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© Quantum affine gl,, and affine g-Schur algebras
© Classification of simple Sy(n, r)-modules

© !dentification of simple Sy(n, r)-modules
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Quantum affine sl,,
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Quantum affine sl,,

@ Here ¢7j:[.s are defined by the generating function:

OF(u) ==k exp((g— ¢ ) D hiamut™) =D o, u,

m>1 s>0

where Ez = ki/ki+1 and

(i+1)m

him = ¢ gim — T g (1 <0 < ).

o The C-subalgebra generated by x, k!, and h;,, (1 <i < n,

1,87 71
s,m € Z, m # 0) is the quantum enveloping algebra Uq(gln)
(This is the so-called Drinfeld new presentation of Ug(sly,)).
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Double Ringel-Hall algebras of cyclic quivers

o Let ®(A) denote the double Ringel-Hall algebra of the cyclic quiver
A = A, with n vertices. (Ringel, J.A. Green, and Xiao)
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@ Following Schiffmann and Hubery, ©(A) can be generated by
kU E; Fy (1 <4 <n)and z5 (m > 1) with z;5, being primitive and
central.
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@ Following Schiffmann and Hubery, ©(A) can be generated by
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central. The subalgebra generated by Efl, E;, and F; (1 <i<n)
gives the Jimbo—Drinfeld presentation of Uq(s/a\[n). Moreover, there is
a Hopf algebra isomorphism

D(L) 5 Uglal,).

taking z© —— 01, := ﬁqim(gl,im + 4 gntm)-
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Affine Hecke algebras of type A

e Following Varagnolo—Vasserot, there is a right H,(r)-module
structure on Q%"
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Affine Hecke algebras of type A

e Following Varagnolo—Vasserot, there is a right H,(r)-module
structure on Q®" where Ha(r) is the affine Hecke akgebra of type A,

i.e., C-algebra generated by TZ-,X;—L1 (i=1,....,7r—=1,5=1,...,7)
with relations
TiTiniT; = Ty TiTi1, Ty =TT (i — j| > 1),
XX '=1=X1X;, X;X;=X,X;,
T, XT = ¢*Xiv1, X;Ti=T,X; (j#4,i+1).
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A Morita equivalence

@ Suppose n > r. Then the functor
F : Ha(r)-Mod — Sx(n,7)-Mod, M +— Q%" @4,y M

is an equivalence.
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The upward approach

o A segment s of length k = |s| with center a € C* is by definition a
sequence

s=(aqg " ag "3, . ag"h) e (T
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@ [Zelevinsky, Rogawski] For each s € .7}, there is an associated simple
Hp(r)-module Vs.
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The upward approach

o A segment s of length k = |s| with center a € C* is by definition a

sequence
—k+1 _ —k+3 k—1 k

s=(aqg "t aqg "3, .. ag" ) € (CH)".

o Let .7, be the set of multisegments s = (s1,...,sy,) with

sil 4+ Iyl =
@ [Zelevinsky, Rogawski] For each s € .7}, there is an associated simple
Hp(r)-module Vs. Moreover, the set

{Vs | s €7}

is a complete set of simple Hu(r)-modules.
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The upward approach

@ Define
y"ﬁ(n) = {S: (51,..-,5p) S yr | ‘51’ <n, VZ}
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The upward approach

@ Define
yr(n) = {S: (51,...,Sp) S yr | ‘51’ <n, VZ}

Theorem 1 (D-Du—Fu)

The set
(9% @y Vs | 8 € M}

is a complete set of simple Sy(n, r)-modules.
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The downward approach

e Following Frenkel-Mukhin, an n-tuple of polynomials in C[u]
Q= (Q1(u),...,Qn(u)) with constant terms 1 is called dominant if,
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Q= (Q1(u),...,Qn(u)) with constant terms 1 is called dominant if,
for each 1 < i <n —1, the ratio

Qi(ug"™ 1) /Qix1(ug™™)

is a polynomial in u.
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The downward approach

@ Define

Qn)y = {Q=(Qi(u),...,Qu(w) € Qn) | r = Y degQi(u)}.

1<i<n
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The downward approach

@ Define

Qn)y = {Q=(Qi(u),...,Qu(w) € Qn) | r = Y degQi(u)}.

1<i<n

Theorem 2 (D-Du—Fu)

The set
{L(Q) Qe Qn),}

forms a complete set of simple Sy(n,r)-modules.
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|dentification of simple Sy(n,7)-modules

e Fors = (si,...,sp) € .7 with

S; = (aiq7#i+17 aiqiui+37 o 7aiqui71) S ((CX)uia
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|dentification of simple Sy(n,7)-modules

@ Fors = (si,...,sp) € .7 with
s; = (aiqg M azq M3 aigti T € (C)M,
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Key points in the proof

Case n > r [D-Du-Fu]:

@ a category equivalence of Chari—Pressley from the category of finite
dimensional H,(r)-modules to the category of finite dimensional
Uy, (sly,)-modules of type 1 which are of level r as U, (sl,,)-modules.
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Key points in the proof

Case n < r [D-Du]:

@ Choose N > r > n. There is a natural embedding

L Uq(é\[n) — Uq(g[N)'
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Thank You !
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