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Abstract

Happy Birthday!

Abstract:
We give a description of definable subsets in a free non-abelian
group and in a torsion-free non-elementary hyperbolic group G
that follows from our work on the Tarski problems. As a corollary
we show that proper non-abelian subgroups of F and G are not
definable (solution of Malcev’s problem for F ) and prove Bestvina
and Feighn’s statement that definable subsets in a free group are
either negligible or co-negligible.
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Definable set

A set S is definable in a group G if there exists a first-order formula

ψ(p) = ∃x1∀y1 . . . ∃xn∀ynφ(p, x1, y1, . . . , xn, yn),

where φ(p, x1, y1, . . . , xn, yn) has no quantifiers, such that p0 ∈ S
iff ψ(p0) is a true sentence in G .
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Theory

The first order theory of a group G (Th(G )) is the set of all
first-order sentences that are true in G .

The first order theory of a class of groups C (Th(C)) is the set of
all first-order sentences that are true in every G ∈ C.
One can also talk about Th∀(C), Th∃(C).
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Fathers-founders

Malcev started in the 60s an extremely fruitful school in model
theory and decidability of elementary theories.
The elementary theory of the class of all finite groups is
undecidable
The elementary theory of a free nilpotent and of a free soluble
non-abelian group is undecidable.
Ershov: Undecidability of the theories of symmetric and finite
simple groups.
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Two finite models are elementary equivalent iff they are isomorphic.

Malcev proved that the groups Gn(K ) and Gm(L) (where
G = GL,SL,PGL,PSL, n,m ≥ 3,K , L are fields of characteristics
0) are elementary equivalent if and only if m = n and the fields K
and L are elementary equivalent.

Malcev asked about Th∀ of finite groups, of finite nilpotent groups.
Th∀ of finite groups is undecidable (Slobodskoy, 1980)
Th∀ of finite nilpotent groups is undecidable (Kharlampovich,
1982), the theory of quasi-identities is undecidable.

∀x1, . . . , xn(∧ki=1wi (x1, . . . , xn) = 1→ w(x1, . . . , xn) = 1)

.
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Very interesting class: pseudofinite groups

We say that a group G is pseudofinite if it is an infinite model of
the theory of finite groups; that is, if it is elementarily equivalent
to an infinite ultraproduct of finite groups.

(J.S. Wilson) Any infinite pseudofinite simple group is elementarily
equivalent to a Chevalley group (possibly of twisted type) over a
pseudofinite field.

(D. Macpherson, K. Tent, 2007) Let G be a pseudofinite group
with stable theory. Then G has a definable soluble normal
subgroup of finite index.
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I am not talking about this interesting class

Groups of finite Morley rank lie on the border between model
theory and algebraic groups. Morley rank is a notion of dimension
arising naturally in model theory. Morley rank behaves much like a
dimension function for constructible sets over the complex
numbers. Indeed, Hilberts Nullstellensatz shows that the Morley
rank of an algebraic variety is equal to its Krull dimension.
The algebraicity conjecture in groups of finite Morley rank, due to
Cherlin and Zilber, is that all simple groups of finite Morley rank
are simple algebraic groups over algebraically closed fields, i.e.
arise from matrix groups.
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Tarski

Alfred Tarski is widely considered as one of the greatest logicians
of the twentieth century (often regarded as second only to Gödel),
and thus as one of the greatest logicians of all time. Among
philosophers he is especially known for his mathematical
characterizations of the concepts of truth and logical consequence
for sentences of classical formalized languages. Among logicians
and mathematicians he is in addition famous for his work on set
theory, model theory and algebra
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Tarski’s Type Problems: Complex numbers, 30s

Complex numbers C
Th(C) = Th(F ) iff F is an algebraically closed field.

Th(C) is decidable.

Definable sets are either finite or co-finite.

This led to development of the theory of algebraically closed fields.

Elimination of quantifiers: every formula is logically equivalent (in
the theory ACF) to a boolean combination of quantifier-free
formulas (something about systems of equations).
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Tarski’s Type Problems: Reals, 30s and later

Reals R
Th(R) = Th(F ) iff F is a real closed field.

Th(R) is decidable.

A real closed field = an ordered field where every odd degree
polynomial has a root and every element or its negative is a square.

Theory of real closed fields (Artin, Schreier), 17th Hilbert Problem
(Artin) (given a psd polynomial f ∈ R[xl , . . . , xk ], can f be written
as a sum of squares of elements in R(X )?)

Elimination of quantifiers (to equations): every formula is logically
equivalent (in the theory RCF) to a boolean combination of
quantifier-free formulas.
Th(R) is not stable (=one can define an order), a lot of definable
sets.
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Free abelian groups

Th(Zn) 6= Th(Zm), if n 6= m.
Schmelev Th(Zn) is decidable.

Baur and Monk Every formula is equivalent to a boolean
combination of positive primitive formulas. The same is true for
module in the language with scalars in the signature.

Building blocks for definable sets are subgroups.
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Solutions to Tarski’s problems

Theorem [Kharlampovich and Myasnikov (1998-2006),
independently Sela (2001-2006)]

Th(Fn) = Th(Fm),m, n > 1.

Theorem [Kharlampovich and Myasnikov (1998-2006)]

The elementary theory Th(F ) of a free group F even with
constants from F in the language is decidable.
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Examples

Examples of sentences in the theory of F : ( Vaught’s identity)
∀x∀y∀z(x2y2z2 = 1→
([x , y ] = 1&[x , z ] = 1&[y , z ] = 1))

(Torsion free) ∀x(xn = 1→ x = 1)

(Commutation transitivity)
∀x∀y∀z((x 6= 1&y 6= 1&z 6= 1&[x , y ] = 1
&[x , z ] = 1)→ [y , z ] = 1)
CT doesn’t hold in F2 × F2.
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Examples

(CSA) ∀x∀y([x , xy ] = 1→ [x , y ] = 1)

∀x , y∃z(xy = yx → (x = z2 ∨ y = z2 ∨ xy = z2))
not true in a free abelian group of rank ≥ 2.
This implies that if a group G is ∀∃ equivalent to F , then it does
not have non-cyclic abelian subgroups.

F has Magnus’ property, namely, for any n,m the following
sentence is true:
∀x∀y(∃z1, . . . , zm+n(x = Πn

i=1z−1i y±1zi ∧ y = Πm+n
i=n+1z−1i x±1zi )→

∃z(x = z−1y±1z))
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Quantifire Elimination

Let F be a free group with finite basis. We consider formulas in
the language LA that contains generators of F as constants.
Notice that in the language LA every finite system of equations is
equivalent to one equation (this is Malcev’s result) and every finite
disjunction of equations is equivalent to one equation (this is
attributed to Gurevich).
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Quantifire Elimination

Theorem

(Sela,Kh,Miasn) Every formula in the theory of F is equivalent to
the boolean combination of AE -formulas.
Every definable subset of F is defined by some boolean
combination of formulas

∃X∀Y (∨ki=1(Ui (P,X ) = 1 ∧ Vi (P,X ,Y ) 6= 1)), (1)

where X ,Y ,P are tuples of variables.
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Quantifire Elimination
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Theorem

(Sela) Every formula in the theory of a non-elementary torsion-free
hyperbolic group G is equivalent to the boolean combination of
AE -formulas. The theory is stable.
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For a free and for a torsion-free hyperbolic group G a more precise
result about quantifier elimination holds.

Theorem

Every definable subset of F is defined by some boolean
combination of formulas

∃X∀Y (U(P,X ) = 1 ∧ V (P,X ,Y ) 6= 1), (2)

where X ,Y ,P are tuples of variables.
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Now we really have to concentrate:
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Definition

A piece of a word u ∈ F is a non-trivial subword that appears in
two different ways.

Example ab is a piece in abcb−1a−1.
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Definition

A proper subset P of F admits parametrization if it is a set of all
words p that satisfy a given system of equations (with coefficients)
without cancellations in the form

p $ wt(y1, . . . , yn), t = 1, . . . , k , (3)

where for all i = 1, . . . , n, yi 6= 1, each yi appears at least twice in
the system and each variable yi in w1 is a piece of p.

The empty set and one-element subsets of F admit
parametrization.
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Definition

A finite union of sets admitting parametrization will be called a
multipattern. A subset of a multipattern will be called a
sub-multipattern
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Definition

(BF) A subset P of F is negligible if there exists ε > 0 such that
all but finitely many p ∈ P have a piece such that

length(piece)

length(p)
≥ ε.

A complement of a negligible subset is co-negligible.
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Bestvina and Feighn stated that in the language without constants
every definable set in F is either negligible or co-negligible. It is
obvious that
1) Subsets of negligible sets are negligible.
2) Finite sets are negligible.
[BF] 3) A set S containing a coset of a non-abelian subgroup G of
F cannot be negligible
4) A proper non-abelian subgroup of F is neither negligible nor
co-negligible.
5) The set of primitive elements of F is neither negligible nor
co-negligible if rank(F ) > 2.
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Proof.

3) If x , y ∈ G and [x , y ] 6= 1, then the infinite set
{xyxy2x . . . xy ix , i ∈ N} is not negligible .
Statement 4) follows from 3).
5) Let a, b, c be three elements in the basis of F and denote
F2 = F (a, b) The set of primitive elements contains cF2, and the
complement contains < [a, b], c−1[a, b]c > .
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Lemma

A set P that admits parametrization is negligible. A
sub-multipattern is negligible.

Proof.

Suppose P admits parametrization. Let m be the length of word
w1 (as a word in variables yi ’s and constants). The set P is
negligible with ε = 1/m.
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Theorem

Suppose an E -set P is not the whole group F and is defined by the
formula

ψ(p) = ∃YU(Y , p) = 1,

then it is a multipattern.
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Cut Equations
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Cut Equations
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Cut Equations

Definition

A cut equation Π = (E ,M,X , fM , fX ) consists of a set of intervals
E , a set of variables M, a set of parameters X , and two labeling
functions

fX : E → F [X ], fM : E → F [M].

For an interval σ ∈ E the image fM(σ) = fM(σ)(M) is a reduced
word in variables M±1 and constants from F , we call it a partition
of fX (σ).
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Corollary

Suppose a set P is defined by the formula

ψ1(p) = ∃Y ∀Z (U(Y , p) = 1 ∧ V (Y ,Z , p) 6= 1).

If the positive formula ψ(p) = ∃Y (U(Y , p) = 1 does not define
the whole group F , then P is a sub-multipattern, otherwise it is a
co-multipattern.
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Proof.

If ψ(p) does not define the whole group F , then ψ1(p) is a
sub-multipattern.
Suppose now that ψ(p) defines the whole group. Then ψ1(p) is
equivalent to ψ2(p) = ∃Y ∀ZV (Y ,Z , p) 6= 1. Suppose it defines a
non-empty set. Consider ¬ψ2(p) = ∀Y ∃ZV (Y ,Z , p) = 1.

Lemma

Formula
θ(p) = ∀Y ∃ZV (Y ,Z , p) = 1

in F in the language LA is equivalent a positive E-formula
∃XU(p,X ) = 1.

In this case P is co-multipattern.
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Solution to Malcev’s (1965) problem.

Theorem

For every definable subset P of F , P or its complement ¬P is a
sub-multipattern.

Corollary

(B,F) Every definable subset of F in the language with constants
(and, therefore, in the language without constants) is either
negligible or co-negligible.

Corollary

Proper non-abelian subgroups of F are not definable.

Corollary

The set of primitive elements of F is not definable if rank(F ) > 2.
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Hyperbolic groups

Definition

Suppose a torsion-free non-elementary hyperbolic group G is
generated by the set A, therefore G is a quotient of the free group
F (A). A proper subset P of G admits parametrization if P is the
image of the set P̃ in F (A) that admits parametrization in F (A)
and there exist constants λ and D such that for each p ∈ P there
is a pre-image p̃ ∈ P̃ such that the path corresponding to p̃ in the
Cayley graph of G is λ-quasigeodesic in D neighborhood of the
geodesic p.
The empty set and one-element subsets of G admit
parametrization.
A finite union of sets admitting parametrization will be called a
multipattern. A subset of a multipattern will be called a
sub-multipattern
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Hyperbolic groups

Theorem

For every definable subset P of non-elementary torsion free
hyperbolic group G , P or its complement ¬P is a sub-multipattern.
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Negligible subsets are negligible

Definition

Recall that in complexity theory T ⊆ F (X ) is called generic if

ρn(T ) =
|T ∩ Bn(X )|
|Bn|

→ 1, if n→∞,

where Bn(X ) is the ball of radius n in the Cayley graph of F (X ). A
set is negligible is its complement is generic.
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Negligible subsets are negligible

Theorem

Negligible sets are negligible .
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Thanks!
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