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Aim of the Talk

Fix a commutative ring k and a k-algebra A. Let
Aev := A⊗k Aop be the enveloping algebra of A.

Well-known fact: HH•(A) is a Gerstenhaber k-algebra
(G-algebra), i.e. it also has a graded Lie-bracket

{−,−} : HHm(A)×HHn(A)→ HHm+n−1(A),

satisfying the graded Poisson identity.

If A is projective over k , then HH•(A) ∼= Ext•Aev(A,A).
 Categorical interpretation of {−,−} (Schwede, 1998).
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Our goal:

Use Schwede’s construction to obtain a bracket on

H•(E,1) := Ext•E(1,1),

where (E,⊗,1) is a ’nice’ exact monoidal category.

Reiner Hermann A Bracket for Monoidal Categories



Aim of the Talk
Extension Categories and Extension Algebras

The Bracket and its Properties
Applications

Aim of the Talk

Our goal: Use Schwede’s construction to obtain a bracket on

H•(E,1) := Ext•E(1,1),

where (E,⊗,1) is a ’nice’ exact monoidal category.

Reiner Hermann A Bracket for Monoidal Categories



Aim of the Talk
Extension Categories and Extension Algebras

The Bracket and its Properties
Applications

Exact Categories and Extensions
Exact Monoidal Categories

Exact Categories and Extensions

E = a (small) exact k-linear category,

i.e.

a (small) k-linear additive category E plus

an embedding i : E→ A, A k-linear abelian

s.t. iE is an extension closed subcategory of A.

Call 0→ Y → E → X → 0 in E admissible short exact
sequence, if i(0→ Y → E → X → 0) is exact in A.

A sequence

s(X ,Y ) ≡ 0→ Y → En−1 → · · · → E1 → E0 → X → 0

in E is an admissible exact sequence (a.e.s.) if it decomposes
into admissible short exact sequences.

Abbreviation: s(X ,Y ) ≡ 0→ Y → E→ X → 0.
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Exact Categories and Extensions

Fix n ≥ 1 and X ,Y ∈ ObE.

ExtnE(X ,Y ) = category of a.e.s. with n middle terms, i.e.

Objects: a.e.s. s(X ,Y ) ≡ 0→ Y → E→ X → 0, where E
is a complex in E concentrated in degrees 0 up to n − 1

Morphisms s(X ,Y )→ s′(X ,Y ): morphisms f : E→ E′ of
complexes s.t. the following commutes:

s(X ,Y )

��

≡ 0 // Y // E //

f

��

X // 0

s′(X ,Y ) ≡ 0 // Y // E′ // X // 0 .
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Exact Categories and Extensions

Quillen: Description of lower homotopy groups. Let C be a small
category.

π0C = ObC/ ∼, where ∼ is the equivalence relation on ObC
generated by the morphisms in C.

For X ∈ ObC, π1(C,X ) = EndC[Mor−1](X ).

More concretely: L(C,X ) = {loops at X}, i.e. the set of
zig-zags

X → X1 ← X2 → · · · ← Xn → X .

in C.

Then: π1(C,X ) = L(C,X )/homotopy relations.
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Exact Categories and Extensions

Put ExtnE(X ,Y ) := π0ExtnE(X ,Y ).

Baer sum and Yoneda product  graded k-algebra structure
on

Ext•E(X ,X ) :=
⊕
n≥0

ExtnE(X ,X ).

Retakh, Neeman-Retakh: For any X ,Y ∈ ObE, n ≥ 1,

ExtnE(X ,Y ) = π0ExtnE(X ,Y ) ∼= π1(Extn+1
E (X ,Y ), s(X ,Y )).

 π1(Extn+1
E (X ,Y ), s(X ,Y )) is an abelian group and

independent of the base point.
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Exact Monoidal Categories

Assume that E additionally carries a monoidal structure,

i.e.

it has a tensor product functor

−⊗− : E× E→ E

coming with

a tensor unit 1 ∈ ObE (1⊗ X ∼= X ∼= X ⊗ 1 naturally,
X ∈ ObE).

Moreover assume that

every object in E is flat, i.e. −⊗ X is an exact functor for
every X ∈ ObE,

E is closed under kernels of epimorphisms.
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Exact Monoidal Categories (Examples)

1 P := A ProjA ⊆ Mod(Aev) full subcategory of Aev-modules
which are projective on each side. P is extension closed and
monoidal with exact tensor functor ⊗A and tensor unit A.

2 H a Hopf k-algebra. M := Mod(H) ∩ Proj(k) ⊆ Mod(H) is
extension closed with exact tensor product ⊗k and tensor unit
k .

3 A a k-linear abelian category. The category F := Endk(A) is
k-linear abelian. It is also monoidal, with tensor functor given
by the composition of functors ◦ and tensor unit IdA.
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Exact Monoidal Categories (Examples)

Take the Ext-algebra of the tensor unit  interesting cohomology
theories.

1 H•(P,A) = Ext•P(A,A) ∼= Ext•Aev (A,A)
(Hochschild cohomology)

2 H•(M, k) = Ext•M(k, k) ∼= Ext•H(k, k)
(cohomology of Hopf algebras)

3 H•(F, IdA) = Ext•F(IdA, IdA) =: HH•(A)
(Hochschild cohomology of abelian categories)
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The Bracket and its Properties

Eckmann-Hilton argument: H•(E,1) := Ext•E(1,1) is a
graded commutative k-algebra.

Our setting admits an alternative way to see this.

The tensor functor on E yields

−�− : ExtmE (1,1)× ExtnE(1,1)→ Extm+n
E (1,1).

 Loop in π1(Extm+n
E (1,1), s� t) ∼= Extm+n−1(1,1) for all

sequences s := s(1,1), t := t(1,1) with |s| = m, |t| = n.
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Loop in π1(Extm+n
E (1,1), s� t) ∼= Extm+n−1(1,1) for sequences

s := s(1,1), t := t(1,1) with |s| = m, |t| = n.
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Upper hemisphere of the loop  H•(E,1) is graded commutative.
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We obtain a k-linear map

[−,−] : ExtmE (1,1)⊗k Ext
n
E(1,1)→ Extm+n−1

E (1,1).

Lemma

Let E′ be another k-linear exact and monoidal category having the
same properties as E. Let F : E→ E′ be an exact and monoidal
functor. Then F [−,−] = [F(−),F(−)]′.

Proposition

Suppose that the monoidal structure on E admits a braiding, that
is ’nice’ natural morphisms γX ,Y : X ⊗ Y → Y ⊗ X , X ,Y ∈ ObE.
Then [−,−] is the zero map.
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Hochschild Cohomology of Hopf Algebras

H = Hopf k-algebra, projective over k (e.g. H = kG , G a finite
group).

Cohomology ring of H: H•(H, k) = Ext•H(k , k).

Have a well-defined functor F := −⊗k H : Mod(H)→ Mod(Hev).

Lemma

The functor F gives rise to an exact and monoidal functor

F : M = Mod(H) ∩ Proj(k)→ H ProjH = P.

Moreover, it induces a split monomorphism of graded k-algebras:

H•(H, k) ∼= Ext•M(k , k)→ Ext•P(H,H) ∼= HH•(H).
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Hochschild Cohomology of Hopf Algebras

Fact: H cocommutative Hopf k-algebra  braiding on M.

The Lemma and the Proposition of the previous section lead to:

Theorem

Let H be a cocommutative Hopf k-algebra being projective over k.
Then the restriction of {−,−} on HH•(H) to the subring
H•(H, k) ⊆ HH•(H) is zero:

{H•(H, k),H•(H, k)} = 0.
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Perspectives

Schwede’s Theorem  H•(E,1) is a Gerstenhaber k-algebra
for E ∈ {A ProjA, Endk(Mod(A))}, if A is k-projective.

Still true if we drop the projectivity assumption?

More generally: Can we proof the Gerstenhaber structure for
E = Endk(A), A a k-linear abelian category (possibly under
additional assumptions)?

If this also should fail, the time has come for doubts to arise.
Generate a counterexample?

Ultimative dream: Show that H•(E,1) is a Gerstenhaber
k-algebra for general E!
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The End

Thank you for your attention!
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