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History of GR measure

I Roiter’s proof of BTh I (1968) marks the beginning of the
new representation theory (of finite dimensional algebras)

I Gabriel (1973), introduced ”Roiter measure”

I Ringel (2004), algebras of infinite representation type.
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Definition

Let Λ be an artin algebra.

I The Gabriel-Roiter measure µ(M):

µ(M) = max
N⊂M
{µ(N)}+

{
0 if M is decomposable,
1

2|M| if M is indecomposable
.

I A rational number µ is called a GR measure for Λ if
µ(M) = µ for some indecomposable Λ-module M .

I If X is cogenerated by Y , then µ(X ) ≤ µ(Y ).
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An example, finite representation type

Path algebra: 1 // 2 // 3 ,
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An example, infinite representation type

Affine quiver Ã1: • ((
66 •
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Ringel’s Partition

Theorem (Ringel)
Let Λ be a representation-infinite artin algebra. Then there are
GR measures Ii and I i

I1 < I2 < I3 < . . . . . . < I 3 < I 2 < I 1

such that any other GR measure I satisfies Ii < I < I i for all i .
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Direct successors and direct predecessors

I A GR measure J is called a direct successor of I if
I < J and I ≤ I ′ ≤ J implies I ′ = I or I ′ = J .

I Successor Lemma (Ringel) Any GR measure, not
maximal, has a direct successor.

I ’Predecessor Lemma’ does Not hold.

I Fix a GR measure µ0. We obtain a sequence of GR
measures by taking direct predecessors and direct
successors:

. . . < µ−2 < µ−1 < µ0 < µ1 < µ2 < . . .
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GR segments

Definition
The set of GR measures is a totally ordered set. A connected
component of the Hasse diagram is called a GR segments.

Theorem
Let Λ be an artin algebra. Then T.F.A.E.:

I Λ is of finite representation type.

I There is only one GR segment.

I There is a finite GR segment.

If Λ is of infinite representation type: Then a GR segment is of
type N, type −N or type Z.
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Known result and question

Theorem
Let Q be an Euclidean quiver of type Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8.

1 The number of GR segments is bounded by b.

2 The number of GR segments of type Z is bounded by a.

Here a and b are numbers relating to the ranks of exceptional
tubes.

Question
Let Q be a finite connected acyclic quiver. Are the following
statements equivalent?

1. Q is of wild representation type.

2. There are infinitely many GR segments.

3. There are infinitely many GR segments of type N.
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Wake Up!
Two years later (2012)...... Bielefeld
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Main theorem

Theorem
Let Q be a finite connected acyclic quiver. Then T.F.A.E.

1. Q is of wild representation type.

2. There are infinitely many GR segments.
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Proof I, part I: two vertices

1 //

α1

&&

αn

88... 2

Let Im = {1, 2, 4, . . . , 2m, 2m + 1} and µm =
∑

i∈Im
1
2i

. Then
these µm’s do NOT admit direct predecessors and are
contained in different GR segments of type N.
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Proof I, part II: at least three vertices

Theorem
Let Q be a wild quive with n ≥ 3 vertices. For each
indecomposable regular module X , there is an indecomposable
regular module Y such that the GR measures µ(X ) and µ(Y )
are in different GR segments.
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Proof I, part II: Continue

Proof.

1. Let T = ⊕Ti be a basic regular tilting module.

2. τ iT , i ≥ 0, such that Hom (τ iT , τ−jX ) = 0 for all j ≥ 0.

3. τ iT is again a tilting module, and Hom (τ iT ,X [k]) = 0
for all k ≥ 1. (X not necessary quasi-simple).

4. Property of tilting module: Hom (T ,M) = 0 iff M is
cogenerated by τT .

5. All X [k] are cogenerated by τ i+1T and take Y a
summand of τ i+1T with maximal GR measure.
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Proof II, anonymous

1. Let M be an indecomposable module with End (M) = k
and Ext 1(M ,M) 6= 0.

2. (If necessary, shift τ i , i ≥ 0) there is a monomorphism
X → M .

3. Let Y ∼= τmM such that M is cogenerated by Y and
Ext 1(M ,Y ) = 0.

4. Ringel’s Simplification: F(M) the full subcategory
consisting of modules N which have filtrations
0 = N0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ Nr = N such that
Ni/Ni−1 ∼= M . Then F(M) contains infinitely many
indecomposable objects.

5. If N ∈ F(M), then N is cogenerated by Y . In particular,
µ(X ) and µ(Y ) are in different GR segments.
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Interested?

Let Λ be an artin aglebra. The following are equivalent (?):

1. Λ is of finite representation type.

2. There is a finite GR segment.

3. There is a finite AR component.

4. There is only one GR segment.

5. There is only one AR component?
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(Survive 2012)
I will talk ...... in 2014, Beijing

Thank you!
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