

Partial Orders on Representations of Algebras

Tore Forbregd Department of Mathematical Sciences 13.08.2012

Outline

Background

New Partial Orders

Results

Examples

T. Forbregd, Partial Orders on Representations of Algebras

Notation

Throughout we use the following notation:

- *k* algebraically closed field or artinian ring.
- Λ finitely generated *k*-algebra.
- $\operatorname{rep}_d \Lambda$ the space of *d*-dimensional representations of Λ .
- $G = GL_d(k)$ the *d*-dimensional general linear group over *k*.
- $\mathcal{M}_{n \times m}(\Lambda)$ the set of $m \times n$ -matrices with entries from Λ .

We shall consider the space of *d*-dimensional representations of Λ over k, i.e.

 $\operatorname{rep}_d \Lambda = \{f \colon \Lambda \longrightarrow \mathcal{M}_{d \times d}(k) \mid f \text{ is a } k \text{-algebra homomorphism}\}$

We shall consider the space of *d*-dimensional representations of Λ over k, i.e.

 $\operatorname{rep}_d \Lambda = \{f \colon \Lambda \longrightarrow \mathcal{M}_{d \times d}(k) \mid f \text{ is a } k \text{-algebra homomorphism}\}$

This space is all possible Λ structures on the vector space k^d .

We shall consider the space of *d*-dimensional representations of Λ over k, i.e.

 $\operatorname{rep}_d \Lambda = \{f \colon \Lambda \longrightarrow \mathcal{M}_{d \times d}(k) \mid f \text{ is a } k \text{-algebra homomorphism}\}$

This space is all possible Λ structures on the vector space k^d . Since Λ is finitely generated, say by $\lambda_1, \ldots, \lambda_t$, we have an onto map

$$\begin{array}{cccc} \varphi \colon k \langle X_1, \dots, X_t \rangle & \longrightarrow & \Lambda \\ & X_i & \longmapsto & \lambda_i \end{array}$$

We shall consider the space of *d*-dimensional representations of Λ over k, i.e.

 $\operatorname{rep}_{d} \Lambda = \{f \colon \Lambda \longrightarrow \mathcal{M}_{d \times d}(k) \mid f \text{ is a } k \text{-algebra homomorphism}\}$

This space is all possible Λ structures on the vector space k^d . Since Λ is finitely generated, say by $\lambda_1, \ldots, \lambda_t$, we have an onto map

$$\begin{array}{cccc} \varphi \colon k \langle X_1, \dots, X_t \rangle & \longrightarrow & \Lambda \\ & X_i & \longmapsto & \lambda_i \end{array}$$

Hence one can view rep_d Λ as the affine variety:

$$\{(\boldsymbol{M})_{i=1,\dots,t} \in \mathcal{M}_{\boldsymbol{d} \times \boldsymbol{d}}(\boldsymbol{k})^t \mid f(\boldsymbol{M})_{i=1,\dots,t} = \mathbf{0} \,\,\forall f \in \operatorname{Ker} \varphi\}.$$

The geometry

G acts on rep_d Λ by conjugation, i.e. for $g \in G$ and $m \in \operatorname{rep}_d \Lambda$ $g * m: = (gM_ig^{-1})_{i=1,...,t}$. The *G*-orbits correspond to the isomorphism classes of Λ -modules on k^d .

The geometry

G acts on rep_d Λ by conjugation, i.e. for $g \in G$ and $m \in \operatorname{rep}_d \Lambda$ $g * m: = (gM_ig^{-1})_{i=1,...,t}$. The *G*-orbits correspond to the isomorphism classes of Λ -modules on k^d .

Definition

Let $m, n \in \operatorname{rep}_d \Lambda$. If $n \in \overline{G * m}$ then *m* degenerates to *n*.

The geometry

G acts on rep_d Λ by conjugation, i.e. for $g \in G$ and $m \in \operatorname{rep}_d \Lambda$ $g * m: = (gM_ig^{-1})_{i=1,...,t}$. The *G*-orbits correspond to the isomorphism classes of Λ -modules on k^d .

Definition

Let $m, n \in \operatorname{rep}_d \Lambda$. If $n \in G * m$ then m degenerates to n.

By abuse of notation, for M, N d-dimensional Λ -modules, M degenerates to N if $n \in \overline{G * m}$ and denote this by $M \leq_{\text{deg}} N$. Thus, \leq_{deg} is a partial order on $\operatorname{rep}_d \Lambda$.

Theorem (Riedtmann '86, Zwara '98)

Let $M, N \in \operatorname{rep}_d \Lambda$, then the following are equivalent:

1. $M \leq_{\text{deg}} N$

Theorem (Riedtmann '86, Zwara '98)

Let $M, N \in \operatorname{rep}_d \Lambda$, then the following are equivalent:

2. There exists $X \in \mod \Lambda$ and exact sequence $0 \rightarrow X \rightarrow X \oplus M \rightarrow N \rightarrow 0$.

Theorem (Riedtmann '86, Zwara '98)

Let $M, N \in \operatorname{rep}_d \Lambda$, then the following are equivalent:

- 2. There exists $X \in \mod \Lambda$ and exact sequence $0 \rightarrow X \rightarrow X \oplus M \rightarrow N \rightarrow 0$.
- 3. There exists $Z \in \mod \Lambda$ and exact sequence $0 \rightarrow N \rightarrow M \oplus Z \rightarrow Z \rightarrow 0$.

Theorem (Riedtmann '86, Zwara '98)

Let $M, N \in \operatorname{rep}_d \Lambda$, then the following are equivalent:

- 2. There exists $X \in \mod \Lambda$ and exact sequence $0 \rightarrow X \rightarrow X \oplus M \rightarrow N \rightarrow 0$.
- 3. There exists $Z \in \mod \Lambda$ and exact sequence $0 \rightarrow N \rightarrow M \oplus Z \rightarrow Z \rightarrow 0$.

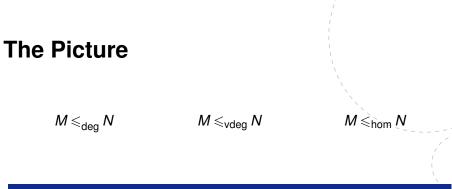
In fact Zwara showed that 2 (dually 3) is a partial order on finite length modules for an artin algebra. Hence we may take $\operatorname{rep}_d \Lambda$ to be modules of length *d* over an artin algebra Λ .

$$M \leq_{deg} N$$

$$M \leq_{\deg} N$$
 $M \leq_{\operatorname{vdeg}} N$

Definition (virtual degeneration)

Let $M, N \in \operatorname{rep}_d \Lambda$, then if there is X a Λ -module such that $M \oplus X \leq_{\operatorname{deg}} N \oplus X$ then M virtually degenerates to N.



Definition (Hom-relation)

Let $M, N \in \operatorname{rep}_d \Lambda$, then $M \leq_{\operatorname{hom}} N$ if for all $X \in \operatorname{mod} \Lambda$ we have that $\ell_k(\operatorname{Hom}_\Lambda(X, M) \leq \ell_k(\operatorname{Hom}_\Lambda(X, N))$.

The Picture $M \leq_{\deg} N \implies M \leq_{\operatorname{vdeg}} N \implies M \leq_{\operatorname{hom}} N$

$$M \leq_{\deg} N \implies M \leq_{\operatorname{vdeg}} N \implies M \leq_{\operatorname{hom}} N$$

For algebras of finite representation type, tame hereditary and k[x].

 $M \leq_{\deg} N \implies M \leq_{\operatorname{vdeg}} N \implies M \leq_{\operatorname{hom}} N$

Let $\Lambda_q = k\langle X, Y \rangle / \langle X^2, Y^2, XY + qYX \rangle$ and $M_a = \Lambda / \langle X + aY \rangle$. Then $\Lambda \oplus S \leq_{\text{deg}} M_a \oplus M_b \oplus S$ for all $a, b \in \mathbb{P}_1(k)$, however there exists a, b such that $\Lambda \leq_{\text{deg}} M_a \oplus M_b$.

 $M \leq_{\deg} N \implies M \leq_{\operatorname{vdeg}} N \implies M \leq_{\operatorname{hom}} N$

Let $\Lambda_q = k\langle X, Y \rangle / \langle X^2, Y^2, XY + qYX \rangle$ and $M_a = \Lambda / \langle X + aY \rangle$. Then $\Lambda \oplus S \leq_{deg} M_a \oplus M_b \oplus S$ for all $a, b \in \mathbb{P}_1(k)$, however there exists a, b such that $\Lambda \leq_{deg} M_a \oplus M_b$. Open problem in general.

New orders

Definition

Let $n \in \mathbb{N}$ and M, $N \in \operatorname{rep}_d \Lambda$ then $M \leq_n N$ if $\ell_k(M^n/A(M^n)) \leq \ell_k(N^n/A(N^n))$ holds for all $A \in \mathcal{M}_{n \times n}(\Lambda)$

New orders

Definition

Let $n \in \mathbb{N}$ and M, $N \in \operatorname{rep}_d \Lambda$ then $M \leq_n N$ if $\ell_k(M^n/A(M^n)) \leq \ell_k(N^n/A(N^n))$ holds for all $A \in \mathcal{M}_{n \times n}(\Lambda)$

Clearly this is a quasi-order for any $n \in \mathbb{N}$, i.e. reflexive and transitive. However, anti-symmetry remains to be shown.

Proposition

For $M, N \in \operatorname{rep}_d \Lambda$ and $r, s \in \mathbb{N}$ we have

- 1. $M \leq_r N \Rightarrow M \leq_s N$ whenever $r \geq s$, in particular \leq_{n+i} is a partial order whenever \leq_n is, for all $i \geq 0$.
- 2. $M \leq_{\text{hom}} N \Rightarrow M \leq_n N$ for all $n \in \mathbb{N}$.

Proposition

For $M, N \in \operatorname{rep}_d \Lambda$ and $r, s \in \mathbb{N}$ we have

- 1. $M \leq_r N \Rightarrow M \leq_s N$ whenever $r \geq s$, in particular \leq_{n+i} is a partial order whenever \leq_n is, for all $i \geq 0$.
- 2. $M \leq_{\text{hom}} N \Rightarrow M \leq_n N$ for all $n \in \mathbb{N}$.

To show 2 we consider the sequence $\Lambda^n \xrightarrow{\varphi} \Lambda^n \longrightarrow X$ and get the following commutative diagram

$$0 \longrightarrow (\Lambda^n / \Lambda^n \varphi, M) \longrightarrow (\Lambda^n, M) \longrightarrow (\Lambda^n, M)$$

$$\stackrel{\wr l}{\longrightarrow} M^n \longrightarrow M^n / \varphi M^n \longrightarrow 0$$

Auslander (1982) showed that \leq_{hom} is a partial order using AR-sequences, later Bongartz (1989) generalized this to *k* commutative ring and abelian *k*-categories. Also, in Bongartz' proof it is shown that $M \simeq N$ if and only if $\ell(\Lambda(X, M)) = \ell(\Lambda(X, N))$ -for a finite test set.

Auslander (1982) showed that \leq_{hom} is a partial order using AR-sequences, later Bongartz (1989) generalized this to *k* commutative ring and abelian *k*-categories. Also, in Bongartz' proof it is shown that $M \simeq N$ if and only if $\ell(\Lambda(X, M)) = \ell(\Lambda(X, N))$ -for a finite test set.

Proposition

Let $M, N \in \operatorname{rep}_d \Lambda$ and let $L_0 = M \oplus N$ and $L_{i+1} = \operatorname{rad}(\operatorname{End}_{\Lambda}(L_i)) \cdot L_i$ for $i = 1, \ldots, r$ with $L_{r+1} = 0$ and $L_r \neq 0$. Then

 $M \simeq N \Longleftrightarrow \ell(_{\Lambda}(X, M)) = \ell(_{\Lambda}(X, N)) \ \forall X \in add \bigoplus_{i=0}^{r} L_{i}.$

Auslander (1982) showed that \leq_{hom} is a partial order using AR-sequences, later Bongartz (1989) generalized this to *k* commutative ring and abelian *k*-categories. Also, in Bongartz' proof it is shown that $M \simeq N$ if and only if $\ell(\Lambda(X, M)) = \ell(\Lambda(X, N))$ -for a finite test set.

Proposition

Let $M, N \in \operatorname{rep}_d \Lambda$ and let $L_0 = M \oplus N$ and $L_{i+1} = \operatorname{rad}(\operatorname{End}_{\Lambda}(L_i)) \cdot L_i$ for $i = 1, \ldots, r$ with $L_{r+1} = 0$ and $L_r \neq 0$. Then

 $M \simeq N \Longleftrightarrow \ell(_{\Lambda}(X, M)) = \ell(_{\Lambda}(X, N)) \ \forall X \in \text{add} \bigoplus_{i=0}^{r} L_{i}.$

Key ingredient: Iyama's *Finiteness of Representation Dimension*, more specefically $End(\bigoplus_{i=0}^{r} L_i)$ has finite global dimension.

Theorem

11

The relation \leq_{d^3} is a partial order on rep_d Λ .

Theorem

The relation \leq_{d^3} is a partial order on rep_d Λ .

The proof uses the preceeding proposition and the lemma: $M, N \in \operatorname{rep}_d \Lambda$ and $X \in \operatorname{rep}_s \Lambda$. If $M \leq_{d^2s} N$ and $N \leq_{d^2s} M$, then $\ell(\Lambda(X, M)) = \ell(\Lambda(X, N)).$

Examples

12

1. Λ - the path algebra of the quiver \mathbb{A}_n with any orientation, then \leq_1 is a partial order and it coincides with \leq_{hom} .

Examples

12

- 1. Λ the path algebra of the quiver \mathbb{A}_n with any orientation, then \leq_1 is a partial order and it coincides with \leq_{hom} .
- 2. There cannot be a global *n* such that \leq_n is a partial order on rep_d Λ for any *d*. Namely, let $\delta: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an almost split sequence. Then $\delta^*(X) = 0$ for all *X* with $\ell(X) < \ell(C)$.

Open problems

1. If \leq_n is a partial order, is it the same as \leq_{n+1} ?

13

Open problems

- 1. If \leq_n is a partial order, is it the same as \leq_{n+1} ?
- 2. Is $\leq_{d^3} \equiv \leq_{\text{hom}}$ on rep_d Λ , more generally is there a *n* such that $\leq_n \equiv \leq_{\text{hom}}$?

13