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I. Introduction.

John G. Thompson’s famous

‘N-group paper’

of 1968 included the following important

solvability criterion for finite groups:

Thompson’s theorem. A finite group

is solvable if and only if every pair of its

elements generates a solvable group.

In 1995, Paul Flavell published a relatively

simple proof of Thompson’s result.
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We proved that solvability of a finite group

is guaranteed by a seemingly weaker condition

than the solvability of all its 2-generator

subgroups.

Theorem A. Let G be a finite group.

The following statements are equivalent:

(1) G is solvable;

(2) For all x, y ∈ G, there exists an element

g ∈ G for which 〈x, yg〉 is solvable; and

(3) For all x, y ∈ G of prime power order,

there exists an element g ∈ G for which

〈x, yg〉 is solvable.
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Theorem A can be rephrased as the

following essentially equivalent result.

Theorem A’. Let G be a finite group such

that, for all distinct conjugacy classes

C and D of G consisting of elements of

prime power order, there exist x ∈ C and

y ∈ D for which 〈x, y〉 is solvable.

Then G is solvable.
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Our second main result, which is the

key tool for proving Theorem A, deals with the

nonsolvability of certain 2-generator subgroups

of finite nonabelian simple groups. Using the

classification of finite simple groups, we proved

the following theorem.

Theorem B. Let G be a finite nonabelian

simple group. Then there exist distinct prime

divisors p, q of |G| such that, for all x, y ∈ G

with |x| = p, |y| = q, the subgroup 〈x, y〉 is

nonsolvable.
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Theorem A can also be used to give the following

characterization of finite nilpotent groups. Our proof

depends upon the finite simple groups classification,

since Theorem A does. It would be interesting to

see if this result could be proved without the

classification of finite simple groups.

Corollary C. Let G be a finite group. Then

G is nilpotent if and only if for every pair

of distinct primes p and q and for every pair

of elements x, y ∈ G with x a p-element and y

a q-element, x and yg commute for some g ∈ G.
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We can restate Theorem A in an analogous

manner.

Corollary D. Let G be a finite group.

Then G is solvable if and only if for every pair

of distinct primes p and q and for every pair

of elements x, y ∈ G with x a p-element and

y a q-element, 〈x, yg〉 is a {p, q}-group

for some g ∈ G.
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II. Other generalisations

of Thompson’s theorem.

Several other “Thompson-like” results have

appeared in the literature recently. We mention

here five such theorems. In three of them solvability

of all 2-generator subgroups is replaced by a weaker

condition, restricting the required set of solvable

2-generator subgroups.
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In 2000, Wilson and Guralnick obtained a

solvability criterion by restricting the proportion

of 2-generator subgroups required to be solvable.

Theorem 2.1. A finite group is solvable if and

only if more than 11
30 of the pairs of elements of G

generate a solvable subgroup.
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In addition, they proved similar results showing

that the properties of nilpotency and of

”having odd order” are also guaranteed if a sufficient

proportion of element pairs generate subgroups

with these properties.

Theorem 2.2. A finite group is nilpotent (of odd

order) if and only if more than 1
2 (11

30) of the pairs

of elements of G generate a nilpotent (of odd

order) subgroup.
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In contrast to this, in a paper published in 2009,

Gordeev, Grunewald, Kunyavskǐi and Plotkin

proved a solvability criterion which involved

2-generation within each conjugacy class.

This result was also proved independently

by Simon Guest.

Theorem 2.3. A finite group G is solvable if

and only if, for each conjugacy class C of G,

each pair of elements of C generates a solvable

subgroup.
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A stronger result of this type follows easily

from a result of Guest, while a slightly weaker

version of it was obtained recently by Kaplan and

Levy. Their criterion involves only a limited

2-generation within the conjugacy classes

of elements of odd prime-power order.

Theorem 2.4. A finite group G is solvable if

and only if, for all x, y ∈ G with x a p-element

for each prime p > 3 dividing |G| and y a

2-element, the group 〈x, xy〉 is solvable.
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The requirement in our theorem, while ranging

over all conjugacy classes, requires only the

existence of a solvable 2-generator subgroup

with one generator from each of two classes.

We know of no similar criteria in this respect.
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The fifth result we wish to draw your attention to

is in a 2006 paper of Guralnick, Kunyavskĭi, Plotkin

and Shalev. They proved that membership of the

solvable radical of a finite group is characterised by

solvability of certain 2-generator subgroups. (The

solvable radical R(G) of a finite group G is

the largest solvable normal subgroup of G.)

They proved the following theorem.

Theorem 2.5. For a finite group G, the solvable

radical R(G) coincides with the set of all elements

x ∈ G with the following property:

for any y ∈ G, the subgroup 〈x, y〉 is solvable.
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In view of the previous results, it might seem

reasonable to consider the following conjecture.

Conjecture. For a finite group G, the solvable

radical R(G) coincides with the set of all elements

x ∈ G with the following property:

for any y ∈ G, there exists g ∈ G such that

the subgroup 〈x, yg〉 is solvable.

However, this conjecture is false.
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For example, the group A5 contains solvable

subgroups of order 6 and 10, and it consists of

the unit elements, one class of elements of order 2,

one class of elements of order 3 and two classes

of elements of order 5. So if x ∈ A5 is of

order 2, then it generates a solvable subgroup

with some conjugate of each element of A5,

while certainly the involution x does not belong to

the solvable radical of A5. The same holds for

elements of order 3 in PSL(2, 7) and Simon Guest

and Cheryl Praeger have constructed such

counterexamples for elements x of an arbitrary

prime order.
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The aim of the rest of this lecture is to present a

rough sketch of the proof of Theorem B, including

some useful lemmas, and to apply it for the

proof of Theorem A.
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III. On the proof

of Theorem B.

First we remind you the statement of Theorem B.

Theorem B. Let G be a finite nonabelian

simple group. Then there exist distinct prime

divisors p, q of |G| such that, for all x, y ∈ G

with |x| = p, |y| = q, the subgroup 〈x, y〉 is

nonsolvable.

By the classification of the finite simple groups,

we need to consider the following four types

of simple groups:
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(a) Alternating groups An for n ≥ 5.

(b) The 26 sporadic simple groups.

(c) Classical simple groups of Lie type.

(d) Exceptional simple groups of Lie type.

We consider first the proof of Theorem B for

the alternating and sporadic simple groups. We

need the following useful lemma.
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Lemma 3.1. Let H be a finite group and let

p, q be distinct prime divisors of |H|. Assume that

the following statements hold.

(1) The Sylow q-subgroup of H is cyclic and

the Sylow p-subgroup of H has order ps.

(2) p does not divide q − 1.

(3) q does not divide pm − 1 for 1 ≤ m ≤ s

(certainly holds if q > ps); and

(4) H contains no elements of order pq.

Then H contains no subgroup of order paqb

with a, b > 0.

In particular, H is nonsolvable.
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Proof. Suppose, to the contrary, that H contains a

subgroup B of order paqb with a, b > 0. Our aim is

to reach a contradiction.

Let N be a minimal normal subgroup of B. Since

B is solvable, N is elementary abelian.

If N is a q-group, then by (1) |N | = q and B

contains a subgroup M of order pq. Hence, either

M is nonabelian, in which case p divides q − 1,

in contradiction to (2), or M is abelian, hence

cyclic of order pq, in contradiction to (4). Thus

N is not a q-group.
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If N is a p-group, then by (1) |N | = pi ≤ ps

and hence B contains a subgroup M > N of

order qpi.

Since by (4) H contains no elements of order pq,

an element of order q in M acts fixed point freely

on N , which implies that q divides pi − 1, in

contradiction to (3).

Thus B does not exist, as required. �
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First we sketch a proof of

Proposition 3.2. Theorem B holds for the

alternating simple groups.

Proof. Note that if m is a positive integer and

π(m) denotes the number of primes at most m,

then the following is known:

π(2m) − π(m) > m/(3 ln 2m) for m > 1.

Now,

m/(3 ln 2m) ≥ 2 for m ≥ 9 .

so it follows that

π(n) − π(n/2) ≥ 2 for n ≥ 18 .
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This implies, in particular, that there exist

primes p, q such that

n/2 ≤ p < q ≤ n for n ≥ 18 .

It can be shown, by checking small values of n,

that the above statement holds for all n ≥ 5.

This is only true because we allow p = n/2.

For examle, if n = 10, we have

n

2
= 5 = p < q = 7 < n = 10

and no other choice of the primes p, q is possible.

So let n ≥ 5 and choose primes p and q as

indicated above. Then p + q > n and no element

of An contains either disjoint cycles of both

lengths p and q or a cycle of length pq. Thus

An contains no elements of order pq.
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Moreover, as q > n
2 , the Sylow q-subgroup of An

is cyclic of order q and it follows from

q − 1 > p ≥ q/2

that p does not divide q − 1 and q does not divide

p2 − 1 (if n = 10, then p = 5 and p2 divides |A10|).

Let x, y ∈ An, with |x| = p and |y| = q. Then

H = 〈x, y〉 satisfies the assumptions of Lemma 3.1,

and hence 〈x, y〉 is nonsolvable. Thus An satisfies

Theorem B with respect to these primes. �
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Next we sketch a proof of

Proposition 3.3. Theorem B holds for the

sporadic simple groups.

Proof. We shall describe the treatment of the

sporadic simple group M12, where

|M12| = 95, 040 = 26 · 33 · 5 · 11 .

The treatment of all the other sporadic simple

groups is similar.

We choose p = 3 and q = 11. The choice p = 5

and q = 11 is inappropriate, since 5 divides 11 − 1.
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Let x, y ∈ M12, with |x| = p = 3 and |y| = q = 11

and let H = 〈x, y〉. We shall show now that M12,

and hence also H, fulfills the conditions of

Lemma 3.1.

(1) The Sylow 11-subgroup of M12 is of order 11,

hence it is cyclic. The Sylow 3 subgroup of M12

is of order 33.

(2) 3 does not divide 11 − 1.

(3) 11 does not divide 3m − 1 for 1 ≤ m ≤ 3.

(4) By the ATLAS, M12 contains no element of

order 3 · 11 = 33.

Hence, by Lemma 3.1, H = 〈x, y〉 is nonsolvable,

as required. �
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We now consider the simple groups of Lie type.

Here the situation is much more complicated.

We shall describe here only one simple case.

In order to do so, we need the following lemma.

Lemma 3.4. Let H be a finite group and let p, q

be distinct primes dividing |H|. Suppose that the

Sylow p- and q-subgroups of H are both cyclic,

and H contains no subgroup of order pq. Then

H is nonsolvable.
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Proof. Suppose, to the contrary, that H is

solvable and let M be a Hall {p, q}-subgroup of H.

Let, now, N be a minimal normal subgroup of M .

Then, since the Sylow p- and q-subgroups of H

are both cyclic, N is of prime order, say p, and M

contains a subgroup of order pq, a contradiction.

Hence H is nonsolvable, as required. �
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We are now ready to prove the following

proposition.

Proposition 3.5. Theorem B holds for the

simple groups PSL(2, 2a), with 2a ≥ 4.

Proof. We have

|PSL(2, 2a)| = (2a − 1)2a(2a + 1) .

Let p be a prime dividing 2a − 1 and let q be

a prime dividing 2a + 1. Clearly both p and q

are odd primes.

Since PSL(2, 2a) contains cyclic subgroups of

orders 2a − 1 and 2a + 1, the Sylow p-subgroup

and the Sylow q-subgroup of PSL(2, 2a) are cyclic.
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Let x be an element of PSL(2, 2a) of order p

and let y be an element of PSL(2, 2a) of order q.

Denote H = 〈x, y〉. Since the Sylow p-subgroup

and the Sylow q-subgroup of PSL(2, 2a) are cyclic,

also the Sylow p-subgroup and the Sylow q-subgroup

of H are cyclic. Moreover, for each element u

of PSL(2, 2a) of order p we have

|NPSL(2,2a)(〈u〉)| = 2(2a − 1)

and for each element v of PSL(2, 2a) of order q we

have
|NPSL(2,2a)(〈v〉)| = 2(2a + 1) .

In particular, pq divides neither |NPSL(2,2a)(〈u〉)|

nor |NPSL(2,2a)(〈v〉)|.
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Hence H contains no subgroups of order pq,

since any subgroup of PSL(2, 2a) of order pq

would be contained in one of such normalizers,

which is impossible.

Thus H satisfies the conditions of Lemma 3.4

and, consequently, H = 〈x, y〉 is nonsolvable, as

required. �
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IV. The proof of Theorem A.

This is the final section of this talk.

Our aim here is twofold:

(i) to show how Theorem B leads us

to a proof of Theorem A;

(ii) to show that Theorem A is almost

best possible.

We start with the statements of the theorems,

beginning with Theorem B.

Theorem B. Let G be a finite nonabelian

simple group. Then there exist distinct prime

divisors p, q of |G| such that, for all x, y ∈ G

with |x| = p and |y| = q, the subgroup 〈x, y〉 is

nonsolvable.
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Next we state Theorem A, which we intend

to prove.

Theorem A. Let G be a finite group.

The following statements are equivalent:

(1) G is solvable;

(2) For all x, y ∈ G, there exists an element

g ∈ G for which 〈x, yg〉 is solvable; and

(3) For all x, y ∈ G of prime power order,

there exists an element g ∈ G for which

〈x, yg〉 is solvable.

Proof of Theorem A. The implications (1) ⇒ (2)

and (2) ⇒ (3) are obvious. We need only to prove

that (3) ⇒ (1).
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So let G be a finite group such that, if x, y ∈ G

are of prime power order, then 〈x, yg〉 is solvable

for some g ∈ G. In other words, let G satisfy

hypothesis (3). We need to prove that G is

solvable.

Suppose that this is not the case, and let

the non-solvable group G be a minimal

counterexample.

Our aim is to reach a contradiction.

By Theorem B, if G is simple, then

hypothesis (3) couldn’t hold. Therefore G

is non-simple.
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Let N be a minimal normal subgroup of G.

Since G is non-simple, N is a proper subgroup of G.

Note that if xN ∈ G/N is of prime power order,

then we may replace x by a power of itself and

assume that also x is of prime power order.

Thus, if xN, yN ∈ G/N are of prime power order,

we may assume that x, y are elements of G of prime

power order, and by our assumptions, 〈x, yg〉

is solvable for some g ∈ G. Hence also 〈xN, (yN)gN 〉

is solvable and G/N satisfies hypothesis (3).

Thus it follows, by the minimality of G, that G/N

is solvable.
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Since G is non-solvable and G/N is solvable,

it follows that N is a nonsolvable minimal normal

subgroup of G. Therefore

N = L1 × . . . × Lt
∼= Lt

for some nonabelian simple group L and t ≥ 1.

By Theorem B there exist distinct primes p, q

dividing |L| such that 〈a, b〉 is nonsolvable for

all a, b ∈ L of order p and q, respectively.

Since Li
∼= L for 1 ≤ i ≤ t, 〈a, b〉 is nonsolvable

for all a, b ∈ Li of order p and q, respectively.

38



Let now xi, yi be elements of Li of order p and q,

respectively, where N = L1 × . . . × Lt
∼= Lt.

Moreover, let

x = (x1, . . . , xt) ∈ N and y = (y1, . . . , yt) ∈ N.

If g ∈ G, then 〈x, yg〉 is a subgroup of N .

Now yg
1 is an element of Li for some i and

|yg
1 | = q. Thus the projection of 〈x, yg〉 to Li

contains 〈xi, y
g
1〉, where |xi| = p and |yg

1 | = q.

Since, by our choice of p and q, 〈xi, y
g
1〉 is

non-solvable, it follows that the projection of

〈x, yg〉 to Li is non-solvable. Hence also

〈x, yg〉 is non-solvable.
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As this holds for each g ∈ G, we obtained a

contradiction to hypothesis (3), which requires

〈x, yg〉 to be solvable for some g ∈ G.

The proof of Theorem A is complete. �
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Theorem A is very nice, but a question arises:

Is Theorem A best possible?

Recall Theorem B:

Theorem B. Let G be a finite nonabelian

simple group. Then there exist distinct prime

divisors p, q of |G| such that, for all x, y ∈ G

with |x| = p and |y| = q, the subgroup 〈x, y〉 is

nonsolvable.

In view of Theorem B, it is tempting to consider

the following conjecture:
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Conjecture A. Let G be a finite group.

The following statements are equivalent:

(1) G is solvable;

(2) For all x, y ∈ G of prime order,

there exists an element g ∈ G for which

〈x, yg〉 is solvable.

Unlike Theorem A, which deals with x, y ∈ G of

prime power order, Conjecture A requires only

that given elements x, y of G of prime order,

there exists g ∈ G for which 〈x, yg〉 is solvable.
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Recall that in our proof of Theorem A we needed

the stronger assumption, because if xN is an

element of G/N of prime order, we know

only that x may be replaced by an element of G

of prime power order.

Is our stronger assumption really necessary?

43



The answer is: YES.

The weaker inductive assumption, dealing only

with elements of prime order, is not sufficient!

This fact was noticed by Enrico Jabara.
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Jabara showed that there exists a non-split

extension
G1 = (C3)

4 ∗ SL(2, 5)

of order 9720, with the Fitting subgroup

F (G) = (C3)
4 × C2,

and the orders of elements in G − F (G) are

{4, 5, 9, 10, 12.18}.

Hence, if x, y ∈ G1 are of distinct prime orders,

then at least one of them lies in F (G) and

〈x, y〉 is solvable. If, on the other hand,

|x| = |y| = 5, then there exists z, a conjugate of y,

such that 〈x, z〉 is solvable.

But clearly G1 is non-solvable!

45



Moreover, Jabara claims that there exists

a non-split extension

G2 = ((C3)
4 × (C5)

3) ∗ SL(2, 5)

with
F (G) = (C3)

4 × (C5)
3 × C2,

and all elements of G2 of prime order lie in F (G).
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Thus Theorem A is close to being best possible.

My talk is now complete.

THANK YOU FOR YOUR ATTENTION.
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