Groups of automorphisms of regular rooted trees are a rich source of examples with interesting properties in group theory, and they have been used to solve very important problems. The first Grigorchuk group, defined by Grigorchuk in 1980, is one of the first instances of an infinite finitely generated periodic group, thus providing a negative solution to the General Burnside Problem. It is also the first example of a group with intermediate growth, hence solving the Milnor Problem. Many other groups of automorphisms of rooted trees have since been defined and studied. Important examples are the Gupta-Sidki $p$-groups, for $p$ an odd prime, and the second Grigorchuk group. These are again finitely generated infinite periodic groups and they belong to the large family of the so-called Grigorchuk-Gupta-Sidki groups (GGS-groups, for short).
Some research has been done regarding the lower central series of groups of automorphisms of regular rooted trees and more specifically of some particular GGS-groups, but the knowledge is scarce. The aim of this talk is to present some of the techniques and tools that we have developed and are still developing in order to understand the lower central series of some of the GGS-groups that act on the $p$-adic tree, and how do we use them to completely determine the lower central series of some GGS-groups such us the $p$-Fabrykowski-Gupta groups.
This is a joint work with G. Fernández-Alcober and M. Noce.