From trisections in module categories to quasi-directed components

FLÁVIO ULHOA COELHO - IME-USP

ICRA 2012 - Bielefeld

13 de agosto de 2012

E. ALVARES, I ASSEM, F. U. COELHO, M. I. PEÑA, S. TREPODE, From trisections in module categories to quasi-directed ccomponents, J. Alg. Appl. **10**,3 (2011) 409-433.

- $\bullet~\Lambda$ basic and connected art in algebra
- mod Λ category of finitely generated right Λ -modules
- ind Λ full subcategory of mod Λ consisting of exactly one representative from each isomorphism class of indecomposable Λ -modules.
- $\Gamma \pmod{\Lambda}$ the Auslander-Reiten quiver of Λ .

E. ALVARES, I ASSEM, F. U. COELHO, M. I. PEÑA, S. TREPODE, From trisections in module categories to quasi-directed ccomponents, J. Alg. Appl. **10**,3 (2011) 409-433.

- Λ basic and connected art in algebra
- mod Λ category of finitely generated right $\Lambda\text{-modules}$
- ind Λ full subcategory of mod Λ consisting of exactly one representative from each isomorphism class of indecomposable Λ -modules.
- $\Gamma \pmod{\Lambda}$ the Auslander-Reiten quiver of Λ .

A generalised standard component $\Gamma \subset \Gamma(\mod \Lambda)$ is quasi-directed provided there exist at most finitely many modules lying in oriented cycles.

Such components appear naturally in the so-called *laura* algebras (introduced by Assem-C. [AC] and Reiten-Skowroński [RS]).

A generalised standard component $\Gamma \subset \Gamma(\mod \Lambda)$ is quasi-directed provided there exist at most finitely many modules lying in oriented cycles.

Such components appear naturally in the so-called *laura* algebras (introduced by Assem-C. **[AC]** and Reiten-Skowroński **[RS]**).

$\mathcal{L}_{\Lambda} = \{ X \in \text{ ind} \Lambda : \text{ pd} Y \leq 1 \ \forall Y \text{ predecessor of } X \}$

 $\mathcal{R}_{\Lambda} = \{ X \in \text{ ind}\Lambda : \text{ id}\, Y \leq 1 \ \forall Y \text{ successor of } X \}$

Definition

An algebra Λ is called **laura** if $\mathcal{L}_{\Lambda} \cup \mathcal{R}_{\Lambda}$ is cofinite in ind Λ

$\mathcal{L}_{\Lambda} = \{ X \in \text{ ind}\Lambda : \text{ pd}\, Y \leq 1 \ \forall Y \text{ predecessor of } X \}$

 $\mathcal{R}_{\Lambda} = \{ X \in \operatorname{ind} \Lambda : \operatorname{id} Y \leq 1 \ \forall Y \text{ successor of } X \}$

Definition

An algebra Λ is called laura if $\mathcal{L}_{\Lambda} \cup \mathcal{R}_{\Lambda}$ is cofinite in ind Λ

▼ ► < ∃ ► <</p>

$\mathcal{L}_{\Lambda} = \{ X \in \text{ ind}\Lambda : \text{ pd}\, Y \le 1 \ \forall Y \text{ predecessor of } X \}$

 $\mathcal{R}_{\Lambda} = \{ X \in \text{ ind}\Lambda : \text{ id} Y \leq 1 \ \forall Y \text{ successor of } X \}$

Definition

An algebra Λ is called laura if $\mathcal{L}_{\Lambda} \cup \mathcal{R}_{\Lambda}$ is cofinite in ind Λ

$\mathcal{L}_{\Lambda} = \{ X \in \text{ ind}\Lambda : \text{ pd}\, Y \leq 1 \ \forall Y \text{ predecessor of } X \}$

 $\mathcal{R}_{\Lambda} = \{ X \in \text{ ind}\Lambda : \text{ id} Y \leq 1 \ \forall Y \text{ successor of } X \}$

Definition

An algebra Λ is called laura if $\mathcal{L}_{\Lambda} \cup \mathcal{R}_{\Lambda}$ is cofinite in ind Λ

< 同 > < 国 > < 国 >

Let Λ be given by the quiver

bound by $\operatorname{rad}^2 \Lambda = 0$. The Auslander-Reiten quiver $\Gamma(\operatorname{mod} \Lambda)$ of Λ has a component Γ of the following shape

where we identify the two copies of S_3 , along the vertical dotted lines (note that Λ is a laura algebra, having Γ as its unique faithful quasi-directed component).

 $\mathbb{2} \ \mathcal{R}_{\Lambda} = \mathrm{Suc} \ (S_4)$

where we identify the two copies of S_3 , along the vertical dotted lines (note that Λ is a laura algebra, having Γ as its unique faithful quasi-directed component).

A trisection of ind Λ is a triple of disjoint full subcategories $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ of ind Λ such that:

(a) $\operatorname{ind} \Lambda = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$, and

(b) $\operatorname{Hom}_{\Lambda}(\mathcal{C},\mathcal{B}) = \operatorname{Hom}_{\Lambda}(\mathcal{C},\mathcal{A}) = \operatorname{Hom}_{\Lambda}(\mathcal{B},\mathcal{A}) = 0.$

Remarks

- If any of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ is empty, then the definition above reduces to that of a split torsion pair.
- If $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ is a trisection of ind Λ , then \mathcal{A} is closed under predecessors, \mathcal{C} is closed under successors, and \mathcal{B} is *convex* in ind Λ .

A trisection of ind Λ is a triple of disjoint full subcategories $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ of ind Λ such that:

- (a) $\operatorname{ind} \Lambda = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$, and
- (b) $\operatorname{Hom}_{\Lambda}(\mathcal{C},\mathcal{B}) = \operatorname{Hom}_{\Lambda}(\mathcal{C},\mathcal{A}) = \operatorname{Hom}_{\Lambda}(\mathcal{B},\mathcal{A}) = 0.$

Remarks

- If any of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ is empty, then the definition above reduces to that of a split torsion pair.
- If (A, B, C) is a trisection of indΛ, then A is closed under predecessors, C is closed under successors, and B is convex in indΛ.

A trisection of ind Λ is a triple of disjoint full subcategories $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ of ind Λ such that:

(a) $\operatorname{ind} \Lambda = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$, and

(b) $\operatorname{Hom}_{\Lambda}(\mathcal{C},\mathcal{B}) = \operatorname{Hom}_{\Lambda}(\mathcal{C},\mathcal{A}) = \operatorname{Hom}_{\Lambda}(\mathcal{B},\mathcal{A}) = 0.$

Remarks

- If any of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ is empty, then the definition above reduces to that of a split torsion pair.
- If (A, B, C) is a trisection of indΛ, then A is closed under predecessors, C is closed under successors, and B is convex in indΛ.

A trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ is separated provided $\mathcal{B} \neq \emptyset$ and any morphism $X \to Y$ with $X \in \mathcal{A}$ and $Y \in \mathcal{C}$ factors through add \mathcal{B} .

Examples

- If Λ is a representation-infinite hereditary algebra, then $(\mathcal{A}, \mathcal{B}, \mathcal{C})$, where \mathcal{A} consists of the postprojective modules, \mathcal{C} of the preinjective, and \mathcal{B} of the regular, is a separated trisection.
- If Λ is a quasitilted algebra, then $(\mathcal{L}_{\Lambda} \setminus \mathcal{R}_{\Lambda}, \mathcal{L}_{\Lambda} \cap \mathcal{R}_{\Lambda}, \mathcal{R}_{\Lambda} \setminus \mathcal{L}_{\Lambda})$ is a separated trisection.

A trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ is separated provided $\mathcal{B} \neq \emptyset$ and any morphism $X \to Y$ with $X \in \mathcal{A}$ and $Y \in \mathcal{C}$ factors through add \mathcal{B} .

Examples

- If Λ is a representation-infinite hereditary algebra, then (A, B, C), where A consists of the postprojective modules, C of the preinjective, and B of the regular, is a separated trisection.
- **2** If Λ is a quasitilted algebra, then $(\mathcal{L}_{\Lambda} \setminus \mathcal{R}_{\Lambda}, \mathcal{L}_{\Lambda} \cap \mathcal{R}_{\Lambda}, \mathcal{R}_{\Lambda} \setminus \mathcal{L}_{\Lambda})$ is a separated trisection.

A trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ is separated provided $\mathcal{B} \neq \emptyset$ and any morphism $X \to Y$ with $X \in \mathcal{A}$ and $Y \in \mathcal{C}$ factors through add \mathcal{B} .

Examples

- If Λ is a representation-infinite hereditary algebra, then (A, B, C), where A consists of the postprojective modules, C of the preinjective, and B of the regular, is a separated trisection.
- **2** If Λ is a quasitilted algebra, then $(\mathcal{L}_{\Lambda} \setminus \mathcal{R}_{\Lambda}, \mathcal{L}_{\Lambda} \cap \mathcal{R}_{\Lambda}, \mathcal{R}_{\Lambda} \setminus \mathcal{L}_{\Lambda})$ is a separated trisection.

Lemma

Let \mathcal{B} be a non-empty finite, connected and convex subcategory of ind Λ . Then there is a unique component $\Gamma^{\mathcal{B}}$ of $\Gamma \pmod{\Lambda}$ such that $\Gamma^{\mathcal{B}}$ intersects \mathcal{B} .

_emma

Let $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ be a separated trisection of ind Λ , with \mathcal{B} finite and connected, and Let Γ be a component of $\Gamma(\text{mod}\Lambda)$. (a) If $\Gamma \neq \Gamma^{\mathcal{B}}$, then either $\Gamma \subset \mathcal{A}$ or $\Gamma \subset \mathcal{C}$. (b) If $\Gamma \cap \mathcal{A} \neq \emptyset$ and $\Gamma \cap \mathcal{C} \neq \emptyset$, then $\Gamma = \Gamma^{\mathcal{B}}$.

Lemma

Let \mathcal{B} be a non-empty finite, connected and convex subcategory of ind Λ . Then there is a unique component $\Gamma^{\mathcal{B}}$ of $\Gamma \pmod{\Lambda}$ such that $\Gamma^{\mathcal{B}}$ intersects \mathcal{B} .

Lemma

Let (A, B, C) be a separated trisection of indΛ, with B finite and connected, and Let Γ be a component of Γ(modΛ).
(a) If Γ ≠ Γ^B, then either Γ ⊂ A or Γ ⊂ C.
(b) If Γ ∩ A ≠ Ø and Γ ∩ C ≠ Ø, then Γ = Γ^B.

A trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ is called **compact** if it is separated and \mathcal{B} is finite, connected and contains all the projectives and all the injectives in $\Gamma^{\mathcal{B}}$.

Remark

An algebra Λ is representation-finite if and only if $(\emptyset, \text{ind}\Lambda, \emptyset)$ is the unique compact trisection of $\text{ind}\Lambda$.

A trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ is called **compact** if it is separated and \mathcal{B} is finite, connected and contains all the projectives and all the injectives in $\Gamma^{\mathcal{B}}$.

Remark

An algebra Λ is representation-finite if and only if $(\emptyset, \text{ind}\Lambda, \emptyset)$ is the unique compact trisection of $\text{ind}\Lambda$.

The following definition is inspired by the notion of multisection of $[\mathbf{RS}]$.

Definition

Let Γ be a component of $\Gamma(\text{mod}\Lambda)$. A full subcategory Δ of Γ is a core of Γ (and Γ is said to have a core) if:

- (a) Δ is convex in ind Λ .
- (b) Δ intersects each τ_{Λ} -orbit in Γ , and only finitely many times.
- (c) Δ is almost directed.

Example

A complete slice in the connecting component of a tilted algebra is a core in this component

The following definition is inspired by the notion of multisection of **[RS]**.

Definition

Let Γ be a component of $\Gamma(\text{mod}\Lambda)$. A full subcategory Δ of Γ is a core of Γ (and Γ is said to have a core) if:

- (a) Δ is convex in ind Λ .
- (b) Δ intersects each τ_{Λ} -orbit in Γ , and only finitely many times.
- (c) Δ is almost directed.

Example

A complete slice in the connecting component of a tilted algebra is a core in this component

< 17 > <

The following definition is inspired by the notion of multisection of **[RS]**.

Definition

Let Γ be a component of $\Gamma(\text{mod}\Lambda)$. A full subcategory Δ of Γ is a core of Γ (and Γ is said to have a core) if:

- (a) Δ is convex in ind Λ .
- (b) Δ intersects each τ_{Λ} -orbit in Γ , and only finitely many times.
- (c) Δ is almost directed.

Example

A complete slice in the connecting component of a tilted algebra is a core in this component

ME-USP

For the next example of a core we recall the following definition.

Definition $[\mathbf{A}$

Let Γ be a component of $\Gamma(\text{mod}\Lambda)$. A full subquiver Σ of Γ is called a right (or left) section provided:

- (1) Σ is acyclic,
- (2) Σ is convex in Γ , and

(3) for each Y ∈ Γ such that there exists a path from Σ to Y (or from Y to Σ, respectively), there exists a unique s ≥ 0 (or s ≤ 0, respectively) such that τ^s_Λ Y ∈ Σ.

For the next example of a core we recall the following definition.

Definition [A]

Let Γ be a component of $\Gamma(\text{mod}\Lambda)$. A full subquiver Σ of Γ is called a right (or left) section provided:

- (1) Σ is acyclic,
- (2) Σ is convex in Γ , and
- (3) for each $Y \in \Gamma$ such that there exists a path from Σ to Y (or from Y to Σ , respectively), there exists a unique $s \ge 0$ (or $s \le 0$, respectively) such that $\tau_{\Lambda}^{s} Y \in \Sigma$.

Example

Let Λ be a representation-infinite strict laura algebra, and Γ be the non-semiregular component of $\Gamma(\text{mod}\Lambda)$. Let Σ_l be a left section, and Σ_r be a right section of Γ . Then the convex hull $\Delta = \mathcal{C}(\Sigma_l \cup \Sigma_r)$ of Σ_l and Σ_r (that is, the full subcategory consisting of all the modules $M \in \Gamma$ such that there is a path $M' \rightsquigarrow M \rightsquigarrow M''$, with $M', M'' \in \Sigma_l \cup \Sigma_r$) is a core in Γ , which contains all the non-directed modules of Γ .

The following conditions are equivalent for an artin algebra Λ :

- (a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ .
- (b) ind Λ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.
- (c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ .

If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\mathrm{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover,

(i) $\operatorname{Hom}_{\Lambda}(\Gamma', \Gamma) \neq 0$ implies $\Gamma' \subset \mathcal{A}$;

(ii) $\operatorname{Hom}_{\Lambda}(\Gamma, \Gamma') \neq 0$ implies $\Gamma' \subset \mathcal{C}$.

- The following conditions are equivalent for an artin algebra Λ :
- (a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ .
- (b) ind Λ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.
- (c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ .
- If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\mathrm{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover,
- (i) $\operatorname{Hom}_{\Lambda}(\Gamma', \Gamma) \neq 0$ implies $\Gamma' \subset \mathcal{A}$;
- (ii) $\operatorname{Hom}_{\Lambda}(\Gamma, \Gamma') \neq 0$ implies $\Gamma' \subset \mathcal{C}$.

- The following conditions are equivalent for an artin algebra Λ :
- (a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ .
- (b) ind Λ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.
 - (c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ .
- If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\mathrm{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover,
- (i) $\operatorname{Hom}_{\Lambda}(\Gamma', \Gamma) \neq 0$ implies $\Gamma' \subset \mathcal{A}$;
- (ii) $\operatorname{Hom}_{\Lambda}(\Gamma, \Gamma') \neq 0$ implies $\Gamma' \subset \mathcal{C}$.

The following conditions are equivalent for an artin algebra Λ :

- (a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ .
- (b) ind Λ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.
- (c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ .

If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\text{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover, (i) $\text{Hom}_{\Lambda}(\Gamma', \Gamma) \neq 0$ implies $\Gamma' \subset \mathcal{A}$; (ii) $\text{Hom}_{\Lambda}(\Gamma, \Gamma') \neq 0$ implies $\Gamma' \subset \mathcal{C}$.

The following conditions are equivalent for an artin algebra Λ :

- (a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ .
- (b) ind Λ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.
- (c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ .

If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\mathrm{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover,

(i) Hom_Λ(Γ', Γ) ≠ 0 implies Γ' ⊂ A;
(ii) Hom_Λ(Γ, Γ') ≠ 0 implies Γ' ⊂ C.

The following conditions are equivalent for an artin algebra Λ :

- (a) $\Gamma(\text{mod}\Lambda)$ admits a separating quasi-directed component Γ .
- (b) ind Λ admits a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.
- (c) $\Gamma(\text{mod}\Lambda)$ admits a separating convex component Γ having a left section Σ_l and a right section Σ_r whose convex envelope Δ is a core in Γ .

If these conditions are satisfied, and $\Gamma' \neq \Gamma$ is a component of $\Gamma(\mathrm{mod}\Lambda)$, then either $\Gamma' \subset \mathcal{A}$ or $\Gamma' \subset \mathcal{C}$. Moreover,

- (i) $\operatorname{Hom}_{\Lambda}(\Gamma', \Gamma) \neq 0$ implies $\Gamma' \subset \mathcal{A}$;
- (ii) $\operatorname{Hom}_{\Lambda}(\Gamma, \Gamma') \neq 0$ implies $\Gamma' \subset \mathcal{C}$.

Let Λ be an algebra admitting a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.

Description of $\Gamma(\mod \Lambda)$

- **(**) the separating quasi-directed convex component $\Gamma^{\mathcal{B}}$
- ② components lying in A are components of its support algebra A = End(⊕ P_x)
- o components lying in $\mathcal C$ are components of the support algebra of $\mathcal C$
- either $\Gamma^{\mathcal{B}}$ is non-semiregular, in which case the algebra $\Lambda/Ann \Gamma^{\mathcal{B}}$ is a laura algebra;
- (a) or $\Gamma^{\mathcal{B}}$ is the connecting component of the algebra $\Lambda/Ann \Gamma^{\mathcal{B}}$ which is tilted.

Let Λ be an algebra admitting a compact trisection $(\mathcal{A}, \mathcal{B}, \mathcal{C})$.

Description of $\Gamma(\mod \Lambda)$

- **(**) the separating quasi-directed convex component $\Gamma^{\mathcal{B}}$
- ② components lying in A are components of its support algebra A = End(⊕ P_x)
- o components lying in $\mathcal C$ are components of the support algebra of $\mathcal C$
- either $\Gamma^{\mathcal{B}}$ is non-semiregular, in which case the algebra $\Lambda/Ann \Gamma^{\mathcal{B}}$ is a laura algebra;
- **2** or $\Gamma^{\mathcal{B}}$ is the connecting component of the algebra $\Lambda/Ann \Gamma^{\mathcal{B}}$ which is tilted.

ME-USP

- [A] I. Assem, Left sections and the left part of an Artin algebra, Colloq. Math. **116**(2) (2009) 273-300.
- [AC] I. Assem, I.,F. U. Coelho, *Two-sided gluings of tilted algebras*, J. Algebra **269** (2) (2003) 456-479.
- [RS] I. Reiten, A. Skowroński, *Generalized double tilted algebras*, J. Math. Soc. Japan **56**(1) (2004) 269-288.

Thank You !

IME-USP

æ

★ E ► < E ►</p>