On root categories of finite-dimensional algebras

Changjian Fu

Department of Mathematics, Sichuan University Chengdu

August 2012, Bielefeld

・ロ・ ・ 四・ ・ 回・ ・ 回・

크

The generalized root category An application of Ringel-Hall Lie algebra of root category

Hall number

Ringel-Hall algebra for finitary abelian catgories Ringel-Hall Lie algebras for 2-periodic trian. categories Motivations

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Let \mathcal{A} be a finitary abelian category:

$$orall X, Y \in \mathcal{A}, |\operatorname{\mathsf{Hom}}(X,Y)| < \infty \quad ext{and} \quad |\operatorname{\mathsf{Ext}}^1(X,Y)| < \infty.$$

For any $L, M, N \in A$, the Hall number $F_{M,L}^N$ is

$$F^N_{M,L} := |\{X \subset N | X \cong L, N/X \cong M\}|.$$

Let $\mathsf{Iso}(\mathcal{A})$ be the of isomorphism classes of objects in \mathcal{A} and set

$$\mathcal{H}(\mathcal{A}) = \bigoplus_{M \in \mathsf{Iso}(\mathcal{A})} \mathbb{Z} u_M.$$

For any $L, M \in Iso(\mathcal{A})$, define

$$u_L * u_M := \sum_{N \in \mathsf{lso}(\mathcal{A})} F^N_{M,L} u_N.$$

The generalized root category An application of Ringel-Hall Lie algebra of root category

Ringel's Theorem

Ringel-Hall algebra for finitary abelian catgories Ringel-Hall Lie algebras for 2-periodic trian. categories Motivations

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Theorem (Ringel)

 $(\mathcal{H}(\mathcal{A}),*)$ is an associative algebra with unit $u_0,$ where 0 is the zero object of $\mathcal{A}.$

Applications:

- realized the positive part U_v(b) of the quantized enveloping algebra U_v(g)[Ringel, Green, etc];
- realized the positive part $\mathfrak n$ of the derived Kac-Moody algebra $\mathfrak g.$

The generalized root category An application of Ringel-Hall Lie algebra of root category Ringel-Hall algebra for finitary abelian catgories Ringel-Hall Lie algebras for 2-periodic trian. categories Motivations

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

2-periodic triangulated category

Let \mathcal{R} a 2-periodic triangulated *k*-category with suspension functor Σ :

- $\Sigma^2 \cong id;$
- for any indecomposable object X ∈ R, the endomorphism algebra End(X) is a local k-algebra.

A triangulated k-category T is called finitary if

 $\forall X, Y \in \mathcal{T}, |\operatorname{Hom}(X, Y)| < \infty.$

If k is a finite field, then this condition is equivalent to the Hom-finite condition

$$\forall X, Y \in \mathcal{T}, \dim_k \operatorname{Hom}(X, Y) < \infty.$$

The generalized root category An application of Ringel-Hall Lie algebra of root category Ringel-Hall algebra for finitary abelian catgories Ringel-Hall Lie algebras for 2-periodic trian. categories Motivations

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example: 2-periodic homotopy category

Example

Let *A* be a finite-dimensional algebra over a field *k*. Let \mathcal{P} be the additive category of finitely generated projective right *A*-modules. Let $\mathcal{C}_2(\mathcal{P})$ be the category of 2-periodic complexes of \mathcal{P} and $\mathcal{H}_2(\mathcal{P})$ the associated homotopy category of $\mathcal{C}_2(\mathcal{P})$.

Fu

Then $\mathcal{H}_2(\mathcal{P})$ is a 2-periodic triangulated category.

The generalized root category An application of Ringel-Hall Lie algebra of root category Ringel-Hall algebra for finitary abelian catgories Ringel-Hall Lie algebras for 2-periodic trian. categories Motivations

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example: root categories of hereditary algebras

Example

A: a finite-dimensional hereditary algebra over a field k; $\mathcal{D}^{b}(\operatorname{mod} A)$: bounded derived category of mod A; $\mathcal{D}^{b}(\operatorname{mod} A)/\Sigma^{2}$: the orbit category of $\mathcal{D}^{b}(\operatorname{mod} A)$ by the square of suspension functor Σ .

 $\mathcal{D}^{b}(\operatorname{mod} A)/\Sigma^{2}$ is called the root category of *A* introduced by D. Happel in 1987. Peng-Xiao(1997): the root category $\mathcal{D}^{b}(\operatorname{mod} A)/\Sigma^{2}$ is a 2-periodic triangulated category. In this case, $\mathcal{D}^{b}(\operatorname{mod} A)/\Sigma^{2} \cong \mathcal{H}_{2}(\mathcal{P})$ as triangulated categories.

The generalized root category An application of Ringel-Hall Lie algebra of root category

Notations

Ringel-Hall algebra for finitary abelian catgories Ringel-Hall Lie algebras for 2-periodic trian. categories Motivations

(日) (圖) (E) (E) (E)

k: finite filed with |k| = q;

 \mathcal{R} : 2-periodic triangulated category over k;

ind \mathcal{R} : set of isoclasses of indecomposable objects of \mathcal{R} ;

 h_M : image of *M* in the Grothendieck group $G_0(\mathcal{R})$;

h: subgroup of $G_0(\mathcal{R}) \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by $\frac{h_M}{d(M)}$, $M \in \operatorname{ind}\mathcal{R}$, where $d(M) = \dim_k(\operatorname{End}(X)/\operatorname{rad}\operatorname{End}(X))$;

n: the free abelian group with basis $\{u_X | X \in ind\mathcal{R}\}$;

Fu

 $\mathfrak{g}(\mathcal{R}) = \mathfrak{h} \oplus \mathfrak{n};$

 $\mathfrak{g}(\mathcal{R})_{(q-1)} = \mathfrak{g}(\mathcal{R})/(q-1)\mathfrak{g}(\mathcal{R}).$

The generalized root category An application of Ringel-Hall Lie algebra of root category Ringel-Hall algebra for finitary abelian catgories Ringel-Hall Lie algebras for 2-periodic trian. categories Motivations

◆□ → ◆御 → ◆臣 → ◆臣 → ○臣

The Lie bracket

Define a \mathbb{Z} -linear bracket [-, -] over $\mathfrak{g}(\mathcal{R})_{(q-1)}$ as follows: (1) $\forall X, Y \in \text{ind}\mathcal{R}$,

$$[u_X, u_Y] = \sum_{L \in \mathsf{ind}\mathcal{R}} (F_{YX}^L - F_{XY}^L) u_L - \delta_{X, \Sigma Y} \frac{h_X}{d(X)},$$

where $\delta_{X,\Sigma Y} = 1$ for $X \cong \Sigma Y$ and 0 else.

 $(2) \ [\mathfrak{h},\mathfrak{h}]=0.$

(3) for any objects $X, Y \in \mathcal{R}$ with Y indecomposable,

$$[h_X, u_Y] = I_{\mathcal{R}}(h_X, h_Y)u_Y, \qquad [u_Y, h_X] = -[h_X, u_Y].$$

The generalized root category An application of Ringel-Hall Lie algebra of root category Ringel-Hall algebra for finitary abelian catgories Ringel-Hall Lie algebras for 2-periodic trian. categories Motivations

・ロト ・四ト ・ヨト ・ヨト

크

Peng-Xiao's Theorem

Theorem (Peng-Xiao2000)

Together with [-, -], $\mathfrak{g}(\mathcal{R})_{(q-1)}$ is a Lie algebra over $\mathbb{Z}/(q-1)\mathbb{Z}$.

Application:

- Peng-Xiao(2000): for the root categories of finite-dimensional hereditary algebras, an integral version of g(R)_(q-1) realized all the symmetrizable derived Kac-Moody algebras;
- Lin-Peng(2005): realized the elliptic Lie algebra of type $\hat{D}_4, \hat{E}_*, * = 6, 7, 8$ via the 2-periodic orbit categories (which is triangulated) of tubular algebras.

The generalized root category An application of Ringel-Hall Lie algebra of root category Ringel-Hall algebra for finitary abelian catgories Ringel-Hall Lie algebras for 2-periodic trian. categories Motivations

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Realizations of Lie algebras

- To 'categorify' the elliptic Lie algebra \mathfrak{g} of type $\hat{\hat{A}_n}, n \ge 1$, $\hat{\hat{D}_m}, m \ge 5$;
- To 'categorify' the Virasora algebra \mathfrak{g} .

At this moment, there are no suitable categorifications for \mathfrak{g} . It is even not clear that there is \mathcal{R} such that $G_0(\mathcal{R})$ realize the root lattice of \mathfrak{g} .

The generalized root category An application of Ringel-Hall Lie algebra of root category Ringel-Hall algebra for finitary abelian catgories Ringel-Hall Lie algebras for 2-periodic trian. categories Motivations

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Aim

Remark

For a general finite-dimensional algebra A, its 2-periodic orbit category does not admit a canonical triangle structure: the projection functor $\pi : \mathcal{D}^b(\text{mod } A) \to \mathcal{D}^b(\text{mod } A)/\Sigma^2$ is a triangle functor.

To construct new 2-periodic triangulated categories which are good replacements of 2-periodic orbit categories.

The generalized root categories for algebras The integral version of Ringel-Hall Lie algebras

Keller's construction

Let *A* be a finite-dimensional *k*-algebra of finite global dimension. Define S be the differential graded algebra with trivial differential whose underlying complex are

$\pmb{A}\oplus \pmb{\Sigma}\pmb{A}$

and the multiplication is given by trivial extension.

Definition

The generalized root category \mathcal{R}_A of A is defined to be $\mathcal{D}^b(\mathcal{S})/\text{per}(\mathcal{S})$.

Fu

The universal property

[Keller2005]The generalized root category \mathcal{R}_A has the following universal property:

- There exists an algebraic triangulated functor $\pi_A : \mathcal{D}^b(\operatorname{mod} A) \to \mathcal{R}_A;$
- Let B be a dg category and X an object of D(A^{op} ⊗ B). If there exists an isomorphism in D(A^{op} ⊗ B) between
 Σ²A ⊗_A X and X, then the triangulated algebraic functor
 ? ⊗_A X : D^b(mod A) → D(B) factorizes through π_A.

Fu

< ロ > < 回 > < 回 > < 回 > < 回 > <

Remark

The generalized root categories for algebras The integral version of Ringel-Hall Lie algebras

- we have an embedding *i* : D^b(mod A)/Σ² → R_A of categories. Once the 2-periodic orbit category admits a canonical triangle structure, then *i* is dense;
- (2) we have an embedding R_A → H₂(P) of triangulated categories. If A is hereditary, then we have equivalences of triangulated categories D^b(mod A) ≃ R_A ≃ H₂(P).

Fu

The generalized root categories for algebras The integral version of Ringel-Hall Lie algebras

An example of global dimension 2

Let Q be the following quiver

Denote $A := kQ/\langle \beta \circ \alpha \rangle$. It is representation-finite and has global dimension 2.

Proposition

The 2-periodic orbit category $\mathcal{D}^b(\text{mod } A)/\Sigma^2$ does not admit a canonical triangle structure.

This proposition implies particular that the notion of generalized root category makes sense.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Properties of generalized root category

Proposition

Let A be a finite-dimensional algebra over a field k. Assume that A has finite global dimension. We have

- the generalized root category *R_A* is a 2-periodic triangulated category;
- (2) the generalized root category \mathcal{R}_A admits Auslander-Reiten sequence;
- (3) the canonical functor $\pi_A : \mathcal{D}^b(\text{mod } A) \to \mathcal{R}_A$ induces an isometry $G_0(\mathcal{D}^b(\text{mod } A)) \cong G_0(\mathcal{R}_A)$;
- (4) the canonical functor π_A maps AR-triangles of D^b(mod A) to AR-triangles of R_A.

Fu

イロト イ理ト イヨト イヨト

크

Representation-finite hereditary algebras

By applying the part (4),

Theorem

Let A be a finite-dimensional algebra of finite global dimension. Suppose that the generalized root category \mathcal{R}_A is triangle-equivalent to the root category of a representation-finite hereditary algebra kQ, then A is derived equivalent to kQ.

This theorem holds true for tame hereditary algebra of type D and E.

Conjecture

If the generalize root category \mathcal{R}_A of A is triangle-equivalent to the root category of a finite-dimensional hereditary algebra kQ, then A is derived equivalent to kQ.

The construction

Let A be a finite-dimensional algebra over a finite field k. Assume that A has finite global dimension.

Let S_1, \dots, S_n be all the pairwise non-isomorphic simple *A*-modules.

For *E* be a field extension of *k* and set $V^E = V \otimes_k E$ for any *k*-space *V*. Then A^E is an *E*-algebra and, for $M \in \text{mod } A$, M^E has a canonical A^E -module structure. For any indecomposable *A*-module *X*, *E* is conservative for *X*, if $(\text{End}(X)/\text{rad End}(X))^E$ is a field.

Let

 $\Omega = \{ E | k \subseteq E \subseteq \overline{k} \text{ is a finite field extension} \\ \text{which is conservative for all simple modules} \}$

Fu

One can show that A^{E} , $E \in \Omega$ have finite global dimension. Thus, one can define the generalized root category $\mathcal{R}_{A^{E}}$ and form the Ringel-Hall Lie algebra $\mathfrak{g}(\mathcal{R}_{A^{E}})_{(|E|-1)}$. Consider the product

$$\prod_{E\in\Omega}\mathfrak{g}(\mathcal{R}_{\mathcal{A}^{E}})_{(|E|-1)},$$

let $\mathcal{LC}(\mathcal{R}_A)$ be the subalgebra generated by $u_{S_i} := (u_{S_i^E})_{E \in \Omega}$ and $u_{\Sigma S_i} := (u_{\Sigma S_i^E})$ for $1 \le i \le n$. We call $\mathcal{LC}(\mathcal{R}_A)$ the integral Ringel-Hall Lie algebra of A.

Fu

The generalized root categories for algebras The integral version of Ringel-Hall Lie algebras

Peng-Xiao's realization

Theorem (Peng-Xiao2000)

Let Q be a finite acyclic quiver, kQ the path algebra over a finite field k. Then

 $\mathcal{LC}(\mathcal{R}_{kQ}) \otimes_{\mathbb{Z}} \mathbb{C} \cong \mathsf{KM}(kQ),$

where KM(kQ) is the derived Kac-Moody algebra associated to the underlying diagram of Q.

Fu

Applications

The generalized root categories for algebras The integral version of Ringel-Hall Lie algebras

- \heartsuit By (1) of Prop 8, one can associated a Ringel-Hall Lie algebra $\mathcal{LC}(\mathcal{R}_A)$ in the sense of Peng-Xiao to any finite dimensional algebra of finite global dimension.
- By (3) of Prop 8, one can easily construct a lot of 2-periodic triangulated categories such that its Grothendieck group characterizes the root lattice of a given elliptic Lie algebra;

Fu

・ロ・ ・ 四・ ・ 回・ ・ 回・

The generalized root categories for algebras The integral version of Ringel-Hall Lie algebras

A motivating example

Let Q be the following quiver

Let *I* be the ideal generated by $\beta_i \circ \alpha_i$. Let A = kQ/I be the quotient algebra. The global dimension of *A* is 2.

- (a) G₀(*R_A*) characterizes the root lattice of elliptic Lie algebra of Â₁;
- (b) LC(R_A) is a quotient of certain GIM Lie algebra associated to C_A.

(c) Does $\mathcal{LC}(\mathcal{R}_A)$ realize the elliptic Lie algebra of \hat{A}_1 ?

Fu

日本・モト・モト・モ

Slodowy's GIM Lie algebras Representation theory approach to Slodowy's question Further remark

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Generalized intersection matrix

A matrix $A \in M_l(\mathbb{Z})$ is called a generalized intersection matrix, if

$$\begin{aligned} A_{ii} &= 2 \\ A_{ij} &< 0 \Longleftrightarrow A_{ji} &< 0 \\ A_{ij} &> 0 \Longleftrightarrow A_{ji} &> 0 \end{aligned}$$

A realization of A is a triple $(H, \bigtriangledown, \bigtriangleup)$ consisting of

- a finite dimensional \mathbb{Q} -vector space H;
- a family $\nabla = \{\alpha_1^{\lor}, \cdots, \alpha_l^{\lor}\}$, where $\alpha_i^{\lor} \in H$;
- a family $\triangle = \{\alpha_1, \cdots, \alpha_l\}$, where $\alpha_i \in H^* = \operatorname{Hom}_{\mathbb{Q}}(H, \mathbb{Q})$

Slodowy's GIM Lie algebras Representation theory approach to Slodowy's question Further remark

GIM Lie algebra of Slodowy

The GIM-Lie algebra gim(*A*) attached to the realization (H, ∇, Δ) is given by the generators $\mathfrak{h} = H \otimes_{\mathbb{Q}} \mathbb{C}$ and $e_{\pm \alpha}, \alpha \in \Delta$ satisfying the following relations:

(1)
$$[h, h'] = 0, h, h' \in \mathfrak{h}$$

(2)
$$[h, e_{\alpha}] = \alpha(h)e_{\alpha}, h \in \mathfrak{h}, \alpha \in \pm \Delta$$

(3)
$$[\boldsymbol{e}_{\alpha}, \boldsymbol{e}_{-\alpha}] = \alpha^{\vee}, \alpha \in \Delta$$

(4)
$$ad(e_{\alpha})^{max(1,1-\beta(\alpha^{\vee}))}e_{\beta}=0, \alpha \in \Delta, \beta \in \pm \Delta$$

(5)
$$ad(e_{-\alpha})^{max(1,1-\beta(-\alpha^{\vee}))}e_{\beta} = 0, \alpha \in \Delta, \beta \in \pm \Delta$$
.

Remark

If A is a generalized Cartan matrix, then gim(A) is the Kac-Moody algebra associated to A.

Slodowy's GIM Lie algebras Representation theory approach to Slodowy's question Further remark

Roots of GIM algebras

The adjoint action of \mathfrak{h} induces a gradation of gim(A) as follows

$$\operatorname{gim}(A) = igoplus_{\gamma \in \mathfrak{h}^*} \operatorname{gim}(A)_\gamma,$$

where

$$gim(A)_{\gamma} = \{x \in gim(A) | [h, x] = \gamma(h)x \text{ for all } h \in \mathfrak{h}\}.$$

 $0 \neq \gamma \in \mathfrak{h}^*$ is called a root of gim(A) provided gim(A)_{γ} \neq 0.

Question

Do we have $\mathfrak{h} = \operatorname{gim}(A)_0$?

Negative answer given by Alpen using fixed point subalgebra for certain Lie algebra.

Slodowy's GIM Lie algebras Representation theory approach to Slodowy's question Further remark

・ロト ・四ト ・ヨト ・ヨト

A class of algebra of global dimension 2

Let Q be the following quiver

$$n \leftarrow n-1 \leftarrow 2 \leftarrow \frac{2}{\gamma} + \frac{1}{\gamma} +$$

We assume $m \ge 1, n \ge 2$. Let *A* be the quotient algebra of path algebra kQ by the ideal generated by $\beta \circ \alpha, \gamma \circ \alpha$. It has global dimension 2.

Results

Theorem

- (a) the generalized root category \mathcal{R}_A is not triangle equivalent to the root category of any hereditary algebras;
- (b) let C_A be the Cartan matrix of A, there is a graded surjective homomorphism of Lie algebras φ : gim(C_A)' → LC(R_A) ⊗_Z C such that

Fu

$$egin{aligned} &lpha_i^ee\mapsto h_i, \ &oldsymbol{e}_{lpha_i}\mapsto oldsymbol{u}_{\mathcal{S}_i} \ &oldsymbol{e}_{-lpha_i}\mapsto -oldsymbol{u}_{\Sigma\mathcal{S}_i}, 0\leq i\leq n+m. \end{aligned}$$

(c) dim_C gim $(C_A)'_0 \ge m + n + 2$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

Slodowy's GIM Lie algebras

Further remark

Representation theory approach to Slodowy's question

Remarks

Slodowy's GIM Lie algebras Representation theory approach to Slodowy's question Further remark

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The above theorem gives us the following remarks about GIM Lie algebras.

Remark

We have dim gim(C_A)₀ > dim H ⊗_ℤ ℂ. In particular, this gives a negative answer for Slodowy's question;

- The idea τ of gim(C_A) is non-zero;
- GIM Lie algebras are not invariant under braid equivalence.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Generalized root category for algebraic trian. category

The generalized root category can be defined for algebraic triangulated category \mathcal{T} such that for any $X, Y \in \mathcal{T}$,

$$\dim \bigoplus_{n \in \mathbb{Z}} \mathcal{T}(X, \Sigma^{2n}Y) < \infty.$$

In [FuYang2012], we have studied the generalized root category of algebraic triangulated category generated by a spherical object and determined the structure of the associated Ringel-Hall Lie algebra.

Ringel-Hall algebras and motivations	Slodowy's GIM Lie algebras
The generalized root category	Representation theory approach to Slodowy's question
An application of Ringel-Hall Lie algebra of root category	Further remark

Thanks for your attention!

Fu

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

크