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Hall number

Let A be a finitary abelian category:

∀X ,Y ∈ A, |Hom(X ,Y )| <∞ and |Ext1(X ,Y )| <∞.

For any L,M,N ∈ A, the Hall number F N
M,L is

F N
M,L := |{X ⊂ N|X ∼= L,N/X ∼= M}|.

Let Iso(A) be the of isomorphism classes of objects in A and
set

H(A) =
⊕

M∈Iso(A)

ZuM .

For any L,M ∈ Iso(A), define

uL ∗ uM :=
∑

N∈Iso(A)

F N
M,LuN .
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Ringel’s Theorem

Theorem (Ringel)
(H(A), ∗) is an associative algebra with unit u0, where 0 is the
zero object of A.

Applications:
• realized the positive part Uv (b) of the quantized enveloping

algebra Uv (g)[Ringel, Green, etc];
• realized the positive part n of the derived Kac-Moody

algebra g.
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2-periodic triangulated category

Let R a 2-periodic triangulated k -category with suspension
functor Σ:
• Σ2 ∼= id;
• for any indecomposable object X ∈ R, the endomorphism

algebra End(X ) is a local k -algebra.
A triangulated k -category T is called finitary if

∀X ,Y ∈ T , |Hom(X ,Y )| <∞.

If k is a finite field, then this condition is equivalent to the
Hom-finite condition

∀X ,Y ∈ T ,dimk Hom(X ,Y ) <∞.
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Example: 2-periodic homotopy category

Example
Let A be a finite-dimensional algebra over a field k .
Let P be the additive category of finitely generated projective
right A-modules. Let C2(P) be the category of 2-periodic
complexes of P and H2(P) the associated homotopy category
of C2(P).
Then H2(P) is a 2-periodic triangulated category.
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Example: root categories of hereditary algebras

Example
A: a finite-dimensional hereditary algebra over a field k ;
Db(mod A): bounded derived category of mod A;
Db(mod A)/Σ2: the orbit category of Db(mod A) by the
square of suspension functor Σ.

Db(mod A)/Σ2 is called the root category of A introduced by D.
Happel in 1987.
Peng-Xiao(1997): the root category Db(mod A)/Σ2 is a
2-periodic triangulated category. In this case,
Db(mod A)/Σ2 ∼= H2(P) as triangulated categories.
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Notations

k : finite filed with |k | = q;
R: 2-periodic triangulated category over k ;
indR: set of isoclasses of indecomposable objects of R;
hM : image of M in the Grothendieck group G0(R);
h: subgroup of G0(R)⊗Z Q generated by hM

d(M) , M ∈ indR,
where d(M) = dimk (End(X )/ rad End(X ));
n: the free abelian group with basis {uX |X ∈ indR};
g(R) = h⊕ n;
g(R)(q−1) = g(R)/(q − 1)g(R).
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The Lie bracket

Define a Z-linear bracket [−,−] over g(R)(q−1) as follows:
(1) ∀X ,Y ∈ indR,

[uX ,uY ] =
∑

L∈indR
(F L

YX − F L
XY )uL − δX ,ΣY

hX

d(X )
,

where δX ,ΣY = 1 for X ∼= ΣY and 0 else.
(2) [h, h] = 0.
(3) for any objects X ,Y ∈ R with Y indecomposable,

[hX ,uY ] = IR(hX ,hY )uY , [uY ,hX ] = −[hX ,uY ].
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Peng-Xiao’s Theorem

Theorem (Peng-Xiao2000)
Together with [−,−], g(R)(q−1) is a Lie algebra over Z/(q−1)Z.

Application:
• Peng-Xiao(2000): for the root categories of

finite-dimensional hereditary algebras, an integral version
of g(R)(q−1) realized all the symmetrizable derived
Kac-Moody algebras;

• Lin-Peng(2005): realized the elliptic Lie algebra of type
ˆ̂D4,

ˆ̂E∗, ∗ = 6,7,8 via the 2-periodic orbit categories (which
is triangulated) of tubular algebras.
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Realizations of Lie algebras

• To ’categorify’ the elliptic Lie algebra g of type ˆ̂An,n ≥ 1,
ˆ̂Dm,m ≥ 5;

• To ’categorify’ the Virasora algebra g.

At this moment, there are no suitable categorifications for g. It
is even not clear that there is R such that G0(R) realize the root
lattice of g.

Fu Generalized root category



Ringel-Hall algebras and motivations
The generalized root category

An application of Ringel-Hall Lie algebra of root category

Ringel-Hall algebra for finitary abelian catgories
Ringel-Hall Lie algebras for 2-periodic trian. categories
Motivations

Aim

Remark
For a general finite-dimensional algebra A, its 2-periodic orbit
category does not admit a canonical triangle structure: the
projection functor π : Db(mod A)→ Db(mod A)/Σ2 is a triangle
functor.

To construct new 2-periodic triangulated categories which are
good replacements of 2-periodic orbit categories.
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Keller’s construction

Let A be a finite-dimensional k -algebra of finite global
dimension. Define S be the differential graded algebra with
trivial differential whose underlying complex are

A⊕ ΣA

and the multiplication is given by trivial extension.

Definition
The generalized root category RA of A is defined to be
Db(S)/per(S).
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The universal property

[Keller2005]The generalized root category RA has the following
universal property:
◦ There exists an algebraic triangulated functor
πA : Db(mod A)→ RA;
◦ Let B be a dg category and X an object of D(Aop ⊗ B). If

there exists an isomorphism in D(Aop ⊗ B) between

Σ2A
L
⊗A X and X , then the triangulated algebraic functor

?
L
⊗A X : Db(mod A)→ D(B) factorizes through πA.
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Remark

(1) we have an embedding i : Db(mod A)/Σ2 ↪→ RA of
categories. Once the 2-periodic orbit category admits a
canonical triangle structure, then i is dense;

(2) we have an embedding RA ↪→ H2(P) of triangulated
categories. If A is hereditary, then we have equivalences of
triangulated categories Db(mod A) ∼= RA

∼= H2(P).
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An example of global dimension 2

Let Q be the following quiver

2
α )) 1.
β

hh

Denote A := kQ/〈β ◦ α〉. It is representation-finite and has
global dimension 2.

Proposition

The 2-periodic orbit category Db(mod A)/Σ2 does not admit a
canonical triangle structure.

This proposition implies particular that the notion of generalized
root category makes sense.
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Properties of generalized root category

Proposition

Let A be a finite-dimensional algebra over a field k. Assume
that A has finite global dimension. We have
(1) the generalized root category RA is a 2-periodic

triangulated category;
(2) the generalized root category RA admits Auslander-Reiten

sequence;
(3) the canonical functor πA : Db(mod A)→ RA induces an

isometry G0(Db(mod A)) ∼= G0(RA);
(4) the canonical functor πA maps AR-triangles of Db(mod A)

to AR-triangles of RA.
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Representation-finite hereditary algebras

By applying the part (4),

Theorem
Let A be a finite-dimensional algebra of finite global dimension.
Suppose that the generalized root category RA is
triangle-equivalent to the root category of a representation-finite
hereditary algebra kQ, then A is derived equivalent to kQ.

This theorem holds true for tame hereditary algebra of type D
and E .

Conjecture
If the generalize root category RA of A is triangle-equivalent to
the root category of a finite-dimensional hereditary algebra kQ,
then A is derived equivalent to kQ.
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The construction

Let A be a finite-dimensional algebra over a finite field k .
Assume that A has finite global dimension.
Let S1, · · · ,Sn be all the pairwise non-isomorphic simple
A-modules.
For E be a field extension of k and set V E = V ⊗k E for any
k -space V . Then AE is an E-algebra and, for M ∈ mod A, ME

has a canonical AE -module structure. For any indecomposable
A-module X , E is conservative for X , if (End(X )/ rad End(X ))E

is a field.
Let

Ω = {E |k ⊆ E ⊆ k is a finite field extension
which is conservative for all simple modules}
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One can show that AE ,E ∈ Ω have finite global dimension.
Thus, one can define the generalized root category RAE and
form the Ringel-Hall Lie algebra g(RAE )(|E |−1). Consider the
product ∏

E∈Ω

g(RAE )(|E |−1),

let LC(RA) be the subalgebra generated by uSi := (uSE
i

)E∈Ω

and uΣSi := (uΣSE
i

) for 1 ≤ i ≤ n. We call LC(RA) the integral
Ringel-Hall Lie algebra of A.
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Peng-Xiao’s realization

Theorem (Peng-Xiao2000)
Let Q be a finite acyclic quiver, kQ the path algebra over a finite
field k. Then

LC(RkQ)⊗Z C ∼= KM(kQ),

where KM(kQ) is the derived Kac-Moody algebra associated to
the underlying diagram of Q.

Fu Generalized root category



Ringel-Hall algebras and motivations
The generalized root category

An application of Ringel-Hall Lie algebra of root category

The generalized root categories for algebras
The integral version of Ringel-Hall Lie algebras

Applications

♥ By (1) of Prop 8, one can associated a Ringel-Hall Lie
algebra LC(RA) in the sense of Peng-Xiao to any finite
dimensional algebra of finite global dimension.

♥ By (3) of Prop 8, one can easily construct a lot of
2-periodic triangulated categories such that its
Grothendieck group characterizes the root lattice of a given
elliptic Lie algebra;
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A motivating example

Let Q be the following quiver

3
α1
((

α2

66 2
β1 ))

β2

55 1.

Let I be the ideal generated by βi ◦ αi . Let A = kQ/I be the
quotient algebra. The global dimension of A is 2.
(a) G0(RA) characterizes the root lattice of elliptic Lie algebra

of ˆ̂A1;
(b) LC(RA) is a quotient of certain GIM Lie algebra associated

to CA.

(c) Does LC(RA) realize the elliptic Lie algebra of ˆ̂A1?
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Generalized intersection matrix

A matrix A ∈ Ml(Z) is called a generalized intersection matrix, if

Aii = 2
Aij < 0⇐⇒ Aji < 0
Aij > 0⇐⇒ Aji > 0

A realization of A is a triple (H,5,4) consisting of
◦ a finite dimensional Q-vector space H;
◦ a family O = {α∨1 , · · · , α∨l }, where α∨i ∈ H;
◦ a family M= {α1, · · · , αl}, where αi ∈ H∗ = HomQ(H,Q)
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GIM Lie algebra of Slodowy

The GIM-Lie algebra gim(A) attached to the realization
(H,O,M) is given by the generators h = H ⊗Q C and e±α, α ∈M
satisfying the following relations:

(1) [h,h′] = 0,h,h′ ∈ h

(2) [h,eα] = α(h)eα,h ∈ h, α ∈ ± M

(3) [eα,e−α] = α∨, α ∈M
(4) ad(eα)max(1,1−β(α∨))eβ = 0, α ∈M, β ∈ ± M

(5) ad(e−α)max(1,1−β(−α∨))eβ = 0, α ∈M, β ∈ ± M .

Remark
If A is a generalized Cartan matrix, then gim(A) is the
Kac-Moody algebra associated to A.
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Roots of GIM algebras

The adjoint action of h induces a gradation of gim(A) as follows

gim(A) =
⊕
γ∈h∗

gim(A)γ ,

where

gim(A)γ = {x ∈ gim(A)|[h, x ] = γ(h)x for all h ∈ h}.

0 6= γ ∈ h∗ is called a root of gim(A) provided gim(A)γ 6= 0.

Question
Do we have h = gim(A)0?

Negative answer given by Alpen using fixed point subalgebra
for certain Lie algebra.
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A class of algebra of global dimension 2

Let Q be the following quiver

0

α
��

δ
��

n n − 1oo 2oo 1
β //

γ
oo n + 1 // ◦ // n + m

We assume m ≥ 1,n ≥ 2. Let A be the quotient algebra of path
algebra kQ by the ideal generated by β ◦ α, γ ◦ α. It has global
dimension 2.
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Results

Theorem
(a) the generalized root category RA is not triangle equivalent

to the root category of any hereditary algebras;
(b) let CA be the Cartan matrix of A, there is a graded

surjective homomorphism of Lie algebras
φ : gim(CA)′ → LC(RA)⊗Z C such that

α∨i 7→ hi ,

eαi 7→ uSi

e−αi 7→ −uΣSi ,0 ≤ i ≤ n + m.

(c) dimC gim(CA)′0 ≥ m + n + 2.
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Remarks

The above theorem gives us the following remarks about GIM
Lie algebras.

Remark
• We have dim gim(CA)0 > dim H ⊗Z C. In particular, this

gives a negative answer for Slodowy’s question;
• The idea τ of gim(CA) is non-zero;
• GIM Lie algebras are not invariant under braid equivalence.
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Generalized root category for algebraic trian. category

The generalized root category can be defined for algebraic
triangulated category T such that for any X ,Y ∈ T ,

dim
⊕
n∈Z
T (X ,Σ2nY ) <∞.

In [FuYang2012], we have studied the generalized root
category of algebraic triangulated category generated by a
spherical object and determined the structure of the associated
Ringel-Hall Lie algebra.
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Thanks for your attention!

Fu Generalized root category


	Ringel-Hall algebras and motivations
	Ringel-Hall algebra for finitary abelian catgories
	Ringel-Hall Lie algebras for 2-periodic trian. categories
	Motivations

	The generalized root category 
	The generalized root categories for algebras
	The integral version of Ringel-Hall Lie algebras

	An application of Ringel-Hall Lie algebra of root category
	Slodowy's GIM Lie algebras
	Representation theory approach to Slodowy's question
	Further remark


