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Notation

k = ground field. All categories, equivalences, etc. are
assumed to be k -linear.

(T , [1]) = Hom-finite, triangulated Krull-Schmidt category.

ν : T ≈→ T Serre functor; i.e., T (X ,Y ) ∼= DT (Y , νX ).

For X ⊆ T , X⊥ = {Y ∈ T | T (X ,Y ) = 0 ∀X ∈ X},
⊥X = {Y ∈ T | T (Y ,X ) = 0 ∀X ∈ X}.

Λ, Γ = basic self-injective k -algebras (k alg. closed).

mod-Λ = stable category of f.g. right Λ-modules.

SΛ = set of (isoclasses of) simple Λ-modules.
Db(Λ) = bounded derived category of f.g. right Λ-modules
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Motivation

Let T ∈ Db(Λ) be a tilting complex and Γ = End(T ).
By work of Rickard, T induces equivalences:

Db(Γ)
F
≈

//

��

Db(Λ)

��
mod-Γ

F
≈

// mod-Λ

Problem: How can one understand/visualize the stable
equivalence F?
For starters, where does it send the simple Γ-modules?

This second question is (partially) answered by mutations of
sets of ‘simple-minded objects’.
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Maximal systems of orthogonal bricks

Motivation: If F : mod-Γ→ mod-Λ is an equivalence, what
properties are satisfied by the images of the simple Γ-modules
under F?

Definition [Pogorzały ’94]

A set S = {Si}i∈I of objects of T is a maximal system of or-
thogonal bricks in T if
• T (Si ,Sj) = 0 ∀ i 6= j , and T (Si ,Si) ∼= k ∀ i ∈ I;
• ∀ X 6= 0 ∈ T ∃ i ∈ I such that T (X ,Si) 6= 0; and
• ν(S[1]) = S (up to isomorphism).

Note: In mod-Λ, ν ◦ [1] is the Nakayama functor, which
permutes the set of simple modules, and commutes with stable
equivalences.
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Simple-minded systems

For C,D ⊆ T , set

C ∗ D = {X ∈ T | ∃ a triangle C → X → D → C ∈ C,D ∈ D}.

Set (C)0 := {0}, and (C)n := (C)n−1 ∗ (C ∪ {0}) for n ≥ 1.

F(C) := ∪n≥0(C)n is the smallest extension-closed subcategory
of T containing C.

Definition [Koenig-Liu ’10]

A maximal system S of orthogonal bricks in T is a simple-
minded system if F(S) = T .

Trivial Examples: Ωn(SΛ) ⊂ mod-Λ for n ∈ Z.
Open Question: Is every maximal system of orthogonal bricks a
simple-minded system?

Alex Dugas Mutations of simple-minded systems



Simple-minded systems

For C,D ⊆ T , set

C ∗ D = {X ∈ T | ∃ a triangle C → X → D → C ∈ C,D ∈ D}.

Set (C)0 := {0}, and (C)n := (C)n−1 ∗ (C ∪ {0}) for n ≥ 1.

F(C) := ∪n≥0(C)n is the smallest extension-closed subcategory
of T containing C.

Definition [Koenig-Liu ’10]

A maximal system S of orthogonal bricks in T is a simple-
minded system if F(S) = T .

Trivial Examples: Ωn(SΛ) ⊂ mod-Λ for n ∈ Z.
Open Question: Is every maximal system of orthogonal bricks a
simple-minded system?

Alex Dugas Mutations of simple-minded systems



Simple-minded systems

For C,D ⊆ T , set

C ∗ D = {X ∈ T | ∃ a triangle C → X → D → C ∈ C,D ∈ D}.

Set (C)0 := {0}, and (C)n := (C)n−1 ∗ (C ∪ {0}) for n ≥ 1.

F(C) := ∪n≥0(C)n is the smallest extension-closed subcategory
of T containing C.

Definition [Koenig-Liu ’10]

A maximal system S of orthogonal bricks in T is a simple-
minded system if F(S) = T .

Trivial Examples: Ωn(SΛ) ⊂ mod-Λ for n ∈ Z.
Open Question: Is every maximal system of orthogonal bricks a
simple-minded system?

Alex Dugas Mutations of simple-minded systems



Simple-minded systems

For C,D ⊆ T , set

C ∗ D = {X ∈ T | ∃ a triangle C → X → D → C ∈ C,D ∈ D}.

Set (C)0 := {0}, and (C)n := (C)n−1 ∗ (C ∪ {0}) for n ≥ 1.

F(C) := ∪n≥0(C)n is the smallest extension-closed subcategory
of T containing C.

Definition [Koenig-Liu ’10]

A maximal system S of orthogonal bricks in T is a simple-
minded system if F(S) = T .

Trivial Examples: Ωn(SΛ) ⊂ mod-Λ for n ∈ Z.
Open Question: Is every maximal system of orthogonal bricks a
simple-minded system?

Alex Dugas Mutations of simple-minded systems



Torsion pairs
Definition
A pair (C,D) of additive subcategories of T , closed under direct
summands, form a torsion pair if
• T (C,D) = 0; and
• T = C ∗ D.

It follows: ∀ X ∈ T , there exists a (minimal) triangle

CX
fX−→ X

gX−→ DX →

with CX ∈ C and DX ∈ D. Moreover, fX is a (minimal) right
C-approximation and gX is a (minimal) left D-approximation.

Theorem
Suppose X ⊆ S for a simple-minded system S in T . Then
(⊥X ,F(X )) and (F(X ),X⊥) are torsion pairs in T . In partic-
ular, F(X ) is a functorially finite subcategory of T .
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Mutation of simple-minded systems

Let S be a simple-minded system, and X ⊂ S s.t. ν(X [1]) = X .
For any M ∈ T , we have (unique) minimal triangles

aM // M // bM // cM // M // dM //

∈ ⊥X ∈ F(X ) ∈ F(X ) ∈ X⊥

Definition

The left mutation of S at X is µ+
X (S) = {µ+

X (Si) | Si ∈ S}, where

µ+
X (Si) =

{
Si , if Si ∈ X

a(Si [−1]), if Si /∈ X

Right mutation of S at X is defined dually:

µ−X (Si) =

{
Si , if Si ∈ X

d(Si [1]), if Si /∈ X
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Mutation of simple-minded systems (cont.)

Theorem

For any X ⊂ S satisfying ν(X [1]) = X , µ+
X (S) and µ−X (S) are

again simple-minded systems. Moreover,

µ−X (µ+
X (S)) = S = µ+

X (µ−X (S)).

Example. µ+
1 (SΛ), . . .

Let Λ have the quiver and indecomp. projectives:

1
��888

�����

3 //

BB���
2oo

\\888
1

2 3
3 2

1

2
3 1
1 3

2

3
1 2
2 1

3
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1 (SΛ) = 1, 1 3, 2 1
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Mutation of simple-minded systems (cont.)
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2 3
(µ+

1 )2(SΛ) = 1, 1 2 3 1
3 1 2, 3 1 2

3 2
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Connection to derived equivalence

Let X ⊂ SΛ satisfy ν(X [1]) = X .
Let P = PX be the corresponding projective module, and
Q = Λ/P.

Let P f→ Q′ be a left add(Q)-approximation of P. The
Okuyama tilting complex TX associated to X is

0→ P
(0 f )T

→ Q ⊕Q′ → 0

Γ = EndDb(Λ)(TX ) is the “left tilting mutation of Λ at X .”
Let FX : mod-Γ→ mod-Λ be the induced equivalence.

Theorem. [-, Koenig-Yang]

FX (SΓ) = µ+
X (SΛ).

Note: After giving this talk, I discovered that this result also appears in an unpublished
preprint of T. Okuyama from 1998.
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Application: Lifting stable equivalences to derived
equivalences

Question: Determine if a stable equivalence (of Morita type)
α : mod-Λ′ → mod-Λ is induced by an equivalence of derived
categories Db(Λ′)→ Db(Λ).

Method of Okuyama, Linckelmann, Rickard: If
α(SΛ′) = F (SΓ) where F is induced by an equivalence
F : Db(Γ)→ Db(Λ), then α lifts to a derived equivalence.

Corollary

If α(SΛ′) can be obtained from SΛ by a sequence of mutations
and syzygies/co-syzygies, then α lifts to a derived equivalence.
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An example of Broué’s conjecture (Okuyama, Rickard)

Let G = A6, P = Syl3(G) ∼= (Z/3)2, H = NG(P).

Λ′,Λ = principal blocks of kG, kH, resp., char(k) = 3.

Λ has quiver and indecomposable projectives

k //

��

1
��

oo

3

OO

// 2

OO

oo

k
1 3

2 k 2
1 3

k

1
2 k

3 1 3
2 k

1

2
3 1

k 2 k
3 1

2

3
k 2

1 3 1
k 2

3

Restriction gives an equivalence mod-Λ′ → mod-Λ. The
images of the simple Λ′-modules are:

Z0 = k Z1 = 1
k
3

Z2 = 2
1 3

2

Z3 = 3
k
1

Apply µ+
{Z0,Z2}

: Z1 7→ S1, Z3 7→ S3. Then µ+
{k ,S1,S3}

: Z2 7→ S2.

Thus restriction lifts to a derived equivalence Db(Λ′)
≈→ Db(Λ).
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