From trisections in module categories to quasi-directed components

Flávio Ulhoa Coelho - IME-USP

ICRA 2012 - Bielefeld

13 de agosto de 2012

- Λ - basic and connected artin algebra
- $\text{mod } \Lambda$ - category of finitely generated right Λ-modules
- $\text{ind } \Lambda$ - full subcategory of $\text{mod } \Lambda$ consisting of exactly one representative from each isomorphism class of indecomposable Λ-modules.
- $\Gamma (\text{mod } \Lambda)$ - the Auslander-Reiten quiver of Λ.
Preliminaries

- Λ - basic and connected artin algebra
- $\text{mod } \Lambda$ - category of finitely generated right Λ-modules
- $\text{ind } \Lambda$ - full subcategory of $\text{mod } \Lambda$ consisting of exactly one representative from each isomorphism class of indecomposable Λ-modules.
- $\Gamma (\text{mod } \Lambda)$ - the Auslander-Reiten quiver of Λ.
A generalised standard component $\Gamma \subset \Gamma(\mod \Lambda)$ is **quasi-directed** provided there exist at most finitely many modules lying in oriented cycles.

Such components appear naturally in the so-called *laura algebras* (introduced by Assem-C. [AC] and Reiten-Skowroński [RS]).
A generalised standard component $\Gamma \subset \Gamma(\text{ mod } \Lambda)$ is **quasi-directed** provided there exist at most finitely many modules lying in oriented cycles.

Such components appear naturally in the so-called *laura algebras* (introduced by Assem-C. [AC] and Reiten-Skowroński [RS]).
\[\mathcal{L}_\Lambda = \{ X \in \text{ind}\Lambda : \text{pd} Y \leq 1 \ \forall Y \ \text{predecessor of } X \} \]

\[\mathcal{R}_\Lambda = \{ X \in \text{ind}\Lambda : \text{id} Y \leq 1 \ \forall Y \ \text{successor of } X \} \]

Definition

An algebra \(\Lambda \) is called **laura** if \(\mathcal{L}_\Lambda \cup \mathcal{R}_\Lambda \) is cofinite in \(\text{ind} \Lambda \).
Laura algebras

\[\mathcal{L}_\Lambda = \{ X \in \text{ind}\Lambda : \text{pd} Y \leq 1 \ \forall Y \text{ predecessor of } X \} \]

\[\mathcal{R}_\Lambda = \{ X \in \text{ind}\Lambda : \text{id} Y \leq 1 \ \forall Y \text{ successor of } X \} \]

Definition

An algebra \(\Lambda \) is called laura if \(\mathcal{L}_\Lambda \cup \mathcal{R}_\Lambda \) is cofinite in \(\text{ind} \Lambda \).
Laura algebras

\[\mathcal{L}_\Lambda = \{ X \in \text{ind}\Lambda : \text{pd} Y \leq 1 \ \forall Y \text{ predecessor of } X \} \]

\[\mathcal{R}_\Lambda = \{ X \in \text{ind}\Lambda : \text{id} Y \leq 1 \ \forall Y \text{ successor of } X \} \]

Definition
An algebra \(\Lambda \) is called laura if \(\mathcal{L}_\Lambda \cup \mathcal{R}_\Lambda \) is cofinite in \(\text{ind}\Lambda \).
\[\mathcal{L}_\Lambda = \{ X \in \text{ind}\Lambda : \text{pd} \ Y \leq 1 \ \forall \ Y \text{ predecessor of } X \} \]

\[\mathcal{R}_\Lambda = \{ X \in \text{ind}\Lambda : \text{id} \ Y \leq 1 \ \forall \ Y \text{ successor of } X \} \]

Definition

An algebra \(\Lambda \) is called **laura** if \(\mathcal{L}_\Lambda \cup \mathcal{R}_\Lambda \) is cofinite in \(\text{ind} \ \Lambda \)
Example

Let Λ be given by the quiver

\[
\begin{array}{ccccccc}
& & & & & & \\
& & & & & & \\
& & & & & & \\
1 & \rightarrow & 2 & \rightarrow & 3 & \leftarrow & 4 & \rightarrow & 5 \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
\end{array}
\]

bound by $\text{rad}^2 \Lambda = 0$. The Auslander-Reiten quiver $\Gamma(\text{mod}\Lambda)$ of Λ has a component Γ of the following shape
where we identify the two copies of S_3, along the vertical dotted lines (note that Λ is a laura algebra, having Γ as its unique faithful quasi-directed component).

1. $\mathcal{L}_\Lambda = \text{Pred} (S_2)$
2. $\mathcal{R}_\Lambda = \text{Suc} (S_4)$
where we identify the two copies of S_3, along the vertical dotted lines (note that Λ is a laura algebra, having Γ as its unique faithful quasi-directed component).

1. $\mathcal{L}_\Lambda = \text{Pred } (S_2)$
2. $\mathcal{R}_\Lambda = \text{Suc } (S_4)$
A **trisection** of $\text{ind}\Lambda$ is a triple of disjoint full subcategories $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ of $\text{ind}\Lambda$ such that:

(a) $\text{ind}\Lambda = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$, and

(b) $\text{Hom}_\Lambda(\mathcal{C}, \mathcal{B}) = \text{Hom}_\Lambda(\mathcal{C}, \mathcal{A}) = \text{Hom}_\Lambda(\mathcal{B}, \mathcal{A}) = 0$.

Remarks

1. If any of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ is empty, then the definition above reduces to that of a split torsion pair.

2. If $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ is a trisection of $\text{ind}\Lambda$, then \mathcal{A} is closed under predecessors, \mathcal{C} is closed under successors, and \mathcal{B} is *convex* in $\text{ind}\Lambda$.

F. U. Coelho

quasi-directed components
Definition

A trisection of $\text{ind}\Lambda$ is a triple of disjoint full subcategories (A, B, C) of $\text{ind}\Lambda$ such that:

(a) $\text{ind}\Lambda = A \cup B \cup C$, and

(b) $\text{Hom}_\Lambda(C, B) = \text{Hom}_\Lambda(C, A) = \text{Hom}_\Lambda(B, A) = 0$.

Remarks

1. If any of A, B, C is empty, then the definition above reduces to that of a split torsion pair.

2. If (A, B, C) is a trisection of $\text{ind}\Lambda$, then A is closed under predecessors, C is closed under successors, and B is convex in $\text{ind}\Lambda$.
Trisections

Definition

A trisection of $\text{ind}\Lambda$ is a triple of disjoint full subcategories $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ of $\text{ind}\Lambda$ such that:

(a) $\text{ind}\Lambda = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$, and

(b) $\text{Hom}_\Lambda(\mathcal{C}, \mathcal{B}) = \text{Hom}_\Lambda(\mathcal{C}, \mathcal{A}) = \text{Hom}_\Lambda(\mathcal{B}, \mathcal{A}) = 0$.

Remarks

1. If any of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ is empty, then the definition above reduces to that of a split torsion pair.

2. If $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ is a trisection of $\text{ind}\Lambda$, then \mathcal{A} is closed under predecessors, \mathcal{C} is closed under successors, and \mathcal{B} is convex in $\text{ind}\Lambda$.
Definition

A trisection \((\mathcal{A}, \mathcal{B}, \mathcal{C})\) is **separated** provided \(\mathcal{B} \neq \emptyset\) and any morphism \(X \to Y\) with \(X \in \mathcal{A}\) and \(Y \in \mathcal{C}\) factors through \(\text{add}\mathcal{B}\).

Examples

1. If \(\Lambda\) is a representation-infinite hereditary algebra, then \((\mathcal{A}, \mathcal{B}, \mathcal{C})\), where \(\mathcal{A}\) consists of the postprojective modules, \(\mathcal{C}\) of the preinjective, and \(\mathcal{B}\) of the regular, is a separated trisection.

2. If \(\Lambda\) is a quasitilted algebra, then \((\mathcal{L}_\Lambda \setminus \mathcal{R}_\Lambda, \mathcal{L}_\Lambda \cap \mathcal{R}_\Lambda, \mathcal{R}_\Lambda \setminus \mathcal{L}_\Lambda)\) is a separated trisection.
Definition

A trisection \((\mathcal{A}, \mathcal{B}, \mathcal{C})\) is separated provided \(\mathcal{B} \neq \emptyset\) and any morphism \(X \to Y\) with \(X \in \mathcal{A}\) and \(Y \in \mathcal{C}\) factors through \(\text{add}\ \mathcal{B}\).

Examples

1. If \(\Lambda\) is a representation-infinite hereditary algebra, then \((\mathcal{A}, \mathcal{B}, \mathcal{C})\), where \(\mathcal{A}\) consists of the postprojective modules, \(\mathcal{C}\) of the preinjective, and \(\mathcal{B}\) of the regular, is a separated trisection.

2. If \(\Lambda\) is a quasitilted algebra, then \((\mathcal{L}_\Lambda \setminus \mathcal{R}_\Lambda, \mathcal{L}_\Lambda \cap \mathcal{R}_\Lambda, \mathcal{R}_\Lambda \setminus \mathcal{L}_\Lambda)\) is a separated trisection.
A trisection \((\mathcal{A}, \mathcal{B}, \mathcal{C})\) is separated provided \(\mathcal{B} \neq \emptyset\) and any morphism \(X \to Y\) with \(X \in \mathcal{A}\) and \(Y \in \mathcal{C}\) factors through \(\text{add}\mathcal{B}\).

Examples

1. If \(\Lambda\) is a representation-infinite hereditary algebra, then \((\mathcal{A}, \mathcal{B}, \mathcal{C})\), where \(\mathcal{A}\) consists of the postprojective modules, \(\mathcal{C}\) of the preinjective, and \(\mathcal{B}\) of the regular, is a separated trisection.

2. If \(\Lambda\) is a quasitilted algebra, then \((\mathcal{L}_\Lambda \setminus \mathcal{R}_\Lambda, \mathcal{L}_\Lambda \cap \mathcal{R}_\Lambda, \mathcal{R}_\Lambda \setminus \mathcal{L}_\Lambda)\) is a separated trisection.
Lemma

Let \mathcal{B} be a non-empty finite, connected and convex subcategory of $\text{ind}\Lambda$. Then there is a unique component $\Gamma^\mathcal{B}$ of $\Gamma \mod \Lambda$ such that $\Gamma^\mathcal{B}$ intersects \mathcal{B}.

Lemma

Let $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ be a separated trisection of $\text{ind}\Lambda$, with \mathcal{B} finite and connected, and Let Γ be a component of $\Gamma \mod \Lambda$.

(a) If $\Gamma \neq \Gamma^\mathcal{B}$, then either $\Gamma \subset \mathcal{A}$ or $\Gamma \subset \mathcal{C}$.

(b) If $\Gamma \cap \mathcal{A} \neq \emptyset$ and $\Gamma \cap \mathcal{C} \neq \emptyset$, then $\Gamma = \Gamma^\mathcal{B}$.
Lemma

Let \mathcal{B} be a non-empty finite, connected and convex subcategory of $\text{ind}\Lambda$. Then there is a unique component $\Gamma^\mathcal{B}$ of $\Gamma \mod \Lambda$ such that $\Gamma^\mathcal{B}$ intersects \mathcal{B}.

Lemma

Let $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ be a separated trisection of $\text{ind}\Lambda$, with \mathcal{B} finite and connected, and Let Γ be a component of $\Gamma \mod \Lambda$.

(a) If $\Gamma \neq \Gamma^\mathcal{B}$, then either $\Gamma \subset \mathcal{A}$ or $\Gamma \subset \mathcal{C}$.

(b) If $\Gamma \cap \mathcal{A} \neq \emptyset$ and $\Gamma \cap \mathcal{C} \neq \emptyset$, then $\Gamma = \Gamma^\mathcal{B}$.
Definition

A trisection \((\mathcal{A}, \mathcal{B}, \mathcal{C})\) is called compact if it is separated and \(\mathcal{B}\) is finite, connected and contains all the projectives and all the injectives in \(\Gamma^\mathcal{B}\).

Remark

An algebra \(\Lambda\) is representation-finite if and only if \((\emptyset, \text{ind}\Lambda, \emptyset)\) is the unique compact trisection of \(\text{ind}\Lambda\).
Definition

A trisection \((\mathcal{A}, \mathcal{B}, \mathcal{C})\) is called \textbf{compact} if it is separated and \(\mathcal{B}\) is finite, connected and contains all the projectives and all the injectives in \(\Gamma^\mathcal{B}\).

Remark

An algebra \(\Lambda\) is representation-finite if and only if \((\emptyset, \text{ind}\Lambda, \emptyset)\) is the unique compact trisection of \(\text{ind}\Lambda\).
The following definition is inspired by the notion of multisection of [RS].

Definition

Let Γ be a component of $\Gamma(\text{mod}\Lambda)$. A full subcategory Δ of Γ is a core of Γ (and Γ is said to have a core) if:

(a) Δ is convex in $\text{ind}\Lambda$.

(b) Δ intersects each τ_Λ-orbit in Γ, and only finitely many times.

(c) Δ is almost directed.

Example

A complete slice in the connecting component of a tilted algebra is a core in this component.
The following definition is inspired by the notion of multisection of \([RS]\).

Definition

Let \(\Gamma\) be a component of \(\Gamma(\text{mod}\Lambda)\). A full subcategory \(\Delta\) of \(\Gamma\) is a **core** of \(\Gamma\) (and \(\Gamma\) is said **to have a core**) if:

- (a) \(\Delta\) is convex in \(\text{ind}\Lambda\).
- (b) \(\Delta\) intersects each \(\tau_{\Lambda}\)-orbit in \(\Gamma\), and only finitely many times.
- (c) \(\Delta\) is almost directed.

Example

A complete slice in the connecting component of a tilted algebra is a core in this component.
The following definition is inspired by the notion of multisection of \([RS]\).

Definition

Let \(\Gamma\) be a component of \(\Gamma(\text{mod}\Lambda)\). A full subcategory \(\Delta\) of \(\Gamma\) is a core of \(\Gamma\) (and \(\Gamma\) is said to have a core) if:

(a) \(\Delta\) is convex in \(\text{ind}\Lambda\).

(b) \(\Delta\) intersects each \(\tau_\Lambda\)-orbit in \(\Gamma\), and only finitely many times.

(c) \(\Delta\) is almost directed.

Example

A complete slice in the connecting component of a tilted algebra is a core in this component.
For the next example of a core we recall the following definition.

Definition [A]

Let Γ be a component of $\Gamma(\text{mod}\Lambda)$. A full subquiver Σ of Γ is called a **right** (or **left**) **section** provided:

1. Σ is acyclic,
2. Σ is convex in Γ, and
3. for each $Y \in \Gamma$ such that there exists a path from Σ to Y (or from Y to Σ, respectively), there exists a unique $s \geq 0$ (or $s \leq 0$, respectively) such that $\tau_\Lambda^s Y \in \Sigma$.

F. U. Coelho

quasi-directed components
For the next example of a core we recall the following definition.

Definition [A]

Let Γ be a component of $\Gamma(\text{mod}\Lambda)$. A full subquiver Σ of Γ is called a right (or left) section provided:

1. Σ is acyclic,
2. Σ is convex in Γ, and
3. for each $Y \in \Gamma$ such that there exists a path from Σ to Y (or from Y to Σ, respectively), there exists a unique $s \geq 0$ (or $s \leq 0$, respectively) such that $\tau_A^s Y \in \Sigma$.

Example

Let Λ be a representation-infinite strict laura algebra, and Γ be the non-semiregular component of $\Gamma(\text{mod}\Lambda)$. Let Σ_l be a left section, and Σ_r be a right section of Γ. Then the convex hull $\Delta = \mathcal{C}(\Sigma_l \cup \Sigma_r)$ of Σ_l and Σ_r (that is, the full subcategory consisting of all the modules $M \in \Gamma$ such that there is a path $M' \rightsquigarrow M \rightsquigarrow M''$, with $M', M'' \in \Sigma_l \cup \Sigma_r$) is a core in Γ, which contains all the non-directed modules of Γ.
Main result

Theorem

The following conditions are equivalent for an artin algebra Λ:

(a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ.
(b) $\text{ind}\Lambda$ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.
(c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ.

If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\text{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover,

(i) $\text{Hom}_\Lambda(\Gamma', \Gamma) \neq 0$ implies $\Gamma' \subset \mathcal{A}$;
(ii) $\text{Hom}_\Lambda(\Gamma, \Gamma') \neq 0$ implies $\Gamma' \subset \mathcal{C}$.
The following conditions are equivalent for an artin algebra $Λ$:

(a) $Γ(\text{mod}Λ)$ admits a separating quasi-directed component $Γ$.

(b) $\text{ind}Λ$ admits a compact trisection (A, B, C).

(c) $Γ(\text{mod}Λ)$ admits a separating convex component $Γ$ having a left section $Σ_l$ and a right section $Σ_r$ whose convex envelope $Δ$ is a core in $Γ$.

If these conditions are satisfied, and $Γ' ≠ Γ$ is a component of $Γ(\text{mod}Λ)$, then either $Γ' ⊂ A$ or $Γ' ⊂ C$. Moreover,

(i) $\text{Hom}_Λ(Γ', Γ) ≠ 0$ implies $Γ' ⊂ A$;

(ii) $\text{Hom}_Λ(Γ, Γ') ≠ 0$ implies $Γ' ⊂ C$.

F. U. Coelho
Main result

Theorem

The following conditions are equivalent for an artin algebra Λ:

(a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ.

(b) $\text{ind}\Lambda$ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.

(c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ.

If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\text{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover,

(i) $\text{Hom}_\Lambda(\Gamma', \Gamma) \neq 0$ implies $\Gamma' \subset \mathcal{A}$;

(ii) $\text{Hom}_\Lambda(\Gamma, \Gamma') \neq 0$ implies $\Gamma' \subset \mathcal{C}$.

F. U. Coelho quasidirected components
The following conditions are equivalent for an artin algebra Λ:

(a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ.
(b) $\text{ind}\Lambda$ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.
(c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ.

If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\text{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover,

(i) $\text{Hom}_\Lambda(\Gamma', \Gamma) \neq 0$ implies $\Gamma' \subset \mathcal{A}$;
(ii) $\text{Hom}_\Lambda(\Gamma, \Gamma') \neq 0$ implies $\Gamma' \subset \mathcal{C}$.
Main result

Theorem

The following conditions are equivalent for an artin algebra Λ:

(a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ.

(b) $\text{ind}\Lambda$ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.

(c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ.

If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\text{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover,

(i) $\text{Hom}_{\Lambda}(\Gamma', \Gamma) \neq 0$ implies $\Gamma' \subset \mathcal{A}$;

(ii) $\text{Hom}_{\Lambda}(\Gamma, \Gamma') \neq 0$ implies $\Gamma' \subset \mathcal{C}$.
Main result

Theorem

The following conditions are equivalent for an artin algebra Λ:

(a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ.

(b) $\text{ind}\Lambda$ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.

(c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ.

If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\text{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover,

(i) $\text{Hom}_\Lambda(\Gamma', \Gamma) \neq 0$ implies $\Gamma' \subset \mathcal{A}$;

(ii) $\text{Hom}_\Lambda(\Gamma, \Gamma') \neq 0$ implies $\Gamma' \subset \mathcal{C}$.
Consequences

Let Λ be an algebra admitting a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.

Description of $\Gamma(\text{mod } \Lambda)$

1. the separating quasi-directed convex component Γ^B
2. components lying in \mathcal{A} are components of its support algebra $A = \text{End}(\bigoplus_{P_x \in \mathcal{A}} P_x)$
3. components lying in \mathcal{C} are components of the support algebra of \mathcal{C}

1. either Γ^B is non-semiregular, in which case the algebra $\Lambda/\text{Ann } \Gamma^B$ is a laura algebra;
2. or Γ^B is the connecting component of the algebra $\Lambda/\text{Ann } \Gamma^B$ which is tilted.
Let Λ be an algebra admitting a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.

Description of $\Gamma(\text{mod } \Lambda)$

1. the separating quasi-directed convex component Γ^B
2. components lying in \mathcal{A} are components of its support algebra $A = \text{End}(\bigoplus_{P_x \in \mathcal{A}} P_x)$
3. components lying in \mathcal{C} are components of the support algebra of \mathcal{C}

1. either Γ^B is non-semiregular, in which case the algebra $\Lambda/\text{Ann } \Gamma^B$ is a laura algebra;
2. or Γ^B is the connecting component of the algebra $\Lambda/\text{Ann } \Gamma^B$ which is tilted.

Thank You!