Tame algebras of semiregular tubular type

Jerzy Białkowski and Andrzej Skowroński

Nicolaus Copernicus University Toruń, Poland

ICRA 2012, Bielefeld, August 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Notation

K - algebraically closed field

algebra – basic, indecomposable, finite-dimensional K-algebra

A algebra

mod A – category of finite-dimensional right A-modules

 Γ_A – Auslander Reiten quiver of A

Definition

C a component of Γ_A

- C is regular if C contains neither a projective module nor an injective module
- C is semiregular if C does not contain both a projective module and an injective module

Theorem (Liu, Zhang)

A algebra, C regular component of Γ_A . Then C contains an oriented cycle $\iff C$ is a stable tube.

Definition

C stable tube if C is of the form $\mathbb{Z}\mathbb{A}_{\infty}/(\tau^{r})$, for some $r \geq 1$.



Theorem (Liu)

A algebra, C semiregular component of Γ_A . Then C contains an oriented cycle $\iff C$ is a semiregular tube (ray tube or coray tube).

Definition

C ray tube if C is obtained from a stable tube $\mathbb{Z}\mathbb{A}_{\infty}/(\tau^{r})$ by a finite number (possible empty) of ray insertions.

C coray tube if C is obtained from a stable tube $\mathbb{Z}\mathbb{A}_{\infty}/(\tau^{r})$ by a finite number (possible empty) of coray insertions.

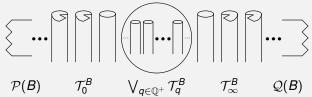
An algebra *A* is said to be of **semiregular tubular type** if all components in Γ_A are semiregular tubes (ray tubes or coray tubes).

Problem

Describe all algebras A of semiregular tubular type.

Tubular algebra (Ringel) – a tubular (branch) extension *B* of a tame concealed algebra *C* of one of the tubular types (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), or (2, 3, 6). *B* tubular algebra. Then

- gl. dim *B* = 2
- $rk K_0(B) = 6, 8, 9, 10$
- B is triangular, nondomestic of polynomial growth
- Γ_B is of the form



 $\mathcal{P}(B)$ a unique preprojective component, $\mathcal{Q}(B)$ a unique preinjective component \mathcal{T}_0^B a $\mathbb{P}_1(K)$ -family of ray tubes containing at least one projective module \mathcal{T}_q^B a $\mathbb{P}_1(K)$ -family of coray tubes containing at least one injective module \mathcal{T}_q^B a $\mathbb{P}_1(K)$ -family of stable tubes, for $q \in \mathbb{Q}^+$ (the set of positive rational numbers)

The tubular families \mathcal{T}_q^B , $q \in \mathbb{Q}^+$, are of the same tubular type (2,2,2,2), (3,3,3), (2,4,4), or (2,3,6), denoted by t(B).

B cotubular algebra – a tubular (branch) coextension *B* of a tame concealed algebra *C* of one of the tubular types (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), or (2, 3, 6)

An algebra A is called **quasitilted** (Happel-Reiten-Smalø) if gl. dim $A \le 2$ and $pd_A X \le 1$ or $id_A X \le 1$ for any indecomposable module X in mod A

An algebra *A* is called **tame** (Drozd) if, for any dimension *d*, there exists a finite number of K[x]-*A*-bimodules M_i , $1 \le i \le n_d$, which are free of finite rank as left K[x]-modules and all but finitely many isomorphism classes of indecomposable modules in mod *A* of dimension *d* are of the form $K[x]/(x - \lambda) \otimes_{K[x]} M_i$ for some $\lambda \in K$ and some $i \in \{1, \ldots, n_d\}$

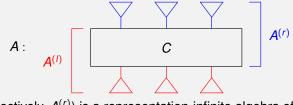
Theorem (Skowroński)

Let A be a quasitilted algebra. The following conditions are equivalent. (i) A is tame.

(ii) The Euler form χ_A of A is weakly nonnegative.

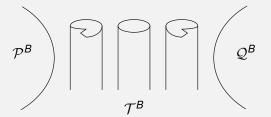
(iii) A is a tame tilted algebra or a tame semiregular branch enlargement of a tame concealed algebra.

A tame semiregular branch enlargement of a tame concealed algebra $C \iff A$ a tame quasitilted algebra of canonical type $A^{(l)}$ the maximal branch coextension of *C* inside *A* (**left part** of *A*) $A^{(r)}$ the maximal branch extension of *C* inside *A* (**right part** of *A*)



 $A^{(l)}$ (respectively, $A^{(r)}$) is a representation-infinite algebra of Euclidean type or a tubular algebra

B a tame quasitilted algebra of canonical type. Then Γ_B is of the form



 \mathcal{T}^{B} a $\mathbb{P}_{1}(K)$ -family of semiregular tubes separating \mathcal{P}^{B} from \mathcal{Q}^{B} $\mathcal{P}^{B} = \mathcal{P}^{B^{(l)}}$ is one of the forms

•
$$\mathcal{P}^{\mathcal{B}^{(l)}} = \mathcal{P}(\mathcal{B}^{(l)})$$
, if $\mathcal{B}^{(l)}$ is tilted of Euclidean type
 $\mathcal{P}^{\mathcal{B}^{(l)}} = \mathcal{P}(\mathcal{B}^{(l)})$, $\mathcal{P}^{\mathcal{B}^{(l)}} = \mathcal{P}(\mathcal{B}^{(l)})$,

• $\mathcal{P}^{B^{(l)}} = \mathcal{P}(B^{(l)}) \vee \mathcal{T}_0^{B^{(l)}} \vee \left(\bigvee_{q \in \mathbb{Q}^+} \mathcal{T}_q^{B^{(l)}} \right)$, if $B^{(l)}$ is a tubular algebra $\mathcal{Q}^B = \mathcal{Q}^{B^{(l)}}$ is one of the forms

•
$$Q^{B^{(r)}} = Q(B^{(r)})$$
, if $B^{(r)}$ is tilted of Euclidean type
• $Q^{B^{(r)}} = \left(\bigvee_{q \in \mathbb{Q}^+} \mathcal{T}_q^{B^{(r)}}\right) \vee \mathcal{T}_{\infty}^{B^{(r)}} \vee Q(B^{(r)})$, if $B^{(r)}$ is a tubular algebra

Periodic sequences of tame quasitilted algebras of canonical type

 $\mathbb{B} = (B_1, B_2, \dots, B_{n-1}, B_n)$ periodic sequence of tame quasitilted algebras of canonical type

- B_i a tame quasitilted algebra of canonical type, for any $i \in \{1, ..., n\}$.
- $B_i^{(r)} = B_{i+1}^{(l)}$ a tubular algebra for any $i \in \{1, ..., n\}$, where $B_{n+1}^{(l)} = B_1^{(l)}$
- $B_i \ncong B_j$ for any $i \neq j \in \{1, \ldots, n\}$

 $t(\mathbb{B})$ tubular type of \mathbb{B}

$$t(\mathbb{B}) = \left(t(B_1^{(l)}), t(B_2^{(l)}), \dots, t(B_n^{(l)})\right) = \left(t(B_n^{(r)}), t(B_1^{(r)}), \dots, t(B_{n-1}^{(r)})\right)$$

n-tuple of sequences from {(2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6)}

・ロット (四)・ (四)・ (日)・

 $\mathbb{B} = (B_1, B_2, \dots, B_{n-1}, B_n)$ a periodic sequence of tame quasitilted algebras of canonical type

- $\mathbb{B} \rightsquigarrow R(\mathbb{B})$ locally bounded *K*-category
- $R(\mathbb{B})$ is an infinite periodic pushout glueing to the algebras B_1, \ldots, B_n

$$R(\mathbb{B}) = \bigcup_{m \in \mathbb{Z}^{+}} R(\mathbb{B})_{m}$$

$$R(\mathbb{B})_{1} = B_{1} \bigsqcup_{B_{1}^{(r)} = B_{2}^{(l)}} B_{2} \bigsqcup_{B_{2}^{(r)} = B_{3}^{(l)}} \cdots \bigsqcup_{B_{n-2}^{(r)} = B_{n-1}^{(l)}} B_{n-1} \bigsqcup_{B_{n-1}^{(r)} = B_{n}^{(l)}} B_{n}$$

$$R(\mathbb{B})_{m+1} = B_{1} \bigsqcup_{B_{1}^{(r)}} B_{2} \bigsqcup_{B_{2}^{(r)}} \cdots \bigsqcup_{B_{n-1}^{(r)}} B_{n} \bigsqcup_{B_{n}^{(r)}} R(\mathbb{B})_{m} \bigsqcup_{B_{1}^{(r)}} B_{1} \bigsqcup_{B_{1}^{(r)}} \cdots \bigsqcup_{B_{n-1}^{(r)}} B_{n}$$

(日) (日) (日) (日) (日) (日) (日)

 $\mathbb{B} = (B_1, B_2, \dots, B_{n-1}, B_n)$ a periodic sequence of tame quasitilted algebras of canonical type

 $\mathbb{B} \rightsquigarrow R(\mathbb{B})$ locally bounded *K*-category

 $B_1, B_2, \ldots, B_{n-1}, B_n$ are convex subcategories of $R(\mathbb{B})$

 $R(\mathbb{B})$ admits a *K*-linear automorphism $g_{\mathbb{B}}$ such that

 $g_{\mathbb{B}}(B_1^{(l)}) = B_n^{(r)}$ and $g_{\mathbb{B}}$ acts freely on the objects of $R(\mathbb{B})$

G a group of *K*-linear automorphisms of $R(\mathbb{B})$ is called **admissible** if *G* acts freely on the objects of $R(\mathbb{B})$ and has finitely many orbits

Proposition

Let $\mathbb{B} = (B_1, B_2, ..., B_{n-1}, B_n)$ be a periodic sequence of tame quasitilted algebras of canonical type and G a group of K-linear automorphisms of $R(\mathbb{B})$. The following statements are equivalent.

(i) G is an admissible group of automorphisms of $R(\mathbb{B})$.

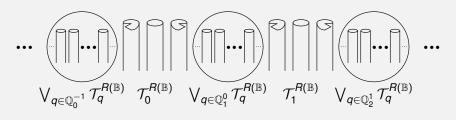
(ii) $G = (\varphi g^m_{\mathbb{B}})$ for some $m \ge 1$ and a rigid automorphism φ of $R(\mathbb{B})$.

(An automorphism φ of $R(\mathbb{B})$ is said to be **rigid** if $\varphi(B_i) = B_i$ for any $i \in \{1, ..., n\}$.)

 $\mathbb{B} = (B_1, B_2, \dots, B_{n-1}, B_n)$ periodic sequence of tame quasitilted algebras of canonical type

 $R(\mathbb{B})$ locally support-finite (Dowbor-Skowroński) locally bounded *K*-category

$$\begin{split} & \Gamma_{R(\mathbb{B})} = \bigvee_{q \in \mathbb{Q}} \mathcal{T}_q^{R(\mathbb{B})} \\ & \bullet \text{ for } q \in \mathbb{Z}, \, \mathcal{T}_q^{R(\mathbb{B})} \text{ is a } \mathbb{P}_1(K) \text{-family of semiregular tubes} \\ & \bullet \text{ for } q \in \mathbb{Q} \setminus \mathbb{Z}, \, \mathcal{T}_q^{R(\mathbb{B})} \text{ is a } \mathbb{P}_1(K) \text{-family of stable tubes} \end{split}$$



$$\mathbb{Q}_i^{i-1} = \mathbb{Q} \cap (i-1,i)$$

G admissible group of K-linear automorphisms of $R(\mathbb{B})$ $A = R(\mathbb{B})/G$ associated orbit algebra $F = F^{\mathbb{B}, G'}: R(\mathbb{B}) \to R(\mathbb{B})/G = A$ Galois covering F_{λ} : mod $R(\mathbb{B}) \rightarrow \text{mod } A$ the push-down functor $R(\mathbb{B})$ locally support finite implies (by **Dowbor-Skowroński density theorem**) that F_{λ} is dense and $\Gamma_A = \Gamma_{B(\mathbb{B})}/G$ Hence $A = R(\mathbb{B})/G$ is a tame algebra of semiregular tubular type and Γ_A is of the form \mathcal{C}_q^A $q \in \mathbb{Q}_0^{r-1}$ $\mathcal{C}_{0}^{A} = \mathcal{C}_{r}^{A}$ \mathcal{C}^A_{r-1} \mathcal{C}_1^A \mathcal{C}^{A}_{a} where $\mathcal{C}_{a}^{A} = F_{\lambda} (\mathcal{T}_{a}^{R})$ for any $q \in \mathbb{Q}^+$ (日)

Definition

An algebra *A* is said to be **standard** if *A* admits a Galois covering $R \rightarrow R/G$ with *R* a simply connected locally bounded category and *G* an admissible group of *K*-linear automorphisms of *R*.

Theorem

Let A be an algebra. The following statements are equivalent.

- (i) A is a standard tame algebra of semiregular tubular type.
- (ii) A ≅ R(B)/G, for a periodic sequence B of tame quasitilted algebras of canonical type and an admissible infinite cyclic group G of K-linear automorphisms of the locally bounded category R(B).

Conjecture

Every tame algebra of semiregular tubular type is a standard tame algebra.

Example

