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Today—roughly—is the 41st anniversary of the publication of Bernd Fischer’s famous

classification of groups generated by 3-transpositions. I would like to contribute to this

celebration in honor of Professor Fischer by recalling a few details of the classification in

the first part of this talk.

There are uncanny parallels between Fischer’s classification and the classification of Mo-

ufang quadrangles. In the second half of this talk, I want to try describe some of these

parallels and say something about some recent work with Bernhard Mühlherr and Holger

Petersson.

So: let G be a finite group generated by a set D of 3-transpositions. This means that D is

set of involutions (i.e. a set of elements of order 2) closed under conjugation and |de| ≤ 3

for all d, e ∈ D.

We let Γ = [D] denote the commuting graph on D and we let Γ̄ = (D) denote its comple-

ment. If d ∈ D, then Dd is its set of neighbors in the graph Γ and Ad its set of neighbors

in the graph Γ̄.

If e ∈ Ad, then |de| = 3 and hence e is conjugate to d in 〈d, e〉. It follows that G acts

transitively on D (by conjugation) if and only if Γ̄ is connected.

A crucial observation:

• Dd is also a set of 3-involutions.

Consequently, the study of 3-transpositions is inherently inductive.

D is called reduced if no two elements of D have the same sets of neighbors, neither in Γ

nor in Γ̄ (and also |D| > 1).

If D is the set of transpositions in S3 or S4, for example, then D is not reduced.

The classification says that if

(∗) [D] and (D) are connected and D is reduced,

then Γ = [D] comes from a symmetric, orthogonal, symplectic or unitary group or from

one of the three sporadic groups Fi22, Fi23 or Fi24.

The proof of the classification rests on the following:
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Fundamental Lemma: (∗) implies that 〈d,Dd〉 acts transitively on both Dd and Ad.

Here is an elementary consequence of the Fundamental Lemma:

Proposition: If for each d ∈ D, (Dd) is connected and Dd is reduced, then [Dd] is

connected.

Proof: Since no two elements of Dd have the same set of neighbors in [Dd], we can choose

an edge {u, v} of [Dd]. Since no two elements of Dd have the same set of neighbors in

(Dd), there is a w ∈ Dd adjacent to v but not u. Then {d, v} is an edge of the subgraph

[Du∩Dw]. If, on the other hand, x, y are elements of Dd contained in different components

of [Dd], then the subgraph [Dx ∩ Dy] contains no edges. It is easy to see, however, that

we can apply the Fundamental Lemma, which implies that (u, w) is in the same G-orbit

as (x, y). QED

The classification of 3-transpositions has three parts. Part I is, essentially, the proof of the

Fundamental Lemma. In part II, the classification is carried out under the hypothesis that

Dd does not fulfill (∗). This yields characterizations of S5 and the symplectic and unitary

groups over the field with 2 elements.

Part III is the inductive part of the proof. In Part III it is assumed that Dd does fulfill (∗).

This means that we can assume inductively that [Dd] is known. In the most interesting

case, we assume that [Dd] is the Un(2)-graph. If n < 6, then Γ turns out to be classical. If

n > 6, this assumption leads to a contradiction. But n = 6 turns out to be just right, and

we obtain the sporadic group Fi22! Repeating the process, we obtain Fi23 and then Fi24.

Let’s suppose now that D is a set of 3-transpositions with [Dd] isomorphic to the Fi24-

graphs for all d ∈ D. Let e ∈ Ad, let R = Dd∩De and let x ∈ R. Then Rx = Dd∩Dx∩Du.

Since [Dx] is the Fi24-graph, we know that [Rx] is the disjoint union of three copies of the

O+
8 (3)-graph. Thus R is a set of 3-transpositions satisfying the hypotheses but not the

conclusions of the Proposition above.

With this contradiction, we conclude that Fi25 does not exist!

We turn now to Moufang polygons. The classification of 3-transpositions is a problem

in group theory, but the farther you go into the problem, the more graph theory takes

over. The classification of Moufang polygons, by contrast, is a problem in graph theory

to start with. There are many parallels, however, between the problem of classifying

3-transpositions and the problem of classifying Moufang quadrangles.

(1) They both involve the geometry of simple groups.

(2) In both cases, the simple groups involved are almost all classical (orthogonal, symplectic
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and unitary) with just three exceptions.

(3) The classification of Moufang quadrangles can be divided into the same three parts:

basic lemmas, an non-inductive part and then an inductive part. In Part I we show that

the quadrangle Γ is determined by a sequence of four root groups U1, . . . , U4 and the

subgroup of Aut(Γ) that they generate. We call Γ wide if the commutator groups [U1, U3]

and [U2, U4] are both non-trivial.

Fundamental Lemma: If Γ is wide, then there is canonically embedded subquadrangle

Γ0 which isn’t wide.

In Part II, non-wide Moufang quadrangles are classified. In this case we have orthogonal

examples coming from anisotropic quadratic forms and unitary examples coming from skew

fields with involution (i.e. an anti-automorphism of order 2). There is also a third case, the

indifferent quadrangles, where, in fact, [U1, U3] and [U2, U4] are both trivial; these exist

only in characteristic 2.

In Part III, it is assumed that Γ is wide and that, inductively, the subquadrangle Γ0 is

known. The case that Γ0 is an indifferent quadrangle leads to a contradiction. A skew-

field with involution leads to more unitary groups. In the one remaining case, Γ0 is the

quadrangle associated to an anisotropic quadratic space (K,L, q).

If dimK L ≤ 4, we obtain the last family of unitary groups. At this point the classification

ought to be over (and it is if, for example, K is finite or a local field, since in these case

there are no anisotropic quadratic forms of dimension greater than 4). Instead, three

exceptional families arise, one after the other. These are the “exceptional” quadrangles of

type E6, E7 and E8.

The corresponding anisotropic quadratic spaces “of type E6, E7 and E8” have dimension

6, 8 and 12. De Medts has characterized these quadratic forms in terms of classical

invariants. For example, the quadratic forms of type E7 are precisely the anisotropic

forms of dimension 8 with trivial discriminant but non-trivial Clifford invariant. These

exist, of course, only over certain fields K.

(There is, in fact, one more family of Moufang quadrangles, those of type F4. These arise

in the inductive situation when the bilinear form associated with the quadratic form q is

allowed to be degenerate. These quadrangles exist only over certain fields of characteris-

tic 2.)

In recent work with Bernhard Mühlherr and Holger Petersson, which is nearing completion,

we are studying the exceptional Moufang quadrangles under the hypothesis that the field

K is complete with respect to a discrete valuation. In this case there is a unique Bruhat-

Tits building of type C̃2 whose building at infinity is the exceptional Moufang quadrangle
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associated with a given quadratic form q of type E6, E7, E8 or F4 (by results of Tits and,

in the E8-case, Koen Struyve). Our result is a complete classification of all the possible

residues of such a Bruhat-Tits building. This is the last step in a classification of the

local structure of all Bruhat-Tits buildings of dimension at least 2. This work is closely

connected with an old result of Springer.

If (K,L, q) is an anisotropic quadratic space over a field K complete with respect to

a discrete valuation, then Springer observed that there are two “residual” anisotropic

quadratic spaces (K̄, L̄0, q̄0) and (K̄, L̄1, q̄1) whose dimensions add up to dimK L. If, for

example, the quadratic form q is the reduced norm of an octonion division algebra over K,

equivalently, if q is an anisotropic quadratic form of dimension 8 with trivial discriminant

and trivial Clifford invariant, then these two dimensions are either 8 + 0 or 4 + 4. This

corresponds to the fact that if the building at infinity of a Bruhat-Tits building is a

projective plane defined over an octonion division algebra, then the residues are projective

planes defined either over an octonion division algebra with center K̄ or over a quaternion

division algebra with center K̄. If the dimensions are 4 + 4, then there exist, in general,

separable quadratic splitting fields E/K of q which are ramified and others that are not.

(We are ignoring the additional possibility in this discussion that if the characteristic of

K̄ is 2, the bilinear form associated with q̄0 or q̄1 can be identically zero.)

If, in contrast, q is of type E7, in other words, if q is an anisotropic quadratic form of

dimension 8 with trivial discriminant and non-trivial Clifford invariant, then the residual

dimensions can be 8 + 0, 6 + 2 or 4 + 4. In the first two cases, all the separable quadratic

splitting fields E/K of q are unramified; in the third, they are either all unramified or all

ramified. Furthermore, the 6- and 8-dimensional residue forms are, generically, quadratic

forms of type E6 or E7 over K̄, but when K̄ has characteristic 2, they can also be quadratic

forms of type F4. All of these cases correspond to different configurations of local structure

in the corresponding Bruhat-Tits buildings.

Without going into any more details, we hope that our results make it clear that the

quadratic forms of type E6, E7, E8 and F4 deserve a prominent place—alongside the

norms of quaternion and octonion division algebras—in the theory of low dimensional

quadratic forms and their connections to exceptional groups.

A theme of this talk has been that the shrewd use of graph theory leads to many very nice

results in the theory of groups. We all owe an enormous debt to Bernd Fischer for showing

us just how beautiful these kinds of results can be.
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