagram:

E //

��

X

∆

��
X

1×α // X ×X

we can interpret
E ≃Xhα

= MapZ(R,X) ,

the space of homotopy fixed points, after rigidifying the action of Z on X given by α.

Furthermore, Xhα
≃ Γ(Xhα ↓ S

1
) is a space of sections of the fibre bundle:

X // Xhα // S1

where Xhα =X × I/ ∼, (0, x) ∼ (1, α(x)), is the mapping torus.
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Equivalences between fusion systems of finite groups of Lie type

Ingridients of the proof

Key observation: Sometimes X // Xhα // S1
(≃ BZ) extends to a fibration

X∧
p

// (Xhα)∧p // (S1
)
∧
p (≃ BZp)

thus, the action of Z generated by α extends to an action of Zp.

Theorem

Fix a prime p, X a connected and p-complete space satisfying

H∗
(X,Fp) Noetherian

Out(X) detected Ĥ∗
(X,Zp) ∶= lim

←Ð
H∗

(X,Z/pk).

Let α,β be self equivalences of X with ⟨α⟩ = ⟨β⟩ in Out(X), then

Xhα
≃Xhβ .

Here, Out(X) is given the p-adic topology determined by the basis of open
neighborhoods of the identity:

Uk = {[f] ∈ Out(X)∣f∗ = id on H∗
(X,Z/pk}
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Fusion systems of finite simple groups of Lie type are tame

Abstract fusion systems

Definition (Puig)

A fusion system F over a finite p-group S consists of a set HomF(P,Q) for every pair
P,Q of subgroups of S such that

HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q)

and form a category where every morphism decomposes as an isomorphism followed by
an inclusion.

It is saturated if it satisfies some extra axioms. Axioms

Definition

We will say that a saturated fusion system F is exotic if it cannot be obtained from a
finite group.
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Carles Broto (Universitat Autònoma de Barcelona) Fusion systems March 2012 14 / 18



Fusion systems of finite simple groups of Lie type are tame

Known examples of exotic fusion systems

1 There is only one known family of exotic fusion systems at the prime 2: Sol(q), q an
odd prime power.

Sol(q) are saturated fusion systems studied by Solomon, later by Benson, and
formalized by Levi-Oliver, defined over the Sylow 2-subgroup of Spin(7, q).

2 [Ruiz-Viruel] Classification of saturated fusion systems defined over the extraspecial
groups of order p3 and exponent p, (p odd prime): There are exactly 3 exotic
examples at the prime 7.

3 [Diaz-Ruiz-Viruel] Complete the classification of saturated fusion systems over finite
p-groups of rank 2. New exotic examples appear at the prime 3.

4 [B-Møller] Construction of classifying spaces of new exotic examples:
BX(m,r,n)(q) n ≥ p and r > 2, BX29(q) p = 5, q ≡ 1 mod p, and BX34(q), p = 7
and ≡ 1 mod p.

5 [Ruiz] Construction of the exotic saturated fusion systems X(m,r,n)(q) as
subsystems of index prime to p in the fusion system of the general linear groups
GLmn(Fq).
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Fusion systems of finite simple groups of Lie type are tame

Tame systems

Definition

A saturated fusion system F over a finite p-group S is tame if there exists a finite group
G such that

(i) F ≃ Fp(G), (realizable).

(ii) The natural map
κG∶Out(G)Ð→ Out(BG∧

p)

is split surjective (tamely realized by G).

[Andersen-Oliver-Ventura] Fusion systems that are not tamely realized are reductions of
exotic systems.

This has to be made precise by defining reduced fusion systems and a reduction process.
This is based in know extension theory for saturated fusion systems.
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Carles Broto (Universitat Autònoma de Barcelona) Fusion systems March 2012 16 / 18



Fusion systems of finite simple groups of Lie type are tame

Tame systems

Definition

A saturated fusion system F over a finite p-group S is tame if there exists a finite group
G such that

(i) F ≃ Fp(G), (realizable).

(ii) The natural map
κG∶Out(G)Ð→ Out(BG∧

p)

is split surjective (tamely realized by G).

[Andersen-Oliver-Ventura] Fusion systems that are not tamely realized are reductions of
exotic systems.

This has to be made precise by defining reduced fusion systems and a reduction process.
This is based in know extension theory for saturated fusion systems.

Theorem (Joint work in progress with J. Møller and B. Oliver)

Fusion systems of finite simple groups of Lie type are tame.
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Saturation Axioms for fusion systems

Let F be a fusion system over a p-group S.

1 A subgroup P ≤ S is fully centralized in F if ∣CS(P )∣ ≥ ∣CS(P
′
)∣ for all P ′

≤ S which
is F-conjugate to P .

2 A subgroup P ≤ S is fully normalized in F if ∣NS(P )∣ ≥ ∣NS(P
′
)∣ for all P ′

≤ S
which is F-conjugate to P .

Definition

A fusion system F over a p-group S is a saturated if the following two conditions hold:

(I) For all P ≤ S which is fully normalized in F , P is fully centralized in F and
AutS(P ) ∈ SylpAutF(P ).

(II) If P ≤ S and ϕ ∈ HomF(P,S) are such that ϕP is fully centralized, and if we set

Nϕ = {g ∈ NS(P ) ∣ϕcgϕ
−1

∈ AutS(ϕP )},

then there is ϕ ∈ HomF(Nϕ, S) such that ϕ∣P = ϕ.

Return
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