A quantum analogue of a dihedral group action on Grassmannians

Jan E. Grabowski

j.grabowski@lancaster.ac.uk
http://www.maths.lancs.ac.uk/~grabowsj

Joint with Justin Allman (University of North Carolina, Chapel Hill)

Recall that Gr(k,n) is the projective variety of *k*-dimensional subspaces of an *n*-dimensional space. Its coordinate ring $\mathcal{O}(Gr(k,n))$ is generated by the Plücker coordinates $\{\Delta^{I} | I \subseteq \{1,...,n\}, |I| = k\}$, subject to the Plücker relations.

One may specify a point in the Grassmannian Gr(k,n) as a $k \times n$ matrix of rank k and the symmetric group S_n acts on the Grassmannian via permutation of columns. Thus the dihedral subgroup D_{2n} of S_n generated by the *n*-cycle $c = (12 \cdots n)$ and the longest element w_0 acts on Gr(k,n) and hence on $\mathscr{O}(Gr(k,n))$.

The Grassmannian also admits an action of a torus $T_n \cong (\mathbb{K}^*)^n$. The complex Grassmannian is a Poisson homogeneous space for the Poisson–Lie group $SL_n(\mathbb{C})$ and Yakimov has shown that $D_{2n} \ltimes T_n$ acts by Poisson automorphisms and anti-automorphisms on $\mathscr{O}(Gr(k,n))$.

Our goal is to describe a quantum analogue of this action.

Recall that Gr(k,n) is the projective variety of *k*-dimensional subspaces of an *n*-dimensional space. Its coordinate ring $\mathscr{O}(Gr(k,n))$ is generated by the Plücker coordinates $\{\Delta^{I} | I \subseteq \{1,...,n\}, |I| = k\}$, subject to the Plücker relations.

One may specify a point in the Grassmannian Gr(k,n) as a $k \times n$ matrix of rank k and the symmetric group S_n acts on the Grassmannian via permutation of columns. Thus the dihedral subgroup D_{2n} of S_n generated by the *n*-cycle $c = (12 \cdots n)$ and the longest element w_0 acts on Gr(k,n) and hence on $\mathcal{O}(Gr(k,n))$.

The Grassmannian also admits an action of a torus $T_n \cong (\mathbb{K}^*)^n$. The complex Grassmannian is a Poisson homogeneous space for the Poisson–Lie group $SL_n(\mathbb{C})$ and Yakimov has shown that $D_{2n} \ltimes T_n$ acts by Poisson automorphisms and anti-automorphisms on $\mathscr{O}(Gr(k,n))$.

Our goal is to describe a quantum analogue of this action.

Recall that Gr(k,n) is the projective variety of *k*-dimensional subspaces of an *n*-dimensional space. Its coordinate ring $\mathscr{O}(Gr(k,n))$ is generated by the Plücker coordinates $\{\Delta^I \mid I \subseteq \{1,\ldots,n\}, |I| = k\}$, subject to the Plücker relations.

One may specify a point in the Grassmannian Gr(k,n) as a $k \times n$ matrix of rank k and the symmetric group S_n acts on the Grassmannian via permutation of columns. Thus the dihedral subgroup D_{2n} of S_n generated by the *n*-cycle $c = (12 \cdots n)$ and the longest element w_0 acts on Gr(k,n) and hence on $\mathcal{O}(Gr(k,n))$.

The Grassmannian also admits an action of a torus $T_n \cong (\mathbb{K}^*)^n$. The complex Grassmannian is a Poisson homogeneous space for the Poisson–Lie group $SL_n(\mathbb{C})$ and Yakimov has shown that $D_{2n} \ltimes T_n$ acts by Poisson automorphisms and anti-automorphisms on $\mathscr{O}(Gr(k,n))$.

Our goal is to describe a quantum analogue of this action.

Recall that Gr(k,n) is the projective variety of *k*-dimensional subspaces of an *n*-dimensional space. Its coordinate ring $\mathscr{O}(Gr(k,n))$ is generated by the Plücker coordinates $\{\Delta^{I} | I \subseteq \{1,...,n\}, |I| = k\}$, subject to the Plücker relations.

One may specify a point in the Grassmannian Gr(k,n) as a $k \times n$ matrix of rank k and the symmetric group S_n acts on the Grassmannian via permutation of columns. Thus the dihedral subgroup D_{2n} of S_n generated by the *n*-cycle $c = (12 \cdots n)$ and the longest element w_0 acts on Gr(k,n) and hence on $\mathcal{O}(Gr(k,n))$.

The Grassmannian also admits an action of a torus $T_n \cong (\mathbb{K}^*)^n$. The complex Grassmannian is a Poisson homogeneous space for the Poisson–Lie group $SL_n(\mathbb{C})$ and Yakimov has shown that $D_{2n} \ltimes T_n$ acts by Poisson automorphisms and anti-automorphisms on $\mathscr{O}(Gr(k,n))$.

Our goal is to describe a quantum analogue of this action.

J.E. Grabowski (Lancaster)

Quantum matrices

We let \mathbb{K} be a field and let $q \in \mathbb{K}^*$.

The quantum matrix algebra $\mathcal{O}_q(\mathbf{M}(k,n))$ is the \mathbb{K} -algebra generated by the set $\{X_{ij} \mid 1 \le i \le k, 1 \le j \le n\}$ subject to the quantum 2×2 matrix relations on each 2×2 submatrix of

$$\begin{pmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{k1} & X_{k2} & \cdots & X_{kn} \end{pmatrix}$$

where the quantum 2×2 matrix relations on $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ are

$$ab = qba$$
 $ac = qca$ $bc = cb$
 $bd = qdb$ $cd = qdc$ $ad - da = (q - q^{-1})bc$.

These relations arise naturally from considering coactions on quantum affine *n*-space, $\mathscr{O}_q(\mathbb{K}^n) \stackrel{\text{def}}{=} \mathbb{K} \langle x_1, \dots, x_n \rangle / (x_i x_j = q x_j x_i \forall i < j).$

J.E. Grabowski (Lancaster)

Quantum Grassmannians

The quantum Grassmannian $\mathscr{O}_q(\operatorname{Gr}(k,n))$ is the subalgebra of $\mathscr{O}_q(\operatorname{M}(k,n))$ generated by the quantum Plücker coordinates

$$\mathscr{P}_q(k,n) = \{\Delta_q^I \mid I \subseteq \{1,\ldots,n\}, |I| = k\}.$$

Here if $I = \{i_1 < i_2 < \cdots < i_k\}$ is a *k*-subset of $\{1, \ldots, n\}$ then we define

$$\Delta_q^I \stackrel{\text{def}}{=} \sum_{\sigma \in S_k} (-q)^{l(\sigma)} X_{1i_{\sigma(1)}} \cdots X_{ki_{\sigma(k)}}$$

where S_k is the symmetric group of degree k and l is the usual length function on this, e.g. $\Delta_q^{ij} = X_{1i}X_{2j} - qX_{1j}X_{2i} \in \mathscr{O}_q(\operatorname{Gr}(2,n)).$

The quantum Grassmannian $\mathscr{O}_q(\operatorname{Gr}(k,n))$ is a finitely generated \mathbb{Z}^n -graded noncommutative \mathbb{K} -algebra of GK-dimension k(n-k)+1, is a noetherian domain and has semi-classical limit $\mathscr{O}(\operatorname{Gr}(k,n))$.

Quantum Grassmannians

The quantum Grassmannian $\mathscr{O}_q(\operatorname{Gr}(k,n))$ is the subalgebra of $\mathscr{O}_q(\operatorname{M}(k,n))$ generated by the quantum Plücker coordinates

$$\mathscr{P}_q(k,n) = \{\Delta_q^I \mid I \subseteq \{1,\ldots,n\}, |I| = k\}.$$

Here if $I = \{i_1 < i_2 < \cdots < i_k\}$ is a *k*-subset of $\{1, \ldots, n\}$ then we define

$$\Delta_q^I \stackrel{ ext{def}}{=} \sum_{\sigma \in S_k} (-q)^{l(\sigma)} X_{1i_{\sigma(1)}} \cdots X_{ki_{\sigma(k)}}$$

where S_k is the symmetric group of degree k and l is the usual length function on this, e.g. $\Delta_q^{ij} = X_{1i}X_{2j} - qX_{1j}X_{2i} \in \mathcal{O}_q(\operatorname{Gr}(2, n)).$

The quantum Grassmannian $\mathscr{O}_q(\operatorname{Gr}(k,n))$ is a finitely generated \mathbb{Z}^n -graded noncommutative \mathbb{K} -algebra of GK-dimension k(n-k)+1, is a noetherian domain and has semi-classical limit $\mathscr{O}(\operatorname{Gr}(k,n))$.

Quantum Grassmannians

The quantum Grassmannian $\mathscr{O}_q(\operatorname{Gr}(k,n))$ is the subalgebra of $\mathscr{O}_q(\operatorname{M}(k,n))$ generated by the quantum Plücker coordinates

$$\mathscr{P}_q(k,n) = \{\Delta_q^I \mid I \subseteq \{1,\ldots,n\}, |I| = k\}.$$

Here if $I = \{i_1 < i_2 < \cdots < i_k\}$ is a *k*-subset of $\{1, \ldots, n\}$ then we define

$$\Delta_q^I \stackrel{\text{def}}{=} \sum_{\sigma \in S_k} (-q)^{l(\sigma)} X_{1i_{\sigma(1)}} \cdots X_{ki_{\sigma(k)}}$$

where S_k is the symmetric group of degree k and l is the usual length function on this, e.g. $\Delta_q^{ij} = X_{1i}X_{2j} - qX_{1j}X_{2i} \in \mathcal{O}_q(\operatorname{Gr}(2, n)).$

The quantum Grassmannian $\mathcal{O}_q(\operatorname{Gr}(k,n))$ is a finitely generated \mathbb{Z}^n -graded noncommutative \mathbb{K} -algebra of GK-dimension k(n-k)+1, is a noetherian domain and has semi-classical limit $\mathcal{O}(\operatorname{Gr}(k,n))$.

J.E. Grabowski (Lancaster)

The *n*-cycle and quantum Grassmannians

As we noted before, the Grassmannian admits an action of the symmetric group S_n and hence so does $\mathscr{O}(\operatorname{Gr}(k,n))$, with permutations acting on Plücker coordinates by permuting their indexing sets. However Launois and Lenagan have shown that the *n*-cycle $c = (12 \cdots n)$ does not induce a corresponding automorphism of the quantum Grassmannian if $q^2 \neq 1$, in contrast to the classical situation.

To see this, one simply calculates in $\mathscr{O}_q(\operatorname{Gr}(2,4))$. We attempt to define an automorphism by

$$\theta(\Delta_q^{ij}) = \Delta_q^{(\widetilde{i+1})(\widetilde{j+1})}$$

on generating minors, extended linearly and multiplicatively. Here, \tilde{a} indicates that the index should be taken modulo n = 4 and from the set $\{1,2,3,4\}$. Applying this map to a short quantum Plücker relation and using the relations in $\mathcal{O}_q(\operatorname{Gr}(2,4))$ one finds a contradiction unless $q^2 = 1$.

The *n*-cycle and quantum Grassmannians

As we noted before, the Grassmannian admits an action of the symmetric group S_n and hence so does $\mathscr{O}(\operatorname{Gr}(k,n))$, with permutations acting on Plücker coordinates by permuting their indexing sets. However Launois and Lenagan have shown that the *n*-cycle $c = (12 \cdots n)$ does not induce a corresponding automorphism of the quantum Grassmannian if $q^2 \neq 1$, in contrast to the classical situation.

To see this, one simply calculates in $\mathcal{O}_q(\operatorname{Gr}(2,4))$. We attempt to define an automorphism by

$$\theta(\Delta_q^{ij}) = \Delta_q^{(\widetilde{i+1})(\widetilde{j+1})}$$

on generating minors, extended linearly and multiplicatively. Here, \tilde{a} indicates that the index should be taken modulo n = 4 and from the set $\{1,2,3,4\}$. Applying this map to a short quantum Plücker relation and using the relations in $\mathcal{O}_q(\operatorname{Gr}(2,4))$ one finds a contradiction unless $q^2 = 1$.

Twisting

Launois and Lenagan fixed this by twisting the quantum Grassmannian by a 2-cocycle. Their main theorem is that the twisted algebra $T(\mathscr{O}_q(\operatorname{Gr}(k,n)))$ is naturally isomorphic to the untwisted quantum Grassmannian $\mathscr{O}_q(\operatorname{Gr}(k,n))$ by an isomorphism

$$\Theta_0 \colon T(\mathscr{O}_q(\mathrm{Gr}(k,n))) \to \mathscr{O}_q(\mathrm{Gr}(k,n))$$

with

$$\Theta_0(T(\Delta_q^I)) = \lambda_I \Delta_q^{\widetilde{I+1}} = \lambda_I \Delta_q^{c(I)},$$

for $\lambda_I = 1$ if $n \notin I$, $\lambda_I = q^{-2}$ if $n \in I$. Here $\widetilde{I+1} = {\widetilde{i+1} \mid i \in I}$.

 $\text{For } \mathscr{O}_q(\text{Gr}(2,4)), \, \Theta_0(T(\Delta_q^{12})) = \Delta_q^{23} \text{ but } \Theta_0(T(\Delta_q^{14})) = q^{-2} \Delta_q^{12} \text{ for example.}$

That is, although c does not induce an automorphism of $\mathscr{O}_q(\operatorname{Gr}(k,n))$, there is an isomorphism of $\mathscr{O}_q(\operatorname{Gr}(k,n))$ with a twist of itself that behaves in the way we would like, up to some powers of q.

J.E. Grabowski (Lancaster)

Twisting

Launois and Lenagan fixed this by twisting the quantum Grassmannian by a 2-cocycle. Their main theorem is that the twisted algebra $T(\mathscr{O}_q(\operatorname{Gr}(k,n)))$ is naturally isomorphic to the untwisted quantum Grassmannian $\mathscr{O}_q(\operatorname{Gr}(k,n))$ by an isomorphism

$$\Theta_0 \colon T(\mathscr{O}_q(\mathrm{Gr}(k,n))) \to \mathscr{O}_q(\mathrm{Gr}(k,n))$$

with

$$\Theta_0(T(\Delta_q^I)) = \lambda_I \Delta_q^{\widetilde{I+1}} = \lambda_I \Delta_q^{c(I)},$$

for $\lambda_I = 1$ if $n \notin I$, $\lambda_I = q^{-2}$ if $n \in I$. Here $\widetilde{I+1} = {\widetilde{i+1} \mid i \in I}$.

 $\text{For } \mathscr{O}_q(\text{Gr}(2,4)), \, \Theta_0(T(\Delta_q^{12})) = \Delta_q^{23} \text{ but } \Theta_0(T(\Delta_q^{14})) = q^{-2} \Delta_q^{12} \text{ for example.}$

That is, although *c* does not induce an automorphism of $\mathscr{O}_q(\operatorname{Gr}(k,n))$, there is an isomorphism of $\mathscr{O}_q(\operatorname{Gr}(k,n))$ with a twist of itself that behaves in the way we would like, up to some powers of *q*.

J.E. Grabowski (Lancaster)

Allman and myself have obtained a quantum analogue of the action of D_{2n} , by using powers of the Launois–Lenagan cocycle and another similar cocycle to cycle by powers of c.

Twisting by powers of these cocycles, for each positive integer *l* we obtain algebras $T^l(\mathscr{O}_q(\operatorname{Gr}(k,n)))$ and $\tau^l(\mathscr{O}_q(\operatorname{Gr}(k,n)))$ and isomorphisms

$$\mathfrak{S}_{-l+1} \colon T^{l}(\mathscr{O}_{q}(\mathrm{Gr}(k,n))) \to T^{l-1}(\mathscr{O}_{q}(\mathrm{Gr}(k,n))), \quad T^{l}(\Delta_{q}^{l}) \mapsto \lambda_{l} T^{l-1}(\Delta_{q}^{c(l)})$$

$$\Theta_l \colon \tau^{l-1}(\mathscr{O}_q(\mathrm{Gr}(k,n))) \to \tau^l(\mathscr{O}_q(\mathrm{Gr}(k,n))), \quad \tau^{l-1}(\Delta_q^I) \mapsto \lambda_I \tau^l(\Delta_q^{c(l)})$$

This gives us our quantum rotations, by repeated composition.

A quantum dihedral action

For the analogue of the relation $c^n = 1$ we look at the composition of *n* consecutive isomorphisms: there is an isomorphism

$$\mathscr{O}_q(\mathrm{Gr}(k,n)) o au^n(\mathscr{O}_q(\mathrm{Gr}(k,n)))$$

 $\Delta^I_q \mapsto \Lambda_I(n) au^n(\Delta^{c^n(I)}_q) = \Lambda_I(n) au^n(\Delta^I_q)$

given by the composition $\Theta_n \Theta_{n-1} \cdots \Theta_1$. Here $\Lambda_I(n) = \prod_{s=1}^n \lambda_{c^{s-1}(I)}$ is fact independent of *I*: explicitly, $\Lambda_I(n) = q^{-2k}$ for any *I*.

For generic q, this map is not the identity, nor even a scalar multiple of it, but its classical limit is exactly the identity map on $\mathscr{O}(\operatorname{Gr}(k,n))$. Indeed, it is easy to see that any composition of the form $\Theta_{n+r-1}\Theta_{n+r-2}\cdots\Theta_{r+1}\Theta_r$, that is *n* consecutive Θ_i 's, also has this property.

A quantum dihedral action

The analogue of the action of w_0 arises from the observation that one may combine the maps

$$\begin{split} f \colon \mathscr{O}_q(\operatorname{Gr}(k,n)) &\to \mathscr{O}_{q^{-1}}(\operatorname{Gr}(k,n)), & \qquad f(\Delta_q^I) = \Delta_{q^{-1}}^I \\ g \colon \mathscr{O}_q(\operatorname{Gr}(k,n)) &\to \mathscr{O}_{q^{-1}}(\operatorname{Gr}(k,n)), & \qquad g(\Delta_q^I) = \Delta_{q^{-1}}^{w_0(I)} \end{split}$$

to obtain

$$\Omega_0 \stackrel{\text{\tiny def}}{=} g^{-1} \circ f \colon \mathscr{O}_q(\operatorname{Gr}(k,n)) \to \mathscr{O}_q(\operatorname{Gr}(k,n)), \qquad \Omega_0(\Delta_q^I) = \Delta_q^{w_0(I)},$$

an involutive anti-automorphism of $\mathcal{O}_q(\operatorname{Gr}(k,n))$. Setting

$$\Omega_l = (\Theta_l \Theta_{l-1} \cdots \Theta_1) \Omega_0 (\Theta_0 \Theta_{-1} \cdots \Theta_{-l+1})$$

gives a family of anti-automorphisms, our quantum reflections.

A quantum dihedral action

The analogue of the action of w_0 arises from the observation that one may combine the maps

$$\begin{split} f \colon \mathscr{O}_q(\operatorname{Gr}(k,n)) &\to \mathscr{O}_{q^{-1}}(\operatorname{Gr}(k,n)), & \qquad f(\Delta_q^I) = \Delta_{q^{-1}}^I \\ g \colon \mathscr{O}_q(\operatorname{Gr}(k,n)) &\to \mathscr{O}_{q^{-1}}(\operatorname{Gr}(k,n)), & \qquad g(\Delta_q^I) = \Delta_{q^{-1}}^{w_0(I)} \end{split}$$

to obtain

$$\Omega_0 \stackrel{\text{\tiny def}}{=} g^{-1} \circ f \colon \mathscr{O}_q(\operatorname{Gr}(k,n)) \to \mathscr{O}_q(\operatorname{Gr}(k,n)), \qquad \Omega_0(\Delta_q^I) = \Delta_q^{w_0(I)},$$

an involutive anti-automorphism of $\mathcal{O}_q(\operatorname{Gr}(k,n))$. Setting

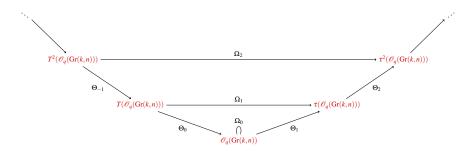
$$\Omega_l = (\Theta_l \Theta_{l-1} \cdots \Theta_1) \Omega_0 (\Theta_0 \Theta_{-1} \cdots \Theta_{-l+1})$$

gives a family of anti-automorphisms, our quantum reflections.

J.E. Grabowski (Lancaster)

A quantum dihedral groupoid

We can interpret these results as saying that the dihedral subgroup $\langle c, w_0 \rangle \cong D_{2n}$ of the automorphism group S_n of Gr(k, n) has been quantized (and/or categorified) by an automorphism groupoid



Orbits on the set of torus-invariant prime ideals

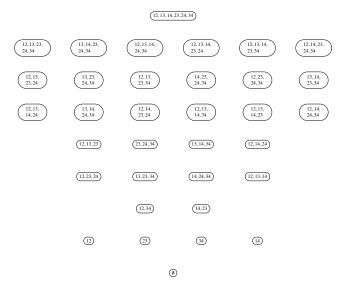
The quantum Grassmannian also admits an action of the torus $T_n \cong (\mathbb{K}^*)^n$. The above isomorphisms induce a dihedral group action on the set of torus-invariant prime ideals of $\mathscr{O}_q(\operatorname{Gr}(k,n))$.

For given a torus-invariant prime ideal *P* of $\mathscr{O}_q(\operatorname{Gr}(k,n))$, we can apply the vector space isomorphism *T* to obtain $T(P) \subseteq T(\mathscr{O}_q(\operatorname{Gr}(k,n)))$. It is easy to see that T(P) is a torus-invariant prime ideal of $T(\mathscr{O}_q(\operatorname{Gr}(k,n)))$. Then $\Theta_0(T(P)) \subseteq \mathscr{O}_q(\operatorname{Gr}(k,n))$ is a torus-invariant prime ideal, since Θ_0 is an algebra isomorphism.

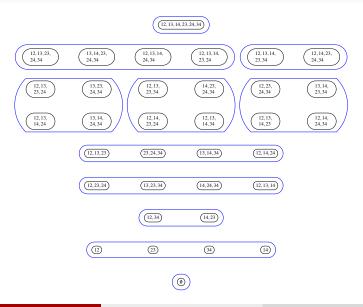
Similarly, since Ω_0 is an anti-automorphism of $\mathscr{O}_q(\operatorname{Gr}(k,n))$, it also sends torus-invariant prime ideals to torus-invariant prime ideals.

We illustrate this by showing the orbits for this action in the case of $\mathcal{O}_q(\operatorname{Gr}(2,4))$.

Orbits on torus-invariant prime ideals for $\mathcal{O}_q(Gr(2,4))$



Orbits on torus-invariant prime ideals for $\mathcal{O}_q(Gr(2,4))$



Orbits on torus-invariant prime ideals for $\mathcal{O}_q(Gr(2,4))$

