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TAME ALGEBRAS

An Algebra of finite representation type is a finite-dimensional algebra
such that there are only finitely many indecomosable modules.

An Algebra of infinite representation type is such a finite-dimensional
algebra that is not of finite type.

A Tame algebra, roughly speaking, is a finite-dimensional algebra of
infinite type, such that for any d > 1 almost all indecomposalble modules
of dimension d belong to finitely many 1-parameter families.
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The precise definition of the tame algebra

A finite-dimensional algebra A is of tame representation type provided A is
not of finite type, whereas for any dimension d > 1, there are a finite
number of K[T] — A-bimodules M; which are as left K[T]-modules such
that all but a finite number of indecomposable A-modules of dimension d
are isomorphic to N ® k(7] M; for some i and some simple K[T]-module N.
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Dichotomy Theorem (Drozd)

A finite-dimensional K-algebra A is wild if there is a finitely generated
K(X,Y) — A-bimodule B which is free as a left K(X, Y)-module such that
the functor

— ®k(x,y) B: mod K(X,Y) — mod A

preserves indecompsability and reflects isomorphisms.

Theorem (Drozd)

Any finite-dimensional algebra over an algebraically closed field which is of
infinite representation type is either tame or wild.
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THE CASE OF GROUP-ALGEBRAS
QUESTION: When a group algebra is tame?

Definition (BLOCKS AND THEIR DEFECT GROUPS)

Let G be a finite group and K be an algebraically closed field of char p.
The group algebra is a direct sum of indecomposable algebras,

KG = By @ ... ® By, and the B; are the blocks of KG. And the identity of
KG is sum of orthogonal centrally primitive idempotents e;.

Block is symmetric algebra. And when p | |G|, then blocks of KG are
usually not semisimple. A principal block is the block B such that trivial
KG-module K € Ob mod B

A defect group of a block B is a minimal subgroup D of G such that B is
isomorphic to a direct summand of B ®,p B as B-B-bimodule.

v
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How representation type of a group algebra depends on its
defect group

Theorem

Lets consider the group algebra KG of finite group G over a field K of
characteristic p; or a block B of KG.

Suppose D is Sylow p-subgroup of G; or a defect group of B.

Then the representation type of KG; or of B, is

(i) finite if D is cyclic;

(ii) tame if p =2 and D is dihedral or semidihedral or generalized
quaternion;

(iii) wild, otherwise.
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Defenitions of dihedral, semidihedral and generalised
quaternion groups

Dop=(x,y | x* =1=y2 yxy =x 1)

SDyn = (r,s|r¥ =2 =1, srs=r2" 1)

Qan = (x,y | X" =y? xyx =y)
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Classification of tame group blocks up to Morita-equivalence

In order to solve the problem of classification of all group blocks having
tame type up to Morita-equivalence Karin Erdmann suggested definitions of
three new families of algebras, containing group block algebras, for which
this problem could be naturally reformulated.

These families are the classes of algebras of Dihedral, Semidihedral and
Quaternion types.

Now any tame block with a defect group of any type is contained in the
class of algebras of the corresponding type: diheral, semidihedral or
quaternion.
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Algebras of the quaternion type

Definition

An algebra A is of quaternion type: if

(i) A is symmetric, indecomposeble and tame;

(ii) the stable Auslander-Reiten quiver of A consists only of tubes of rank
<2

(iii) the Cartan matrix of A is nonsingular.

In 1991 K. Erdman finished the description of several series of algebras
defined by quivers and relations, which were tame and contain all possible
examples of algebras of dihedral, semidihedral and quaternion types up to
Morita-equivalence.

In particular it was shown that algebras of the quaternion type in the
classification have at most 3 simple modules.
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List of an algebras of the quaternion type with two simple
modules

QQA)(kc), k=2, ce K
B

aCOZ 1
vy

87y = (yaB) Yy, ByB = (afy) tap,
a? = (Bya) 1By + c(Bya), 2B =0

Q(2B)1(k,s,a,c), k>1,s>3, ac K*, ce K
=217
0‘\40<7—1g77

nB = Ba(yBa)< 7L, yn = ay(Bay)t, By=n""1,
a? = ayB(ayB)k 1 + c(ayB)k, Ba? =0, a?y=0
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Q(2B)a(s,a,c; p(x)),s = 3,a€ K*,c € K,p(x) € K[x],p(0) =1

8
0=t
o - 0 ('Y_ 1 Q n
af = Bn, ny =~ By =a’p(a),
v8 = n?p(n) +at + o, ot =0,
Py =0, 70"t =0, &* 1 =0

Q(2B)(a,c,d)), t >3, ac K*,c,d € K, p(x) € K[x], p(0) =1

B
c(Co=2=17)
\%0<7—1V7]

aB = Bn, ny=va By=a?+cad,

V8 =an"t +dnt, of =0, "t =0,
yoa? =0, o’ =0
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Further questions

e Are the algebras from the list pairwise Morita-inequivalent or not?

e Are the algebras from the list pairwise derived-inequivalent or not?

Theorem (Holm)

Let A\ be an algebra of quaternion type with two simple modules. Then
there exist k > 1, s > 3, a€ K* and c € K such that \ is derived
equivalent to Q(2B)1(k, s, a, ¢).

e Are the algebras from the family Q(25):(k,s, a, ¢)
derived-inequivalent or not?

Hochschild cohomology could give some information of this kind
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HOCHSCHILD COHOMOLOGY
Definition

Let R be a finite-dimensional algebra over a field K, let R¢ =
its enveloping algebra, then

HH*(R) = @@0 HH"(R) = @m Extke(R, R)

is named the Hochschild cohomology algebra of an algebra R.

R ®k R°P be

Theorem

Let Ry and R» be two finite-dimensional K-algebras, such that
D*(Ry) ~ D*(Ry)
as triangulated categories, then

HH*(R1) =~ HH*(R,)

as graded algebras.
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Corollary
The graded algebra HH*(R) is Morita-invariant.

Corollary

Dimensions of the cohomology groups dim HH"(R) for all n > 0 are
Derived- and Morita-invariants.
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Hochschild cohomology of cyclic block and of algebras of
Dihedral and Semidihedral types

e S. Siegel, S. Witherspoon (2000) calculated the multiplicative
structure of HH* in the case of cyclic block (finite type)

e Th. Holm (2002) calculated the additive structure of HH* of group
blocks with one and three vertices and for one serie of algebras of
semidihedral type with two vertices

e A. Generalov (2004, 2010) calculated the multiplicative structure of
HH* of the local algebras of dihedral type and algebras of dihedral type
from the family D(3K)

e A. Generalov (2009-2010) calculated multiplicative structure of HH* in
the case of local and group algebras of semidihedral type

A. A. lvanov () Cohomolgy 2012 15 / 39



Hochschild cohomology of algebras of quaternion type

e A. Generalov (2006) calculated Hochschild cohomology algebra of local
algebras of quaternion type

e K. Erdmann, A. Skowronski (2006) constructed bimodule resolutions
of representatives of classes of Morita-equivalence for all algebras of
generalised quaternion type except the case of small parameters

e A. Generalov, S. lvanov, A.l. (2007) calculated Hochschild
cohomology algebra of algebras from the family Q(2B8)1(k, s, a, c) over a
field of characteristic 2

e A. Generalov (2008) calculated Hochschild cohomology algebra of
algebras from the family Q(2B)1(k, s, a, ¢) in the case of small parameters
Remark

In the paper of K. Erdmann and A. Skowronski (2006) mentioned above in
describtion of the resolution of the algebras of the family under
cosideration: Q(28B)1, in the case when characteristic of the base field
equals 2, there is an inacuracy, which makes the complex be not exact.
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Definition of algebras from the family Q(2B)1(k,s, a, ¢)

Algebras from the family Q(28); (over an algebraically closed field K of
any characteristic) are described in terms of a quiver and relations:

aCO<—§_>13n

nB = Ba(yBa)< =L, yn = ay(Bay)t, By =n""1,
a? = ayB(arB)k L + c(ayB)k, Ba? =0, a?y =0,

where k,s € N, s > 3, a,c € K, a# 0 (we write the compositon of paths
from right to left).
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BIMODULE PROJECTIVE RESOLUTION

Let us denote by e;, i = 0, 1, full set of orthogonal primitive idempotents of
an algebra R = Q(2B)1(k, s, 1, c), corresponding to vertices of the quiver
Q(2B). In this notation

P’J = Re, ® ejR7 I’.I € {07 1}’

form a full set of representstives of a principle indecomposable left
R°-modules. Let

Qo = @3 := Pyo @ P11,
@1 := @2 :=Poo P P10 P Po1 ® P11 n
Qniqa = Q, for n > 0.

For any i € Ny let us concider a collection of homomorphisms
d; € Hom(Qit1, Qi) :

dq d- d. d- dq
R(LQ0<—001<—1Q2<—203<—3Q0<—0...
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defined by the following matrices:

do— (@®e0 —e®a [®eo € ® v 0
° 0 —e1®B —-Y®e1 NR®e1—e1®7

k. . k. .
« > 53171 ®gkfl b ai—1 ®,ka—l 0
i-1 i-1
k. k—i k—1 . ki
* SbH 'Rag"  —n®e > avb Tl @ aybkTi—t —e1 @7
dy = i=1 i=1
k—1 . P k . ki ’
* - Y Bag' "t @ PaghkTiTt e @n— Y agTt@b ! B®e
i-1 i-1
s—1 .
Yy ® B —e1®f -7 ®er nTtgnsTitt
i=1

where

k—1 k k
(di)i=a®eo+e®a— > vBa *@v8ak " 4> ygai T gk T 1S @ ypak T,
i=1 i=1

i=1
k . k . k . k . k71 - k -
(di)21 = 7Zwb'_1 ®a '+ cZwb'_l Rag' '+c Z ayb "t @a i,
=1 i=1 i=1
k - ,( . k . k - k71 - k .
(d)s1=> g '@pa" T +ecd ag' Tt @B T e Y g ®BagTITY
-1 -1 -1
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a®ey —e @ 0

do— | 7T ®@FY® —e1 Q7 .
2 e ®B+ca®p B®er '
0 n®e —e1®n

d3 is a 2 X 2-matrix, which has

k k k k k—1
(d3)1 Z k_'+1+Z'yBa'_1®agk_'+Zg'®gk_'+2ag'_1®'yﬂak_'+czg'®agk_'
i=1 i=1 i=1 i=1 i=1
= P P k-
+CE ag' ®a_'+c2a ®a_‘+C'yBa 1®'yﬁa 1+r:o¢g 12 a® +ca3 ®ag 1,
i=1 i=1

k . k. . k . )
(d3)12 =) Bag' ' ® bk 4 Spa e aybk =i 4 > pag e avbk T 4 cpagh ™t @ aybk 1,

i=1 i=1
k—i k i k—i k k
(d3)21 = Za"/b' Ba ' — Z'yb'_l ® Bag '+ cayb* ! @ BaghT?,
k . . s . .
(da)az = = > b1 @ pk—i42 Zn @n* +ed 0 @Y
i=1 i=1

and for all n € NU {0}

dnia = dn.
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Hochschild cohomology of Q(28)1(k, s, a, c) over a field of
caracteristic 2

Let us concider a set

21 = {p1, P2, P3, pa, U1, Uz, V1, V3, Wi, t} (0.1)

and on the algebra C[Z7] we define grading, such that

degpi=0(i=1,2,3,4),degu; =degp =1,
degvi =degvs =2, degwy; =3, degt = 4.
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Let us define an algebra Ry = K[Z21]/J1, where the ideal J; of the algebra

K[Z1] is generated by following elements
pipj for 1< i <j<4 pf+ps, pZ, pf: (0-2)
prus + ps ‘G2, paus + P:{(_iazypfﬁz, Palz, paui + p3uz; (0.3)
P3V1, Pavi, p3vs, pavs,p1vi + pavs, piva + paualia; p3ud + p5 tvi,
pavs + pau2, pS tvy + pkTtva, @2 +the,, pk1ys,
1

~ ~ k—2~ s —
P3W1, pawi, p1wi + U2v3, pawi + U2vy, uivi +py; “U2v3,u1vz +p, “wi,

uf, w3 + P{(ty v +p2t, vi + plt, vivs, uiwy + pat, Gawiy + (pa + 9k+,P{()f,
viwy + p2l2t, vawy + p1liat,

w? + 9k+spil.(71 vst,

where for n even we define a constant from the base field K

n—1
. 1, ifn=2 (mod4),
Op = = 0.4
" ; ! {0, ifn=0 (mod 4). ©4)

The ideal J; of algebra R is homogeneous and therefore the algebra R4
inherits the grading of the algebra K[Z].
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Let us concider a set

/
Zy = {Pl’ P2, P3; pa, Uy, U3, Ua, Us, Vo, V1, V2, V3, Wo, W1, Wa, t} (05)

and on the algebra IC[Z>] we define grading, such that

degp; =0(i=1,2,3,4), degu) =degusz = deguy = degus = 1,
degv; =2(j=0,1,2,3), degwp = degw; =degwy =3, degt = 4.
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Let us define an algebra Ry = K[23]/J2, where the ideal J, of the algebra
K[2-] is generated by elements from (0.2) and in addition by following
elements

p1uy, P3Uy, Pauy, Pgiluéypzus, pP3U3, paus, Pfilus,
P1ua, p2u4, P3Ua, PaUa, P1US, P2Us, P3U5, PAUS;
P1vo, P20, P3Vo, Pavo,P1Vi, P3Vi, Pavi, Py ‘vi,
P1Vv2, P2V2, P3V2, Pav2,P2Vv3, P3V3, Pavs, Pfflvsy

(ué)z, ug, u%, ug,u,;ug,, ugus, u,;ué, usus, u_r,ué, U3Llé;

P1Wo, P2Wo, P3W1, PaW1, P1 W4, P2Wa, PAWa, PaWo + p3Wa, cp3Wa + pP3wo,
p3wg + cpfw;l, cpéw;_ + ugvo, ugvo + cusvp, UsVvo + UgV2, uévo, usvp, uévz,
u3Va, UgVa, U3Vy, UgVi, USVi, UV, Uav3, USV3, Uhvi + pawy, usva + pawy,

V1V2, V3V2, V3V, V3V, V1V0, vg + cvgva, voVv2 + plkt, vlz + (}722 + Cp23)t, v32 + plzt,
v2, ubwo, uswo, uawo, UsWo, U Wy, U3W1, LAWY, USWy, UyWa, U3Wa, UsWa, UsWa,
Vowo, Viwp, V2Wop, V3Wo, VoWwa, ViWg, V2wa, VaWwg,
vowy + uat, viwy + (1 + cpz)uét7 vawy + ust, vawy + ust,

2 2 2
wo, Wy, Wz, Wowi, Wowa, Wiwa.

The algebra inherits Ry natural grading from algebra K[72].
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Theorem

Let K be algebraically closed field of characteristic 2, and let

R = Q(2B)1(k,s,1,c), where k,s > 3.

1) If k and s are odd and ¢ = 0, then HH*(R) ~ R, as graded K-algebras;
2) If k and s are odd and ¢ # 0, then HH*(R) ~ R, as graded K-algebras;
3) If k even and s is odd, then HH*(R) ~ R3 as graded K-algebras;

4) If k odd and s is evens, then HH*(R) ~ R4 as graded K-algebras;

5) If k and s are even, then HH*(R) ~ Rs as graded K-algebras.
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Proposition

Let R = Q(2B)1(k,s,1,c) and k, s be odd. Then:
a) dimg HHO(R) = k +s +2;

b) fort >0

k+s+2, ifc=0,

dimy HH*™1(R) = dimk HH*""2(R) =
i (R) i (R) k+s, ifc #0;

c) fort >0

dimy HH*3(R) = dimg HH*""*(R) = k + s + 2.
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From the proposition, b) immediately follows next statement, improving
classification of tame blocks.

Corollary

Let k and s be odd, k > 2, s > 3. Then the algebra Q(2B8)1(k,s,1,c),
where ¢ # 0, is not derived-equivalent (and, in particular, it is not
Morita-equivalent) to the algebra Q(2B)1(k,s,1,0).
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Proposition
Let k, s be even and such that 6, = 6s = 1. Then

dim (HHL - HHY) = § > e =0
3, ifc#0;

Proposition

a) Let k, s be even and such that 6, = 6s = 1. Then Q(2B)1(k, s, 1,c),
where ¢ # 0 is not derived equivalent to Q(2B8)1(k, s, 1,0).

b) Let k + s be odd Q(2B)1(k,s,1,c). Then Q(2B)1(k, s, 1,c), where
c # 0 is not derived equivalent to Q(28)1(k, s, 1,0).
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Theorem

Let K be algebraically closed field of caracteristic 3, and let
R = Q(2B)1(k,s,1,0), where s > 3 and k > 2. Then ¥V m € NU {0}
1)dimg HHO(R) = k + 5 + 2;

2) dimy HH*™H(R) =

3) dimy HH*™2(R) =

4) dimy HH*™3(R) =

5) dimx HH4™4(R) =

A. A. lvanov ()

k+s—1,
k + s,
k+s+1,
k+s—1,
k + s,
k+s+1,
k + s,
k+s+1,
k+s+2,
k+s,
k+s+1,
k+ s+ 2.

ifs#0,k#0
ifs=0,k#0ums+#0,k=0
ifs=0,k=0;
ifs#0,k#0
ifs=0,k#0ums+#0,k=0
ifs=0,k=0;
ifs#0,k#0
ifs=0,k#0ums=#0,k=0
ifs=0,k=0;
ifs+#0,k#0
ifs=0,k#0ums+#0,k=0
ifs =0.k=0.

2012

29 / 39



Theorem

Let K be an algebraically closed field of characteristic not equal to 2 and 3,
and let R = Q(2B)1(k,s,1,0), where s >3 and k > 2. Then
Vme NU{0} 1)dimk HHY(R) = k + s + 2;

k+s—1, ifdks—3k—3s#0
2) dimy HHAmHL(R) = { T o= 1 ke 55

k_|_5’ if 4ks — 3k — 3s = 0;

. ) k+s—1, ifdks —3k —3s#0

3) dimyx HH*"2(R) = k+s,  iftks—3k—3s=0:
s ifs#0,k#0

4)dimg HH*™3(R) = { k+s+1, ifs=0k#0mwms+#0,k=0
k+s+2, ifs=0k=0;
k+s, ifs#0,k#0
5)dimg HH*™ ™ (R) ={ k+s+1, ifs=0k#0mwms+#0,k=0
k+s+2, ifs=0k=0.

v
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Remark

Using results of Th. Holm (1997), we can apply obtained answers to
describe Hochschild cohomology groups of algebras from the family
Q(2A)*(c) from Erdmann'’s list.

Remark

The proposition and theorems partialy complete analogous result due to
Th. Holm (2002), where he calculates additive structure of Hochschild
cohomology algebra of algebras of dihedral, semidihedral and quaternion
types with one or three simple modules and for several families of
semidihedral type with two simple modules over a field of caracteristic 2.

v
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Hochschild cohomology of Q(28)1(k, s, a, c) over a field of
characteristic 3

To describe Hochschild cohomology algebra HH*(Q(28)1) of algebras

Q(2B)1 over a field of characteristic 3 we will consider several graded
algebras.

Let
X1 = {p1, p2, p3, U1, U2, Vo, V1, V3, Wo, W1, t}. (0.6)
On the algebra K[X1] define grading such that

degpi =0(i=1,2,3), degu; =1(j =1,2),

degvy =2 (/=0,1,3), degwyg =3 (g =1,2), degt=4. (0.7)
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Define graded K-algebra A; = K[A1]/l, where the ideal /; of algebra
K[X1] is generated by following homogeneous elements

. . k+1 1 2
pipj AnA 1< i <j<3 pt, p3tt, pss (0.8)
p2u1, Pfuh (0.9)
p3uz, p3uz,p1u1 — p1u2;
P1vVo, P2Vo, P1V1i, P3V1i, P2V3, P3V3; (0.10)
k—1

P3Vvo +P;71V1 —py tvsi uf, w3, upus;
p2wo, pP3wo, P3U1Vo — Pfflu1v3, p1wo + u1vs, (0.11)
p3w1, p1wi + U1V3, p2wi1 — U2Vi, U1V3 + U2V3, U1V, U2V0,
V02 + p3t, v32 + p12t, v12 + pzzt, Vovi, VoVv3, V1V3; (0.12)
uiwp, U2Wp, UIW1, U2W1;
vowp, Viwg, V3wp — piuit, (0.13)
vowl, viwi + pauzt, vawy + piuit,

2 2
wg, wy, Wowy.

On algebra A; we define a grading induced by the grading from K[X1].
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Now let
X = (xl \ {w, Wl}) U {u), wa}, (0.14)

and on algebra K[X3] we define a grading coinsiding with the grading (0.7)
for elements from X; \ {u2, w1} and such that deg v} = 1, degw, = 3.

Let Ap = K[A3]/h, where the ideal /> of algebra K[A%] is generated by the
elements (0.8),(0.9),(0.10), (0.11),(0.12),(0.13) and by elements

—1
p1uy, p3uy, Py u5; (0.15)

s—1 k—1 / 22,
pP5 Tvi, py " v3 — p3vo, uiug, (u3)?, uf;

p1w2, p3wz, pawz — Uv1, UjVo, UHV3, (0.16)
P;72U§V1 +P4(71U1V3, upvy;

pst; (0.17)

uéw,-7 uiw;, ans i € {0,2}; (0.18)

vowz, vawz, viwz + paujt; (0.19)

Woz, sz, wowsa. (0.20)

Since I is homogeneous, algebra Ay inherits grading from algebra K[X5].
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Let
X3 = (Xl \ {u1, up, wa, Wo}) U {u12, wor, ws}, (0.21)

and a grading on the algebra K[X3] coinsiding with (0.7) for elements from
X1\ {u1, uz, wi, wp} and such that deg uip = 1, deg wp; = deg wz = 3.

Let us define an algebra A3 = K[AX3]//5, where the ideal /5 of the algebra
K[A3] is generated dy the elements from (0.8), (0.10), (0.12), and also by
following elements

pf u12; (0.22)

2 . k—1 s—1.
Ujs; V3py , VOP3 — ViPy
s—1
P1Wo1, P3Wo1, P2Wo1 + U12V1, PaWo1 — U12VipP,

oo k—1 s—1
ui2v3; p; Tws +ui2vap,

p2w3, p3ws; (0.23)
pke; (0.24)
u12wWo1, U12W3;
Vows, viws, (0.25)
vaws + pIuiat; vowol, VaWoi, ViWor — Pauiat;

2 2
Wo1: W3, Wo1Wws.

The agebra Ajz inherits grading from K[X3].
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Let us consider a set

Xy = {pla P2, pP3, Ué, uz, us, Vo, V1, v3, Wp, W3, Wy, t} (026)
and define a grading on the algebra K[X4], such that

degp; =0 (i = 1,2,3),degu£ —=deguz =degug =1,
degvg = degvy = degvz =2, degws =degwz =degwyg =3, degt =4.

Let Ay = K[X4]/la, where the ideal I4 of the algebra K[X4] is generated by
the elements from (0.8), (0.15), (0.10), (0.16), (0.23),(0.12), (0.17),
(0.24), (0.19), (0.25) and in addition by elements

p2u3, p3us, Pfflu:-x» piua Ana 1 < i< 3;
(u;)z, ug, u%, uéu& uéu‘;, usug;
vops3, V3P]l_(717 vips t, (0.27)
u3vo, U3V1, U3V3 — P1W3, UaVi, U4V3, U4VO — P3Wa,
piwa, p2wa, pawa + pS wa, wapk T 4 wapf Y
uéw,-, uzw;, ugwj, roe 2 < i < 4;
vowsa, Viwa, v3wa, V3ws — piust;

2 2 2
wy, W3, W, Waws, Wawa, W3ws.

The algebra A4 inherits grading from the algebra K[A4].
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Theorem

Let K be algebraically closed field of characteristic 3 and let

R = Q(2B)1(k,s,1,0), where k > 2.

1) If k,s = 0 (3), then Hochschild cohomology algebra HH*(R) is
isomorphic to the algebra A; as graded K-algebra.

2)If k =0(3) and s # 0(3), then HH*(R) ~ A, as graded K-algebras.
3)Ifk £0(3), and s = 0(3), then HH*(R) ~ A3 as graded K-algebras.
4) If k,s #£ 0(3), then HH*(R) ~ A4 as graded K-algebras.

Remark

As above we can use obtained results to describe Hochschild cohomology
algebras for algebras from the family Q(2.A4)*(c).
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An algorithm

e Construct a bimodule projective resolution (Pe — R, {d;}i>0) of the
bimodule R

e Apply the functor Homge( - , R) to the resolution and get a complex

(Homge(Qe, R), {6' = Homge(d;, R)}i>0)

e Find bases of the groups H"(Hompge(Q., R))

e Use the fact, that U-product coincides with Yoneda-product on
Ext-algebra

e Notice that for any cocycle f € Ker(d,), f : @, — R one can construct a
chain map {T": Qn+i — Qi}i=o0
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e To compute the product of cocycles f € Ker(6") and g € Ker(4") use the
formula c/(g) - cl(f) = gT*(f)

e Compute translations T(f) of cocycles and find relations defining the
multiplicative structure

e Use Groebner bases to prove, that all relations are found
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