Induced pseudofunctors and gluing of derived equivalences

Hideto Asashiba

(Shizuoka University, Shizuoka, Japan)

ICRA 2012-08-17 in Bielefeld

arXiv:1204.0196 Gluing derived equivalences together arXiv:1111.3845, arXiv:1111.2239 1/17

Contents

- 1. Introduction
- 2. From group actions to colax functors
- 3. Grothendieck constructions
- 4. Induced pseudofunctors
- 5. Gluing derived equivalences together

Contents

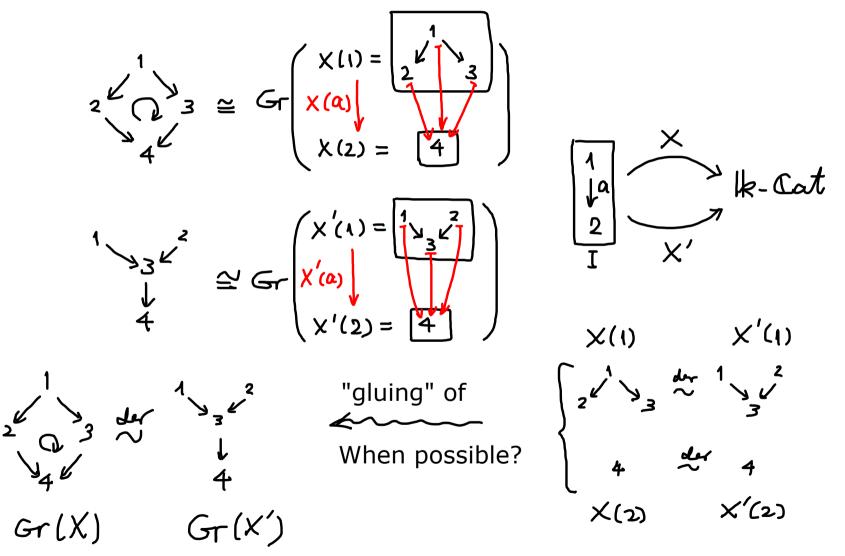
- 1. Introduction
- 2. From group actions to colax functors
- 3. Grothendieck constructions
- 4. Induced pseudofunctors
- 5. Gluing derived equivalences together

Throughout this talk

```
I : a small category, G : a group.
k : a commutative ring.
k-Cat := the 2-category of small k-categories.
k-Ab := the 2-category of small abelian k-categories.
k-Tri := the 2-category of small triangulated k-cats, where 2-categories := strict 2-categories
```

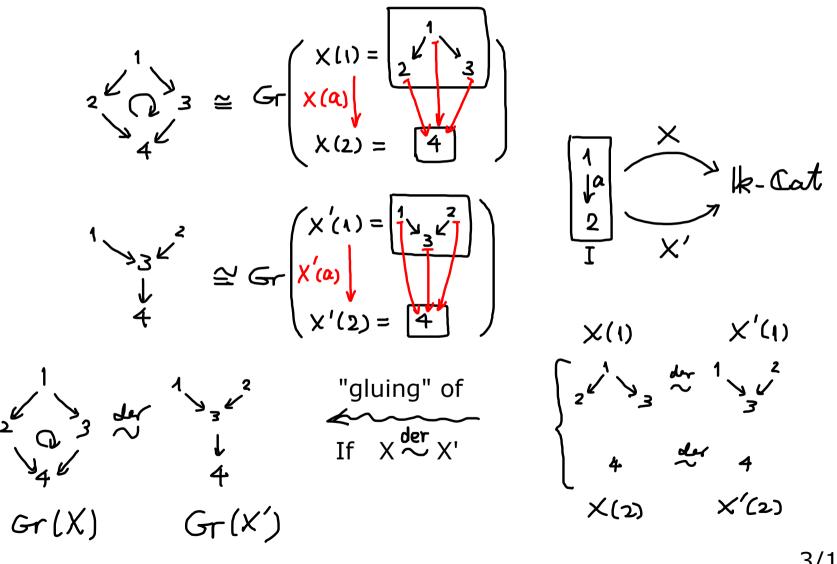
1. Introduction

An easy example.



1. Introduction

An easy example.



2. From group actions to colax functors

• G: a group. Regard G: a cat $(\{*\}, G, \cdot)$ Then "a G-action on a k-cat ζ " = "a functor X: G \rightarrow k-Cat". In this case, we have $\zeta/G = Gr(X)$.

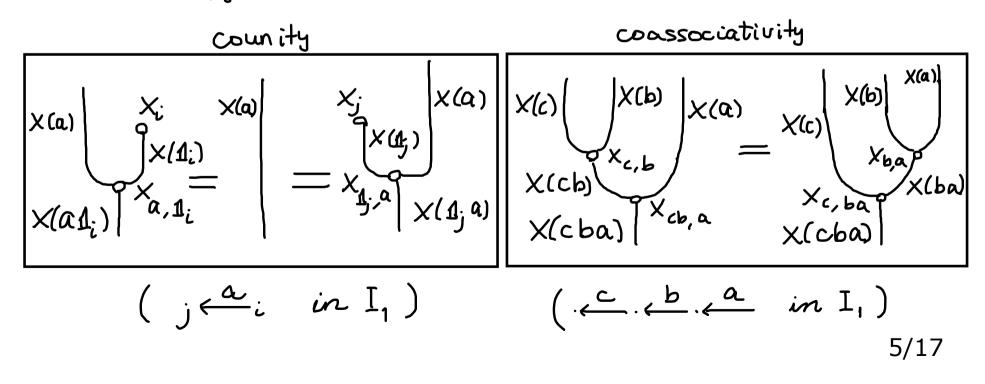
2. From group actions to colax functors

- G: a group. Regard G: a cat $(\{*\}, G, \cdot)$ Then "a G-action on a k-cat \mathcal{C} " = "a functor X: G \longrightarrow k-Cat". In this case, we have $\mathcal{L}/G = Gr(X)$.
- F: an autoeq of a k-cat ζ (eg. $\zeta = \mathcal{D}^{b}(m \circ dH)$, $F = \overline{c}^{1}[1]$) with a q-inv $F \to F, \eta : \underline{1}_{\mathcal{C}} \xrightarrow{\cong} FF, \varepsilon : F^{-}F \xrightarrow{\cong} \underline{1}_{\mathcal{C}}, \quad \langle a \rangle$: infin. cyclic gp with gen. a. $\xrightarrow{} a$ pseudofunctor" (• $\chi : \langle a \rangle \xrightarrow{\to} k$ -Cat, $\chi(a^{n}) := \begin{cases} F^{n} & (n > o) \\ \underline{1}_{\mathcal{C}} & (n = o) \\ (F^{-})^{|n|} & (n < o) \end{cases}$ ($n \in \mathbb{Z}$) • $1 : \chi(\underline{1}_{k}) = \underline{1}_{\chi(\underline{k})}$ But $\chi(a^{n}a^{m}) \neq \chi(a^{n}) \cdot \chi(a^{m})$ in gen. $\underline{1}_{\mathcal{C}} \neq FF.$ $\chi(a \cdot a^{n}) \neq \chi(a) \chi(a^{n})$. • A fam. of nat. iso $\chi_{n,m} : \chi(a^{n} \cdot a^{m}) \xrightarrow{\cong} \chi(a^{n}) \cdot \chi(a^{n})$ defined by η and ε^{-1} . In this case we have $\underline{C}/(F) = Gr(X)$.

2. From group actions to colax functors

- G: a group. Regard G: a cat $(\{*\}, G, \cdot)$ Then "a G-action on a k-cat \mathcal{C} " = "a functor X: G \longrightarrow k-Cat". In this case, we have $\mathcal{L}/G = Gr(X)$.
- F: an autoeq of a k-cat & (eg. E=26 (mod H), F= -1[1]) with a q-inv $F \longrightarrow F, \eta : \mathfrak{1}_{\mathcal{E}} \xrightarrow{\sim} FF, \varepsilon : FF \xrightarrow{\sim} \mathfrak{1}_{\mathcal{E}}, \quad \langle a \rangle : infin. cyclic gp with gen. a.$ $\overset{``}{a} \text{ pseudofunctor}''$ $\begin{cases} \bullet \quad X: \langle a \rangle \rightarrow k \text{-Cat}, \quad X(a^n) \coloneqq \begin{cases} F^n & (n > o) \\ \mathfrak{1}_{\mathcal{E}} & (n = o) \\ (F^-)^{|n|} & (n < o) \end{cases} \quad (n \in \mathbb{Z})$ $\bullet \quad 1: \quad X(\mathfrak{1}_k) = \mathfrak{1}_{X(k)} \quad \text{But} \quad X(a^n a^m) \neq X(a^n) \cdot X(a^m) \text{ in gen.} \quad \mathfrak{1}_{\mathcal{E}} \neq FF.$ $\quad X(a^n) \neq X(a^n) \neq X(a^n) \times (a^n) \text{ in gen.} \quad \mathfrak{1}_{\mathcal{E}} \neq FF.$ • A fam. of nat. iso $X_{n,m}$: $X(a^n, a^m) \xrightarrow{\sim} X(a^n) \cdot X(a^m)$ defined by 7 and ε^{-1} . In this case we have C/(F) = Gr(X), one of justifications of C/(F). not well-dfn^d well-dfn^d 4/17if F is not an autom

Dfn. \mathbb{C} : a 2-cat (e.g. k-Cat) A colax functor X: $I \rightarrow \mathbb{C}$ consits of data: • X: $I_0 \rightarrow \mathbb{C}_0$ a map • X: $I(i,j) \rightarrow \mathbb{C}(X(i), X(j))$ a map $(i,j \in I_0)$ • X_i: $X(\mathfrak{I}_i) \rightarrow \mathfrak{I}_{X(i)}$ a 2-mor in \mathbb{C} (i $\in I_0$) $X(\mathfrak{I}_i)$ • X_b_b: $X(ba) \rightarrow X(b)X(a)$ a 2-mor in \mathbb{C} ($\overset{a}{\ldots} \overset{b}{\rightarrow}$ in I_1) that satisfy the axioms: Dfn. \mathbb{C} : a 2-cat (e.g. k-Cat) A colax functor X: $I \rightarrow \mathbb{C}$ consits of data: • X: $I_0 \rightarrow \mathbb{C}_0$ a map • X: $I(i,j) \rightarrow \mathbb{C}(X(i), X(j))$ a map $(i,j \in I_0)$ • X_i: $X(\mathfrak{1}_i) \rightarrow \mathfrak{1}_{X(i)}$ a 2-mor in \mathbb{C} (i $\in I_0$) $X(\mathfrak{1}_i)$ • X_b_a: $X(\mathfrak{b}_a) \rightarrow X(\mathfrak{b})X(\mathfrak{a})$ a 2-mor in \mathbb{C} ($\overset{a}{\ldots} \overset{b}{\rightarrow}$ in I_1) that satisfy the axioms:



Dfn.
$$\mathbb{C}$$
 : a 2-cat.
 $\mathbb{C}^{op} \coloneqq$ the 2-cat obtained from \mathbb{C} by reversing the 1-morphisms.
 $\mathbb{C}^{co} \coloneqq$ the 2-cat obtained from \mathbb{C} by reversing the 2-morphisms.
 $\mathbb{C}^{coop} \coloneqq (\mathbb{C}^{op})^{co}$

Dfn. A lax functor
$$I \rightarrow \mathbb{C}$$
 is a colax fun $I \rightarrow \mathbb{C}^{\infty}$.
A pseudofunctor is a colax fun $X: I \rightarrow \mathbb{C}$ with $\forall X_i, X_{b,a}: 2$ -iso^S
A functor $I \rightarrow \mathbb{C}$ is a colax fun $X: I \rightarrow \mathbb{C}$ with $\forall X_i, X_{b,a}: identifies.$

3. Grothendieck constructions

X: I -> k-Cat a colax functor. an I-diagram of 1/2-cats and 1/2-functors A category Gr(X) is defined as follows: $\underbrace{Obj}_{0} \quad Gr(X)_{0} := \underbrace{I}_{i \in \mathbb{I}_{0}} \times (i)_{0} = : \left\{ (i, x) = : : \mathcal{X} \mid i \in \mathbb{I}_{0} , x \in X(i)_{0} \right\}$ $\underbrace{Mor} \quad \forall_i \mathbf{X}, \mathbf{j} \mathbf{\mathcal{Y}} \in \operatorname{Gr}(\mathbf{X})_0, \quad \operatorname{Gr}(\mathbf{X})(\mathbf{\mathcal{X}}, \mathbf{\mathcal{j}} \mathbf{\mathcal{Y}}) := \bigoplus_{a \in \mathbf{I}(i, \mathbf{j})} (\underbrace{\mathbf{X}(a)}_{\mathbf{\mathcal{X}}}, \mathbf{\mathcal{Y}})$

Exm. $X := \Delta(A) : I \rightarrow k$ -Cat a functor i $a \downarrow i$ $j \rightarrow A$ $A : a \not k$ -alg $A : A \land A$

- (1) I = PQ path-cat of a quiver Q $\Rightarrow Gr(X) \cong AQ$ path-cat over A, $A \otimes_{k} kQ$
- (2) I=S a posot
 ⇒ Gr(X) ≅ AS incidence call of SoverA, A⊗_{lk} kS
 (3) I=G a monorid
 ⇒ Gr(X) ≅ AG monorid alg of G over A, A⊗_{lk} kG
 (4) (gan. of (1), (2)) I = (QIR), Q:a quiver, R: relations
 ⇒ Gr(X) ≅ AQ/(g-h|(g,h) ∈ R) ≅ A⊗_{lk} (kQ/(g-h|(g,h) ∈ R))

4. Induced pseudofunctors
Dfn.
$$\mathbb{B}, \mathbb{C}: 2\text{-categories}$$

Obj A colax functor $\times: \mathbb{B} \to \mathbb{C}$ is defined similarly by data
• $X: \mathbb{B}_{0} \to \mathbb{C}_{0}$: a map
• $X: \mathbb{B}(i,j) \to \mathbb{C}(X(i), X(j))$ a functor $(i,j \in \mathbb{B}_{0} \times \mathbb{B}_{0})$
• $X_{i}: X(1_{i}) \Rightarrow \mathbb{1}_{X(i)}$ a 2-mor in \mathbb{C} , $i \in \mathbb{B}_{0}$
• $X_{b,a}: X(ba) \Rightarrow X(b)X(a)$ a 2-mor in \mathbb{C} , $i \Rightarrow_{j} \to k$ in \mathbb{B}_{1} (natural in b, a)
and by the same axioms as before.
1-mof A lax transformation $(F, \psi): X \to X'$
2-mor A modification $\alpha: (F, \psi) \Rightarrow (F', \psi')$
These form a 2-cateory $Colax(\mathbb{B}, \mathbb{C})$.
I is regarded as a 2-cat with all 2-mor⁵ identities: $Colax(I, \mathbb{C})$.
 \sim possible to define eq. $X \sim X'$.
10/17

Dfn. A lax functor $\mathbb{B} \to \mathbb{C}$ is a colar fun $\mathbb{B} \to \mathbb{C}^{\infty}$. A pseudofunctor is a colax fun $X: \mathbb{B} \to \mathbb{C}$ with $\forall X_i, X_{b,a}: 2-iso^s$ A 2-functor B→ C is a colax fun X: B→ C with VX; Xb,a: identities.

Mod': 1k_Cat -> k-Ab is a 2-functor Exm. C Mod C = k-Cat(C, Mod k) Mod: k-Cat -> lk-Ab is a pseudofunctor C Mod C D: k-Modlat -> k-Tri is a pseudofunctor. A SA $\begin{array}{ccc} \mathsf{F} & \longmapsto & \mathsf{I} & \mathsf{LF} \\ \mathsf{A}' & & \mathsf{A} & \mathsf{A}' \end{array}$

Rmk.
$$X: I \rightarrow k$$
-Cat: a colax functor
 \Rightarrow
(1) Mod X: $I \rightarrow k$ -Ab a colax functor

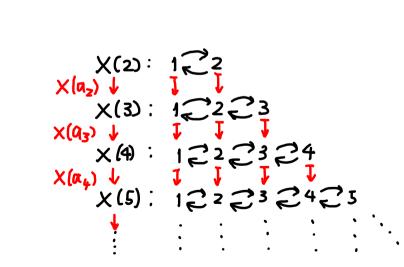
(2) $\mathcal{D}(ModX)$: I $\rightarrow k$ -Tri a colax functor

5. Gluing derived equivalences together

Thm. [A]
$$X, X' \in Colax (I, lk-Cat)$$

(1) $X \stackrel{def}{\longrightarrow} X'$
 $\downarrow \qquad \uparrow if X': lk-projective (e.g. k: a field)$
(2) $X' \xrightarrow{\sim} J \xrightarrow{\sim} K^{b}(prj X), \exists T: tilting colax subcat for X$
 $\downarrow \qquad (I-equal) \qquad I-equar \qquad (i.e. T(i): tilting \forall i \in I_{o})$
(3) $Gr(X) \stackrel{def}{\sim} Gr(X')$
(3) $Gr(X) \stackrel{def}{\sim} Gr(X')$
(Cor. $A, A' \in lk-Alg A \stackrel{def}{\sim} A'$
 $\Rightarrow \left\{ \begin{array}{c} AQ \stackrel{far}{\sim} A'Q, \forall Q: a quiver \\ AS \stackrel{def}{\sim} A'S, \forall S: a poset \\ AG \stackrel{def}{\sim} A'G, \forall G: a monoid \end{array} \right\}$
(Pf) $\forall \mathcal{E}, \mathcal{E} \in lk-Cat \\ \mathcal{E} \stackrel{def}{\sim} \mathcal{E}'$
 $\Rightarrow \Delta(\mathcal{E}) \stackrel{def}{\sim} \Delta(\mathcal{E}')$

Exm.
$$3 \le n \in \mathbb{N}$$
.
 $I := \mathbb{P}Q, Q: 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} \dots \rightarrow n$
Define functors $X, X': I \rightarrow \mathbb{K}$ -Cat ob follows.
 $\left\{ \begin{array}{l} \forall i \in I_0, X(i): 1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} \dots \xrightarrow{\alpha_{i-1}} i \\ \beta_i \end{array} \right\}_{j=1}^{\alpha_{i-1}} i : \left\{ \begin{array}{l} \alpha_{j+1}\alpha_{j} = 0, \ \beta_{j}\beta_{j+1} = 0, \ \alpha_{j}\beta_{j} = \beta_{j+1}\alpha_{j+1}, \ (j=1,\dots,i-1) \\ \alpha_{i}\beta_{i}\alpha_{i} = 0, \ \beta_{i-1}\alpha_{i-1}\beta_{i-1} = 0. \end{array} \right\}$
 $\left\{ \begin{array}{l} \forall i \in I_0, X(i): 1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} \dots \xrightarrow{\alpha_{i-1}} i \\ \beta_{i}\beta_{i-1} = i \end{array} \right\}_{j=1}^{\alpha_{i-1}} i : \left\{ \begin{array}{l} \alpha_{i}\beta_{i}\alpha_{i} = 0, \ \beta_{i-1}\alpha_{i-1}\beta_{i-1} = 0. \end{array} \right\}$



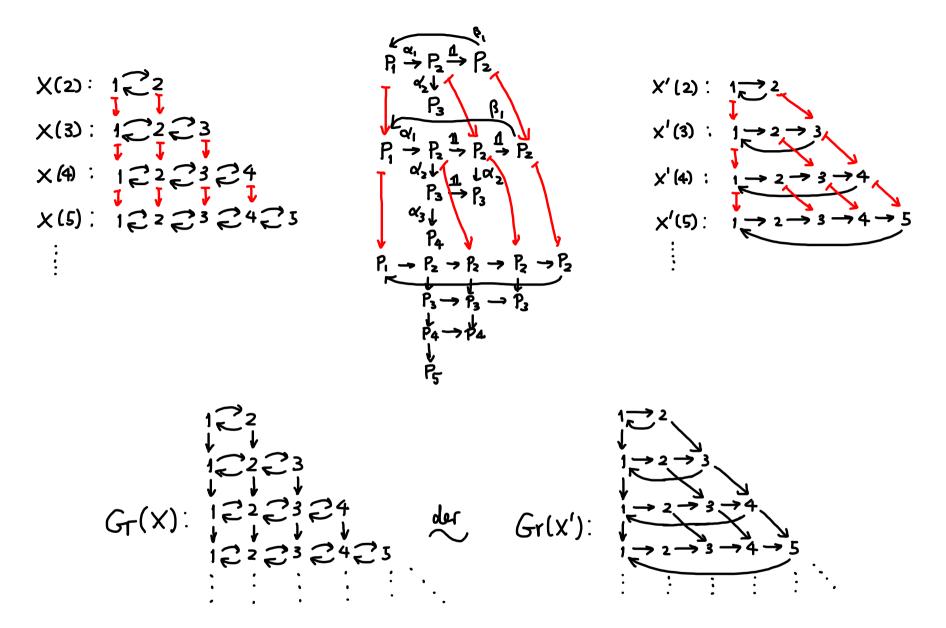
EXM.
$$3 \le n \in \mathbb{N}$$
.
 $I := \mathbb{P}Q, Q: 2 \xrightarrow{a_2} 3 \xrightarrow{a_{n-1}} n$
Define functors $X, X': I \rightarrow k$ -Cat as follows.

$$\begin{array}{c} \chi(2): 1 \stackrel{?}{\underset{(a_2)}{\underset{(a_2)}{\underset{(a_3)}{\underset{(a_4)}{\underset{(a_4)}{\underset{(a_4)}{\underset{(a_5}{\atop(a_5)}{\underset{(a_5)}{\underset{(a_5)}{(a_5)}{\underset{(a_5)}{\underset{(a_5)}{(a_5)}{\underset{(a_5)}{\underset{(a_5}}{\underset{(a_5)}{\underset{(a_5}}{\underset{(a_5}$$

Exm.
$$3 \le n \in \mathbb{N}$$
.

$$I := PQ, Q: 2 \xrightarrow{\Delta_2} 3 \xrightarrow{\Delta_{n-1}} n$$
Define functors $X, X': I \rightarrow k-Cat \ ob follows.$

$$\left\{ \begin{array}{c} \forall i \in I_{\alpha}, X(i): i \xrightarrow{\Delta_1} 2 \xrightarrow{\Delta_2} 3 \xrightarrow{\Delta_{n-1}} i \\ \beta_i = 1 \\ \beta_i$$



arXiv:1204.0196 Gluing derived equivalences together arXiv:1111.3845:presentation, 1111.2239:Thm\S5 17/17