Weyl modules for generalized current algebras

Ghislain Fourier

Universität zu Köln

12.08.2012 / ICRA 2012 - Bielefeld

- g, a simple complex Lie algebra.
- A, a commutative, associative algebra (over C).

The main object of this talk is the Lie algebra

 $\mathfrak{g}\otimes A$

with bracket

$$[x \otimes a, y \otimes b] := [x, y] \otimes ab.$$

- g, a simple complex Lie algebra.
- A, a commutative, associative algebra (over C).

The main object of this talk is the Lie algebra

 $\mathfrak{g}\otimes A$

with bracket

$$[x \otimes a, y \otimes b] := [x, y] \otimes ab.$$

- g, a simple complex Lie algebra.
- A, a commutative, associative algebra (over C).

The main object of this talk is the Lie algebra

 $\mathfrak{g}\otimes A$

with bracket

$$[x \otimes a, y \otimes b] := [x, y] \otimes ab.$$

- g, a simple complex Lie algebra.
- *A*, a commutative, associative algebra (over \mathbb{C}).

The main object of this talk is the Lie algebra

 $\mathfrak{g}\otimes A$

with bracket

$$[x \otimes a, y \otimes b] := [x, y] \otimes ab.$$

- g, a simple complex Lie algebra.
- *A*, a commutative, associative algebra (over \mathbb{C}).

The main object of this talk is the Lie algebra

 $\mathfrak{g}\otimes A$

with bracket

$$[x \otimes a, y \otimes b] := [x, y] \otimes ab.$$

- g, a simple complex Lie algebra.
- *A*, a commutative, associative algebra (over \mathbb{C}).

The main object of this talk is the Lie algebra

 $\mathfrak{g}\otimes A$

with bracket

$[x \otimes a, y \otimes b] := [x, y] \otimes ab.$

- g, a simple complex Lie algebra.
- *A*, a commutative, associative algebra (over \mathbb{C}).

The main object of this talk is the Lie algebra

 $\mathfrak{g}\otimes A$

with bracket

$$[x \otimes a, y \otimes b] := [x, y] \otimes ab.$$

For this

- Let \mathbb{C}_{λ} a one-dimensional module for b.
- To obtain a locally finite-dimensional module: $\lambda \in P^+$.
- Extend to an action of $\mathfrak{b} \otimes A$.
- Weights should be bounded, so $n^+ \otimes A$ acts by 0.

Denote this module by M_{λ} .

For this

- Let C_λ a one-dimensional module for b.
- To obtain a locally finite-dimensional module: $\lambda \in P^+$.
- Extend to an action of $\mathfrak{b} \otimes A$.
- Weights should be bounded, so $n^+ \otimes A$ acts by 0.

Denote this module by M_{λ} .

For this

- Let \mathbb{C}_{λ} a one-dimensional module for \mathfrak{b} .
- To obtain a locally finite-dimensional module: $\lambda \in P^+$.
- Extend to an action of $\mathfrak{b} \otimes A$.
- Weights should be bounded, so $n^+ \otimes A$ acts by 0.

Denote this module by M_{λ} .

For this

- Let \mathbb{C}_{λ} a one-dimensional module for \mathfrak{b} .
- To obtain a locally finite-dimensional module: $\lambda \in P^+$.
- Extend to an action of $\mathfrak{b} \otimes A$.

• Weights should be bounded, so $n^+ \otimes A$ acts by 0. Denote this module by M_{λ} .

For this

- Let \mathbb{C}_{λ} a one-dimensional module for \mathfrak{b} .
- To obtain a locally finite-dimensional module: $\lambda \in P^+$.
- Extend to an action of $\mathfrak{b} \otimes A$.
- Weights should be bounded, so $n^+ \otimes A$ acts by 0.

Denote this module by M_{λ} .

For this

- Let \mathbb{C}_{λ} a one-dimensional module for \mathfrak{b} .
- To obtain a locally finite-dimensional module: $\lambda \in P^+$.
- Extend to an action of $\mathfrak{b} \otimes A$.
- Weights should be bounded, so $n^+ \otimes A$ acts by 0.

Denote this module by M_{λ} .

For this

- Let \mathbb{C}_{λ} a one-dimensional module for \mathfrak{b} .
- To obtain a locally finite-dimensional module: $\lambda \in P^+$.
- Extend to an action of $\mathfrak{b} \otimes A$.
- Weights should be bounded, so $n^+ \otimes A$ acts by 0.

Denote this module by M_{λ} .

For this

- Let \mathbb{C}_{λ} a one-dimensional module for \mathfrak{b} .
- To obtain a locally finite-dimensional module: $\lambda \in P^+$.
- Extend to an action of $\mathfrak{b} \otimes A$.
- Weights should be bounded, so $n^+ \otimes A$ acts by 0.

Denote this module by M_{λ} .

$\operatorname{Ind}_{\mathbf{U}(\mathfrak{g}\otimes A)}^{\mathbf{U}(\mathfrak{g}\otimes A)}M_{\lambda}$

might be seen as an analog of a Verma module.

We consider the maximal locally finite-dimensional (for the g-action) quotient of this module.

- This quotient exists.
- This quotient is non-trivial.

Denote this quotient by

 $W_A(\lambda).$

$\operatorname{Ind}_{\mathbf{U}(\mathfrak{g}\otimes A)}^{\mathbf{U}(\mathfrak{g}\otimes A)}M_{\lambda}$

might be seen as an analog of a Verma module.

We consider the maximal locally finite-dimensional (for the g-action) quotient of this module.

This quotient exists.

This quotient is non-trivial.

Denote this quotient by

 $W_A(\lambda).$

$\operatorname{Ind}_{\mathbf{U}(\mathfrak{g}\otimes A)}^{\mathbf{U}(\mathfrak{g}\otimes A)}M_{\lambda}$

might be seen as an analog of a Verma module.

We consider the maximal locally finite-dimensional (for the g-action) quotient of this module.

- This quotient exists.
- This quotient is non-trivial.

Denote this quotient by

 $W_A(\lambda).$

$\operatorname{Ind}_{\mathbf{U}(\mathfrak{g}\otimes A)}^{\mathbf{U}(\mathfrak{g}\otimes A)}M_{\lambda}$

might be seen as an analog of a Verma module.

We consider the maximal locally finite-dimensional (for the g-action) quotient of this module.

- This quotient exists.
- This quotient is non-trivial.

Denote this quotient by

 $W_A(\lambda).$

$\operatorname{Ind}_{\mathbf{U}(\mathfrak{g}\otimes A)}^{\mathbf{U}(\mathfrak{g}\otimes A)}M_{\lambda}$

might be seen as an analog of a Verma module.

We consider the maximal locally finite-dimensional (for the g-action) quotient of this module.

- This quotient exists.
- This quotient is non-trivial.

Denote this quotient by

 $W_A(\lambda).$

$\operatorname{Ind}_{\mathbf{U}(\mathfrak{g}\otimes A)}^{\mathbf{U}(\mathfrak{g}\otimes A)}M_{\lambda}$

might be seen as an analog of a Verma module.

We consider the maximal locally finite-dimensional (for the g-action) quotient of this module.

- This quotient exists.
- This quotient is non-trivial.

Denote this quotient by

 $W_A(\lambda).$

$\begin{array}{rcl} \text{Integrability} & \Rightarrow & \text{certain relations ("Garland equation")} \\ & \Rightarrow & (W_{\mathcal{A}}(\lambda))_{\lambda} \text{ is proper quotient of } \operatorname{Ind}_{\mathbf{U}(\mathfrak{b}\otimes\mathcal{A})}^{\mathbf{U}(\mathfrak{g}\otimes\mathcal{A})} M_{\lambda}. \end{array}$

By construction, this weight space is a commutative algebra (as a quotient of $U(\mathfrak{h} \otimes A)$), denoted by A_{λ} .

 $W_A(\lambda)$ admits a right \mathbf{A}_{λ} -module structure, hence it is a $(\mathfrak{g} \otimes A, \mathbf{A}_{\lambda})$ -bimodule.

$\begin{array}{rcl} \text{Integrability} & \Rightarrow & \text{certain relations ("Garland equation")} \\ & \Rightarrow & (W_A(\lambda))_\lambda \text{ is proper quotient of } \operatorname{Ind}_{U(\mathfrak{b}\otimes A)}^{U(\mathfrak{g}\otimes A)} M_\lambda. \end{array}$

By construction, this weight space is a commutative algebra (as a quotient of $U(\mathfrak{h} \otimes A)$), denoted by A_{λ} .

 $W_A(\lambda)$ admits a right \mathbf{A}_{λ} -module structure, hence it is a $(\mathfrak{g} \otimes A, \mathbf{A}_{\lambda})$ -bimodule.

$\begin{array}{rcl} \text{Integrability} & \Rightarrow & \text{certain relations ("Garland equation")} \\ & \Rightarrow & (W_A(\lambda))_\lambda \text{ is proper quotient of } \operatorname{Ind}_{U(\mathfrak{b}\otimes A)}^{U(\mathfrak{g}\otimes A)} M_\lambda. \end{array}$

By construction, this weight space is a commutative algebra (as a quotient of $U(\mathfrak{h} \otimes A)$), denoted by A_{λ} .

 $W_A(\lambda)$ admits a right \mathbf{A}_{λ} -module structure, hence it is a $(\mathfrak{g} \otimes A, \mathbf{A}_{\lambda})$ -bimodule.

We will consider certain choices of *A* and see what is known about $W_A(\lambda)$.

First case: $A = \mathbb{C}$. Then $W_A(\lambda) = L(\lambda)$, the simple finite-dimensional g-module of highest weight λ (known for a long time).

We will consider certain choices of *A* and see what is known about $W_A(\lambda)$.

First case: $A = \mathbb{C}$.

Then $W_A(\lambda) = L(\lambda)$, the simple finite-dimensional g-module of highest weight λ (known for a long time).

Second case: A finitely generated.

Then

Theorem

For all $\lambda \in P^+$

- A_{λ} is a finitely generated algebra
- W_λ(λ) if finitely generated as an A_λ-module.

Even more

Lemma

If J(A) = 0 then

 $\mathbf{A}_{\lambda} = S^{\lambda_1} A \otimes \ldots \otimes S^{\lambda_n} A.$

Second case: *A* finitely generated. Then

Theorem

For all $\lambda \in P^+$

- A_{λ} is a finitely generated algebra.
- $W_A(\lambda)$ if finitely generated as an A_{λ} -module.

Even more

Lemma

If J(A) = 0 then

 $\mathbf{A}_{\lambda} = S^{\lambda_1} A \otimes \ldots \otimes S^{\lambda_n} A.$

Second case: *A* finitely generated. Then

Theorem

For all $\lambda \in P^+$

- \mathbf{A}_{λ} is a finitely generated algebra.
- $W_A(\lambda)$ if finitely generated as an A_{λ} -module.

Even more

Lemma

If J(A) = 0 then

 $\mathbf{A}_{\lambda} = S^{\lambda_1} A \otimes \ldots \otimes S^{\lambda_n} A.$

Second case: A finitely generated.

Then

Theorem

For all $\lambda \in \mathbf{P}^+$

- A_{λ} is a finitely generated algebra.
- $W_A(\lambda)$ if finitely generated as an A_{λ} -module.

$$\mathbf{A}_{\lambda} = S^{\lambda_1} A \otimes \ldots \otimes S^{\lambda_n} A.$$

Second case: A finitely generated.

Then

Theorem

For all $\lambda \in \mathbf{P}^+$

- A_{λ} is a finitely generated algebra.
- $W_A(\lambda)$ if finitely generated as an A_{λ} -module.

$$\mathbf{A}_{\lambda} = S^{\lambda_1} A \otimes \ldots \otimes S^{\lambda_n} A.$$

Second case: A finitely generated. Then

Theorem

For all $\lambda \in \mathbf{P}^+$

- A_{λ} is a finitely generated algebra.
- $W_A(\lambda)$ if finitely generated as an A_{λ} -module.

Even more

Lemma

If J(A) = 0 then

$$\mathbf{A}_{\lambda} = S^{\lambda_1} A \otimes \ldots \otimes S^{\lambda_n} A.$$

Second case: A finitely generated. Then

Theorem

For all $\lambda \in \mathbf{P}^+$

- A_{λ} is a finitely generated algebra.
- $W_A(\lambda)$ if finitely generated as an A_{λ} -module.

Even more

Lemma

If J(A) = 0 then

$$\mathbf{A}_{\lambda} = S^{\lambda_1} A \otimes \ldots \otimes S^{\lambda_n} A.$$

Second case: A finitely generated. Then

Theorem

For all $\lambda \in \mathbf{P}^+$

- A_{λ} is a finitely generated algebra.
- $W_A(\lambda)$ if finitely generated as an A_{λ} -module.

Even more

Lemma

If J(A) = 0 then

$$\mathbf{A}_{\lambda} = S^{\lambda_1} A \otimes \ldots \otimes S^{\lambda_n} A.$$

Intensively studied in the past two decades... Motivation by Weyl modules for the quantum affine algebra (Chari-Pressley). They conjectured

Conjecture

 $W_A(\lambda)$ is a free right \mathbf{A}_{λ} -module of finite rank. The rank is the product of the ranks of $W_A(\omega_i)$.

This is now a theorem by works of Chari, Pressley, Loktev, Littelmann, Naoi to name a few. It is proven by passing to *local Weyl modules*, that is

 $W_A(\lambda)\otimes_{\mathbf{A}_\lambda}M$

Third case: $A = \mathbb{C}[t]$. Intensively studied in the past two decades...

Motivation by Weyl modules for the quantum affine algebra (Chari-Pressley). They conjectured

Conjecture

 $W_A(\lambda)$ is a free right \mathbf{A}_{λ} -module of finite rank. The rank is the product of the ranks of $W_A(\omega_i)$.

This is now a theorem by works of Chari, Pressley, Loktev, Littelmann, Naoi to name a few. It is proven by passing to *local Weyl modules*, that is

 $W_A(\lambda)\otimes_{\mathbf{A}_\lambda}M$

Intensively studied in the past two decades... Motivation by Weyl modules for the quantum affine algebra (Chari-Pressley). They conjectured

Conjecture

 $W_A(\lambda)$ is a free right \mathbf{A}_{λ} -module of finite rank. The rank is the product of the ranks of $W_A(\omega_i)$.

This is now a theorem by works of Chari, Pressley, Loktev, Littelmann, Naoi to name a few. It is proven by passing to *local Weyl modules*, that is

 $W_A(\lambda)\otimes_{\mathbf{A}_\lambda}M$

Intensively studied in the past two decades...

Motivation by Weyl modules for the quantum affine algebra (Chari-Pressley). They conjectured

Conjecture

 $W_A(\lambda)$ is a free right \mathbf{A}_{λ} -module of finite rank. The rank is the product of the ranks of $W_A(\omega_i)$.

This is now a theorem by works of Chari, Pressley, Loktev, Littelmann, Naoi to name a few. It is proven by passing to *local Weyl modules*, that is

 $W_A(\lambda)\otimes_{\mathbf{A}_\lambda}M$

Intensively studied in the past two decades...

Motivation by Weyl modules for the quantum affine algebra (Chari-Pressley). They conjectured

Conjecture

 $W_A(\lambda)$ is a free right \mathbf{A}_{λ} -module of finite rank. The rank is the product of the ranks of $W_A(\omega_i)$.

This is now a theorem by works of Chari, Pressley, Loktev, Littelmann, Naoi to name a few. It is proven by passing to *local Weyl modules*, that is

 $W_A(\lambda)\otimes_{\mathbf{A}_\lambda}M$

Intensively studied in the past two decades...

Motivation by Weyl modules for the quantum affine algebra (Chari-Pressley). They conjectured

Conjecture

 $W_A(\lambda)$ is a free right \mathbf{A}_{λ} -module of finite rank. The rank is the product of the ranks of $W_A(\omega_i)$.

This is now a theorem by works of Chari, Pressley, Loktev, Littelmann, Naoi to name a few.

It is proven by passing to *local Weyl modules*, that is

 $W_A(\lambda)\otimes_{\mathbf{A}_\lambda}M$

Intensively studied in the past two decades...

Motivation by Weyl modules for the quantum affine algebra (Chari-Pressley). They conjectured

Conjecture

 $W_A(\lambda)$ is a free right \mathbf{A}_{λ} -module of finite rank. The rank is the product of the ranks of $W_A(\omega_i)$.

This is now a theorem by works of Chari, Pressley, Loktev, Littelmann, Naoi to name a few. It is proven by passing to *local Weyl modules*, that is

 $W_{\mathcal{A}}(\lambda)\otimes_{\mathbf{A}_{\lambda}}M$

Intensively studied in the past two decades...

Motivation by Weyl modules for the quantum affine algebra (Chari-Pressley). They conjectured

Conjecture

 $W_A(\lambda)$ is a free right \mathbf{A}_{λ} -module of finite rank. The rank is the product of the ranks of $W_A(\omega_i)$.

This is now a theorem by works of Chari, Pressley, Loktev, Littelmann, Naoi to name a few. It is proven by passing to *local Weyl modules*, that is

 $W_{\mathcal{A}}(\lambda)\otimes_{\mathbf{A}_{\lambda}}M$

Fourth case: max A smooth

 $W_A(\omega_i)$ is a free \mathbf{A}_{λ} -module, tha rank is obtained from the dimension of max *A*.

But for general λ , $W_A(\lambda)$ is not free since \mathbf{A}_{λ} is not smooth.

Fourth case: max *A* smooth $W_A(\omega_i)$ is a free \mathbf{A}_{λ} -module, tha rank is obtained from the dimension of max *A*.

But for general λ , $W_A(\lambda)$ is not free since \mathbf{A}_{λ} is not smooth.

Fourth case: max A smooth

 $W_A(\omega_i)$ is a free \mathbf{A}_{λ} -module, tha rank is obtained from the dimension of max *A*.

But for general λ , $W_A(\lambda)$ is not free since \mathbf{A}_{λ} is not smooth.

In this case, \mathbf{A}_{λ} has a unique maximal ideal, this implies that there is a unique simple $\mathfrak{g} \otimes A$ module of highest weight λ (the evaluation module).

Question: What is the unique local Weyl module? Can one give a dimension/character formula as in the case $\mathbb{C}[t]$? What is a minimal set of generators for $W_A(\lambda)$? Answer is still open, but

Conjecture

In this case, \mathbf{A}_{λ} has a unique maximal ideal, this implies that there is a unique simple $\mathfrak{g} \otimes A$ module of highest weight λ (the evaluation module).

Question: What is the unique local Weyl module? Can one give a dimension/character formula as in the case $\mathbb{C}[t]$? What is a minimal set of generators for $W_A(\lambda)$? Answer is still open, but

Conjecture

In this case, \mathbf{A}_{λ} has a unique maximal ideal, this implies that there is a unique simple $\mathfrak{g} \otimes A$ module of highest weight λ (the evaluation module).

Question: What is the unique local Weyl module? Can one give a dimension/character formula as in the case $\mathbb{C}[t]$? What is a minimal set of generators for $W_A(\lambda)$? Answer is still open, but

Conjecture

In this case, \mathbf{A}_{λ} has a unique maximal ideal, this implies that there is a unique simple $\mathfrak{g} \otimes A$ module of highest weight λ (the evaluation module).

Question: What is the unique local Weyl module? Can one give a dimension/character formula as in the case $\mathbb{C}[t]$? What is a minimal set of generators for $W_A(\lambda)$?

Answer is still open, but

Conjecture

In this case, \mathbf{A}_{λ} has a unique maximal ideal, this implies that there is a unique simple $\mathfrak{g} \otimes A$ module of highest weight λ (the evaluation module).

Question: What is the unique local Weyl module? Can one give a dimension/character formula as in the case $\mathbb{C}[t]$? What is a minimal set of generators for $W_A(\lambda)$? Answer is still open, but

Conjecture

In this case, \mathbf{A}_{λ} has a unique maximal ideal, this implies that there is a unique simple $\mathfrak{g} \otimes A$ module of highest weight λ (the evaluation module).

Question: What is the unique local Weyl module? Can one give a dimension/character formula as in the case $\mathbb{C}[t]$? What is a minimal set of generators for $W_A(\lambda)$? Answer is still open, but

Conjecture

Thank you!