

# **Combinatorial formulas for cluster algebras from surfaces**

### Abstract

Recall from [MSW] that there is a positive combinatorial formula for the Laurent expansion of any cluster variable in a cluster algebra arising from a surface [FST] given by the perfect matchings of snake graphs associated to arcs in the surface, that is  $x_{\gamma}$  =  $\frac{1}{x(\mathcal{G})} \stackrel{\checkmark}{\underset{P \in \mathsf{Match}\,\mathcal{G}_{\mathcal{A}}}{\overset{\checkmark}}}$ x(P)y(P). In this work, we introduce the notion of abstract snake graphs and develop a graphical calculus for surface cluster algebras. Moreover, we give a new proof of Skein relations.

## Notation

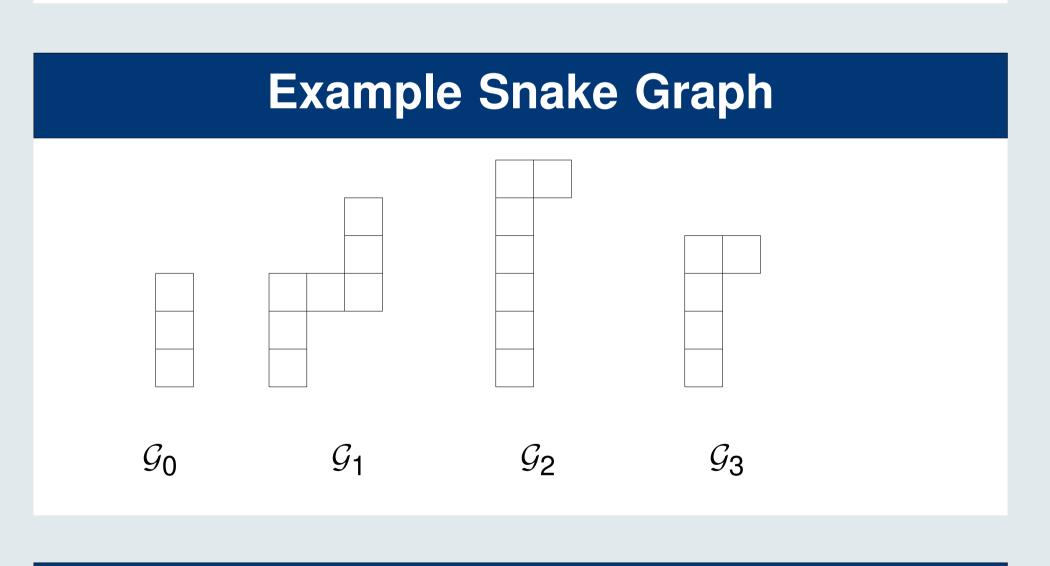
- Let the triple (S, M, T) be a bordered surface S with marked points  $M \in \partial S$  together with an associated triangulation T.
- $\mathcal{A} = \mathcal{A}(S, M, T)$  be the cluster algebra associated to the surface (S, M, T) with principal coefficients.
- ullet Smoothing of two arcs  $\gamma_1$  and  $\gamma_2$  at a point is defined to be the pair of curves obtained by the local change of crossing point ig/with the pair of segments  $\sim$  and ). The pair of arcs obtained by smoothing is denoted by  $(\gamma_3, \gamma_4)$  and  $(\gamma_5, \gamma_6)$ , respectively.
- Skein relations is given by  $x_{\gamma_1}x_{\gamma_2} = y_-x_{\gamma_3}x_{\gamma_4} + y_+x_{\gamma_5}x_{\gamma_6}$ .

## Snake graphs

**Definition 1.** A snake graph G is a connected graph consisting of finite ordered sequence of tiles  $G_1, G_2, \dots, G_d$ such that

1.  $G_i$  and  $G_{i+1}$  share exactly one edge  $e_i$  for each *i*, and 2.  $G_i$  and  $G_i$  are disjoint whenever  $i - j \ge 2$ .

**Remark 2.** A snake graph can be viewed as a finite path in the **Z**-grid where we can only allowed to go to the north or to the east.



### Local overlap

**Definition 3.** Let  $\mathcal{G}_1 = (G_1, G_2, \cdots, G_d)$  and  $\mathcal{G}_2 = (G'_1, G'_2, \dots, G'_d)$  be two snake graphs. We say that  $\mathcal{G}_1$ and  $\mathcal{G}_2$  have a **local overlap**  $\mathcal{G}$  if  $\mathcal{G}$  is a snake graph and there exist two embeddings  $i_1 : \mathcal{G} \to \mathcal{G}_1$  and  $i_2 : \mathcal{G} \to \mathcal{G}_2$  such that

- (*Maximality*) If  $\mathcal{G}$  has at least two tiles, and there exists a snake graph  $\mathcal{G}'$  and two embeddings  $i'_1 : \mathcal{G}' \to \mathcal{G}_1$  and  $i'_2: \mathcal{G}' \to \mathcal{G}_2$  such that  $i_j(\mathcal{G}) \subset i'_{i'}(\mathcal{G}')$  then  $i_j(\mathcal{G}) = i'_{i'}(\mathcal{G}')$ .
- If  $\mathcal{G}$  is a single tile and  $i_1(\mathcal{G}) = G_k$  and  $i_2(\mathcal{G}) = G'_{k'}$  then either  $k \in \{1, d\}$  or  $k' \in \{1, d'\}$  or 1 < k < d and the subgraphs  $G_{k-1}, G_k, G_{k11}$  and  $G'_{k'-1}, G'_{k'}, G'_{k'+1}$  are isomorphic.

**Remark 4.** Two snake graphs  $\mathcal{G}_1$  and  $\mathcal{G}_2$  may have several overlaps.

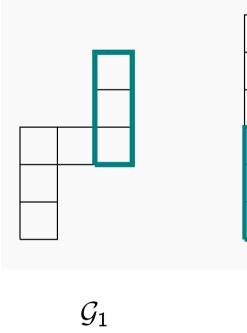
## Ilke Canakci

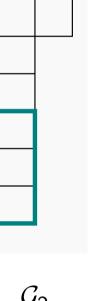
University of Connecticut, 196 Auditorium Road, Unit 3009 Storrs, CT 06269, USA

ilke.canakci@uconn.edu

## Example Local overlap

Local overlap of the pairs  $(\mathcal{G}_1, \mathcal{G}_2)$  and  $(\mathcal{G}_1, \mathcal{G}_3)$  of snake graphs are both given by the green snake graph below.





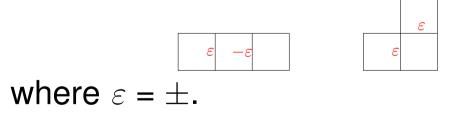
 $\mathcal{G}_{3}$ 

## Sign function on snake graphs

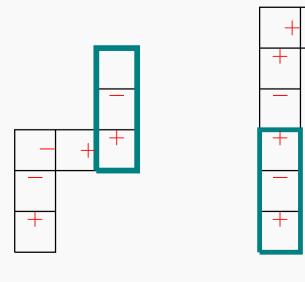
 $\mathcal{G}_1$ 

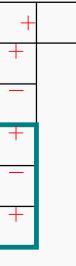
**Definition 5.** A sign function on  $\mathcal{G} = (G_1, G_2, \dots, G_d)$  is a map f from the edges  $e_i$  of G to  $\{\pm\}$  where  $e_i$  is the interior edge shared by the tiles  $G_i$  and  $G_{i+1}$ , for each  $i \in \{1, \cdots, d-1\}$ , such that

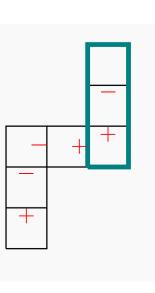
- $f(e_i) = -f(e_{i+1})$  if  $G_i, G_{i+1}, G_{i+2}$  form a straight subgraph,
- $f(e_i) = f(e_{i+1})$  if  $G_i, G_{i+1}, G_{i+2}$  form a zig-zag subgraph.
- We indeed have the following local configurations

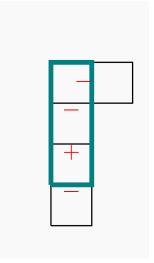


## **Example Sign Function**









**Definition 6.** Let  $\mathcal{G}_1$  and  $\mathcal{G}_2$  be two snake graphs with a non-empty local overlap  $\mathcal{G}$ , f be a sign function on  $\mathcal{G}$  and  $f_1, f_2$ be sign functions on  $\mathcal{G}_1, \mathcal{G}_2$ , respectively, induced by f. We say  $\mathcal{G}_1$  and  $\mathcal{G}_2$  **cross** if one of the following holds.

- $f_1(e_{s-1}) = -f_1(e_t)$  where s > 1, t < d or  $f_2(e'_{s'-1}) = -f_2(e'_{t'})$  where s' > 1, t' < d', •  $f_1(e_t) = f_2(e'_{s'-1})$  where s = 1, t < d, s' > 1, t' = d' or  $f_1(e_{s-1}) = f_2(e'_{t'})$  where s > 1, t = d, s' = 1, t' < d'.

## not cross.

Let  $\mathcal{G}[i, j] := (G_i, \dots, G_j)$ . Suppose  $\mathcal{G}_1$  and  $\mathcal{G}_2$  cross at a local overlap  $\mathcal{G}$  where s > 1, s' = 1, d = t, d' > t'. Define four connected snake graphs as follows.

- $G_3 = G_1[1, t] \cup G_2[t' + 1, d'],$ •  $\mathcal{G}_4 = \mathcal{G}_2[1, t'] \cup \mathcal{G}_1[t+1, d],$
- $f_1(e_k) = f_1(e_{s-1}),$
- $\mathcal{G}_5 = \mathcal{G}_1[1, k]$  where k < s 1 is the largest integer such that
- $\mathcal{G}_6 = \mathcal{G}_2[k', d']$  where k' > t' + 1 is the least integer such that  $f_2(e'_{t'}) = f_2(e'_{k'-1}).$
- The **resolution of the crossing** of  $\mathcal{G}_1$  and  $\mathcal{G}_2$  in  $\mathcal{G}$  is defined to be  $(\mathcal{G}_3 \sqcup \mathcal{G}_4, \mathcal{G}_5 \sqcup \mathcal{G}_6)$  and denoted by  $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)$ .

|  |   | + |
|--|---|---|
|  | Ľ |   |
|  |   |   |

 $\mathcal{G}_1$ 

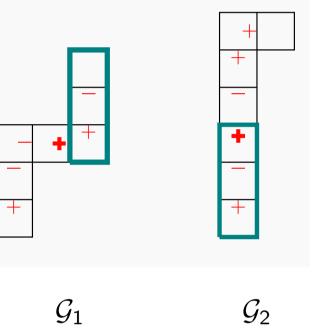
 $\mathcal{G}_2$ 

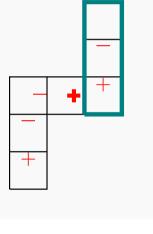
 $\mathcal{G}_1$ 

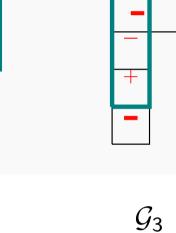
 $\mathcal{G}_3$ 

## Crossing of snake graphs

## Example Crossing







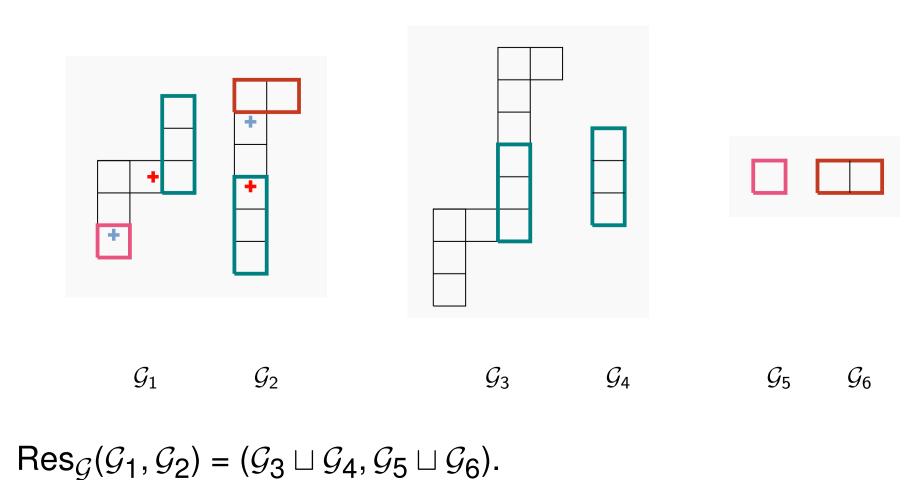
In the figure above,  $\mathcal{G}_1$  and  $\mathcal{G}_2$  cross. However,  $\mathcal{G}_1$  and  $\mathcal{G}_3$  do

## **Resolution of snake graphs**

**Theorem 7.** There is a bijection

 $Match(\mathcal{G}_1 \sqcup \mathcal{G}_2) \to Match(Res_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2))$ 

## **Example Resolution**



## **Relation to cluster algebras**

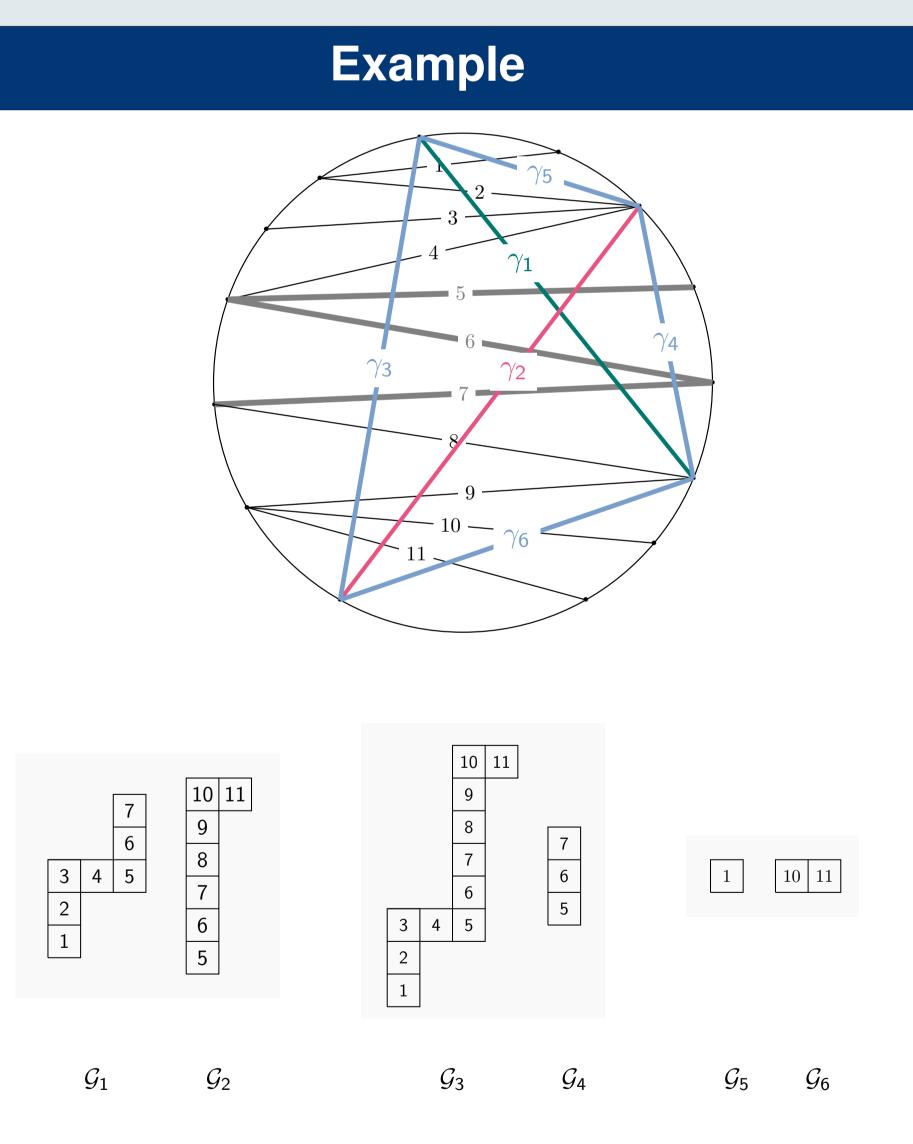
## by

x(P)y(P).

 $\mathcal{L}(\operatorname{\mathsf{Res}}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2)) = \mathcal{L}(\mathcal{G}_3 \sqcup \mathcal{G}_4) + y(\bar{\mathcal{G}})\mathcal{L}(\mathcal{G}_5 \sqcup \mathcal{G}_6)$ where  $\mathcal{L}(\mathcal{G}_{k} \sqcup \mathcal{G}_{l}) = \frac{1}{x(\mathcal{G}_{k})x(\mathcal{G}_{l})} \sum_{P \in \text{Match}(\mathcal{G}_{k} \sqcup \mathcal{G}_{l})} x(\mathcal{G}_{l})$ 

**Theorem 9.** Let (S, M, T) be a surface with triangulation T. Let  $\gamma_1$  and  $\gamma_2$  be two arcs in (S, M) which cross with a nonempty local overlap  $\mathcal{G}$ , and let  $\mathcal{G}_1, \mathcal{G}_2$  be the corresponding snake graphs. Then

- $\mathcal{L}(\mathcal{G}_1 \sqcup \mathcal{G}_2) = \mathcal{L}(\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_1, \mathcal{G}_2))$



(2008), 2241-2308.



Definition 8. Define the Laurent polynomial of the resolution

• The snake graphs of the arcs obtained by smoothing  $\gamma_1$  and  $\gamma_2$  are given precisely by  $\operatorname{Res}_{\mathcal{G}}(\mathcal{G}_{\gamma_1}, \mathcal{G}_{\gamma_2})$  where  $\mathcal{G} = \mathcal{G}_{\gamma_1} \cap \mathcal{G}_{\gamma_2}$ .

## References

[FST] S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Math. 201 (2008), 83-146. [FT] S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces. Part II: Lambda Lengths, preprint

http://www.math.lsa.umich.edu/ fomin/Papers/cats2.ps [MSW] G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227, (2011),