A Bracket for Monoidal Categories

Reiner Hermann

August 16, 2012

Reiner Hermann A Bracket for Monoidal Categories

・ロト ・回ト ・ヨト

< ≣ >

Table of Contents

1 Aim of the Talk

- 2 Extension Categories and Extension Algebras
 - Exact Categories and Extensions
 - Exact Monoidal Categories
- 3 The Bracket and its Properties

4 Applications

- Hochschild Cohomology of Hopf Algebras
- Perspectives

A (1) > A (1) > A

Aim of the Talk

Fix a commutative ring k and a k-algebra A. Let A^{ev} := A ⊗_k A^{op} be the enveloping algebra of A.

イロト イヨト イヨト イヨト

æ

Aim of the Talk

- Fix a commutative ring k and a k-algebra A. Let $A^{ev} := A \otimes_k A^{op}$ be the enveloping algebra of A.
- Well-known fact: HH•(A) is a Gerstenhaber k-algebra (G-algebra), i.e. it also has a graded Lie-bracket

 $\{-,-\}$: HH^m(A) × HHⁿ(A) → HH^{m+n-1}(A),

satisfying the graded Poisson identity.

イロン イヨン イヨン イヨン

Aim of the Talk

- Fix a commutative ring k and a k-algebra A. Let $A^{ev} := A \otimes_k A^{op}$ be the enveloping algebra of A.
- Well-known fact: HH•(A) is a Gerstenhaber k-algebra (G-algebra), i.e. it also has a graded Lie-bracket

 $\{-,-\}$: HH^m(A) × HHⁿ(A) → HH^{m+n-1}(A),

satisfying the graded Poisson identity.

If A is projective over k, then HH[●](A) ≅ Ext[●]_{Aev}(A, A).
→ Categorical interpretation of {-, -} (Schwede, 1998).

・ロト ・回ト ・ヨト ・ヨト

Aim of the Talk

Our goal:

Reiner Hermann A Bracket for Monoidal Categories

・ロン ・回 と ・ ヨン ・ ヨン

æ

Aim of the Talk

Our goal: Use Schwede's construction to obtain a bracket on

$$\mathrm{H}^{\bullet}(\mathcal{E},\mathbb{1}):=\mathrm{Ext}^{\bullet}_{\mathcal{E}}(\mathbb{1},\mathbb{1}),$$

where $(\mathcal{E}, \otimes, \mathbb{1})$ is a 'nice' exact monoidal category.

・ロン ・回と ・ヨン・

æ

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

 $\mathcal{E} = a \text{ (small) exact } k \text{-linear category,}$

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

- $\mathcal{E} = a \text{ (small) exact } k \text{-linear category, i.e.}$
 - a (small) k-linear additive category \mathcal{E} plus
 - an embedding $i : \mathcal{E} \to \mathcal{A}$, \mathcal{A} k-linear abelian
- s.t. $i\mathcal{E}$ is an extension closed subcategory of \mathcal{A} .

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

- $\mathcal{E} = a \text{ (small) exact } k \text{-linear category, i.e.}$
 - a (small) k-linear additive category \mathcal{E} plus
 - an embedding $i : \mathcal{E} \to \mathcal{A}, \mathcal{A}$ k-linear abelian
- s.t. $i\mathcal{E}$ is an extension closed subcategory of \mathcal{A} .

Call $0 \to Y \to E \to X \to 0$ in \mathcal{E} admissible short exact sequence, if $i(0 \to Y \to E \to X \to 0)$ is exact in \mathcal{A} .

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

- $\mathcal{E} = a \text{ (small) exact } k\text{-linear category, i.e.}$
 - a (small) k-linear additive category \mathcal{E} plus
 - an embedding $i : \mathcal{E} \to \mathcal{A}$, \mathcal{A} k-linear abelian
- s.t. $i\mathcal{E}$ is an extension closed subcategory of \mathcal{A} .

Call $0 \to Y \to E \to X \to 0$ in \mathcal{E} admissible short exact sequence, if $i(0 \to Y \to E \to X \to 0)$ is exact in \mathcal{A} .

A sequence

 $\mathsf{s}(X,Y) \quad \equiv \quad 0 \to Y \to E_{n-1} \to \dots \to E_1 \to E_0 \to X \to 0$

in \mathcal{E} is an **admissible exact sequence** (a.e.s.) if it decomposes into admissible short exact sequences.

(ロ) (同) (E) (E) (E)

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

- $\mathcal{E} = a \text{ (small) exact } k\text{-linear category, i.e.}$
 - a (small) k-linear additive category \mathcal{E} plus
 - an embedding $i : \mathcal{E} \to \mathcal{A}$, \mathcal{A} k-linear abelian
- s.t. $i\mathcal{E}$ is an extension closed subcategory of \mathcal{A} .

Call $0 \to Y \to E \to X \to 0$ in \mathcal{E} admissible short exact sequence, if $i(0 \to Y \to E \to X \to 0)$ is exact in \mathcal{A} .

A sequence

 $\mathsf{s}(X,Y) \quad \equiv \quad 0 \to Y \to E_{n-1} \to \dots \to E_1 \to E_0 \to X \to 0$

in \mathcal{E} is an **admissible exact sequence** (a.e.s.) if it decomposes into admissible short exact sequences.

Abbreviation: $s(X, Y) \equiv 0 \rightarrow Y \rightarrow \mathbb{E} \rightarrow X \rightarrow 0_{\text{B}}$

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

Fix $n \ge 1$ and $X, Y \in Ob\mathcal{E}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

Fix $n \ge 1$ and $X, Y \in Ob\mathcal{E}$.

 $\mathcal{E}xt^n_{\mathcal{E}}(X,Y) = \text{category of a.e.s. with } n \text{ middle terms}$

・ロン ・回と ・ヨン・

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

Fix $n \ge 1$ and $X, Y \in Ob\mathcal{E}$.

 $\mathcal{E} \times t_{\mathcal{E}}^n(X, Y) =$ category of a.e.s. with *n* middle terms, i.e.

Objects: a.e.s. s(X, Y) ≡ 0 → Y → E → X → 0, where E is a complex in *E* concentrated in degrees 0 up to n − 1

・ロン ・回 と ・ ヨ と ・ ヨ と

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

Fix $n \ge 1$ and $X, Y \in Ob\mathcal{E}$.

 $\mathcal{E}xt^n_{\mathcal{E}}(X,Y) =$ category of a.e.s. with *n* middle terms, i.e.

- Objects: a.e.s. s(X, Y) ≡ 0 → Y → E → X → 0, where E is a complex in *E* concentrated in degrees 0 up to n − 1
- Morphisms s(X, Y) → s'(X, Y): morphisms f : E → E' of complexes s.t. the following commutes:

イロン イ部ン イヨン イヨン 三日

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

Quillen: Description of lower homotopy groups. Let \mathcal{C} be a small category.

イロン 不同と 不同と 不同と

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

Quillen: Description of lower homotopy groups. Let \mathcal{C} be a small category.

• $\pi_0 C = ObC / \sim$, where \sim is the equivalence relation on ObC generated by the morphisms in C.

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

Quillen: Description of lower homotopy groups. Let \mathcal{C} be a small category.

- $\pi_0 C = ObC / \sim$, where \sim is the equivalence relation on ObC generated by the morphisms in C.
- For $X \in \text{ObC}$, $\pi_1(\mathcal{C}, X) = \text{End}_{\mathcal{C}[\mathsf{Mor}^{-1}]}(X)$.

イロン イヨン イヨン イヨン

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

Quillen: Description of lower homotopy groups. Let \mathcal{C} be a small category.

- $\pi_0 C = ObC / \sim$, where \sim is the equivalence relation on ObC generated by the morphisms in C.
- For $X \in \text{ObC}$, $\pi_1(\mathcal{C}, X) = \text{End}_{\mathcal{C}[\mathsf{Mor}^{-1}]}(X)$.

More concretely: $\mathcal{L}(\mathcal{C}, X) = \{\text{loops at } X\}$, i.e. the set of zig-zags

$$X \to X_1 \leftarrow X_2 \to \cdots \leftarrow X_n \to X.$$

in C.

Then: $\pi_1(\mathcal{C}, X) = \mathcal{L}(\mathcal{C}, X)$ /homotopy relations.

・ロン ・回 と ・ 回 と ・ 回 と

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

• Put $\operatorname{Ext}_{\mathcal{E}}^{n}(X,Y) := \pi_{0}\mathcal{E}xt_{\mathcal{E}}^{n}(X,Y).$

イロト イヨト イヨト イヨト

æ

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

• Put
$$\operatorname{Ext}_{\mathcal{E}}^{n}(X,Y) := \pi_{0}\mathcal{E}xt_{\mathcal{E}}^{n}(X,Y).$$

Baer sum and Yoneda product \rightsquigarrow graded *k*-algebra structure on

$$\operatorname{Ext}_{\mathcal{E}}^{\bullet}(X,X) := \bigoplus_{n \ge 0} \operatorname{Ext}_{\mathcal{E}}^{n}(X,X).$$

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

• Put
$$\operatorname{Ext}_{\mathcal{E}}^{n}(X,Y) := \pi_{0}\mathcal{E}xt_{\mathcal{E}}^{n}(X,Y).$$

Baer sum and Yoneda product \rightsquigarrow graded *k*-algebra structure on

$$\operatorname{Ext}_{\mathcal{E}}^{\bullet}(X,X) := \bigoplus_{n \ge 0} \operatorname{Ext}_{\mathcal{E}}^{n}(X,X).$$

• Retakh, Neeman-Retakh: For any $X, Y \in Ob\mathcal{E}, n \ge 1$,

 $\operatorname{Ext}_{\mathcal{E}}^{n}(X,Y) = \pi_{0} \mathcal{E}xt_{\mathcal{E}}^{n}(X,Y) \cong \pi_{1}(\mathcal{E}xt_{\mathcal{E}}^{n+1}(X,Y),\mathsf{s}(X,Y)).$

・ロト ・回ト ・ヨト ・ヨト

Exact Categories and Extensions Exact Monoidal Categories

Exact Categories and Extensions

• Put
$$\operatorname{Ext}_{\mathcal{E}}^{n}(X,Y) := \pi_{0}\mathcal{E}xt_{\mathcal{E}}^{n}(X,Y).$$

Baer sum and Yoneda product \rightsquigarrow graded *k*-algebra structure on

$$\operatorname{Ext}_{\mathcal{E}}^{\bullet}(X,X) := \bigoplus_{n \ge 0} \operatorname{Ext}_{\mathcal{E}}^{n}(X,X).$$

• Retakh, Neeman-Retakh: For any $X, Y \in Ob\mathcal{E}, n \ge 1$,

 $\operatorname{Ext}_{\mathcal{E}}^{n}(X,Y) = \pi_{0}\mathcal{E}xt_{\mathcal{E}}^{n}(X,Y) \cong \pi_{1}(\mathcal{E}xt_{\mathcal{E}}^{n+1}(X,Y),\mathsf{s}(X,Y)).$

 $\rightsquigarrow \pi_1(\mathcal{E} \times t_{\mathcal{E}}^{n+1}(X, Y), s(X, Y))$ is an abelian group and independent of the base point.

・ロン ・回と ・ヨン ・ヨン

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories

Assume that \mathcal{E} additionally carries a monoidal structure,

イロト イヨト イヨト イヨト

æ

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories

Assume that \mathcal{E} additionally carries a monoidal structure, i.e.

• it has a tensor product functor

$$3 \leftarrow 3 \times 3 : - \otimes -$$

coming with

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories

Assume that \mathcal{E} additionally carries a monoidal structure, i.e.

• it has a tensor product functor

$$3 \leftarrow 3 \times 3 : - \otimes -$$

coming with

• a tensor unit $\mathbb{1} \in \text{Ob}\mathcal{E}$ ($\mathbb{1} \otimes X \cong X \cong X \otimes \mathbb{1}$ naturally, $X \in \text{Ob}\mathcal{E}$).

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories

Assume that \mathcal{E} additionally carries a monoidal structure, i.e.

• it has a tensor product functor

$$3 \leftarrow 3 \times 3 : - \otimes -$$

coming with

• a tensor unit $1 \in Ob\mathcal{E}$ $(1 \otimes X \cong X \cong X \otimes 1$ naturally, $X \in Ob\mathcal{E}$).

Moreover assume that

 every object in *E* is *flat*, i.e. − ⊗ X is an exact functor for every X ∈ Ob*E*,

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories

Assume that \mathcal{E} additionally carries a monoidal structure, i.e.

• it has a tensor product functor

$$3 \leftarrow 3 \times 3 : - \otimes -$$

coming with

• a tensor unit $\mathbb{1} \in \text{Ob}\mathcal{E}$ ($\mathbb{1} \otimes X \cong X \cong X \otimes \mathbb{1}$ naturally, $X \in \text{Ob}\mathcal{E}$).

Moreover assume that

- every object in *E* is *flat*, i.e. − ⊗ X is an exact functor for every X ∈ Ob*E*,
- \mathcal{E} is closed under kernels of epimorphisms.

・ロト ・日本 ・モート ・モート

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories (Examples)

・ロン ・回と ・ヨン ・ヨン

æ

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories (Examples)

P := A Proj_A ⊆ Mod(A^{ev}) full subcategory of A^{ev}-modules which are projective on each side. P is extension closed and monoidal with exact tensor functor ⊗_A and tensor unit A.

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories (Examples)

- P := A Proj_A ⊆ Mod(A^{ev}) full subcategory of A^{ev}-modules which are projective on each side. P is extension closed and monoidal with exact tensor functor ⊗_A and tensor unit A.
- *H* a Hopf *k*-algebra. M := Mod(*H*) ∩ Proj(*k*) ⊆ Mod(*H*) is extension closed with exact tensor product ⊗_k and tensor unit *k*.

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories (Examples)

- P := A Proj_A ⊆ Mod(A^{ev}) full subcategory of A^{ev}-modules which are projective on each side. P is extension closed and monoidal with exact tensor functor ⊗_A and tensor unit A.
- *H* a Hopf k-algebra. M := Mod(H) ∩ Proj(k) ⊆ Mod(H) is extension closed with exact tensor product ⊗_k and tensor unit k.
- A a k-linear abelian category. The category \(\mathcal{F}\) := End_k(\(\mathcal{A}\)) is k-linear abelian.

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories (Examples)

- P := A Proj_A ⊆ Mod(A^{ev}) full subcategory of A^{ev}-modules which are projective on each side. P is extension closed and monoidal with exact tensor functor ⊗_A and tensor unit A.
- *H* a Hopf k-algebra. M := Mod(H) ∩ Proj(k) ⊆ Mod(H) is extension closed with exact tensor product ⊗_k and tensor unit k.
- A a k-linear abelian category. The category F := End_k(A) is k-linear abelian. It is also monoidal, with tensor functor given by the composition of functors ∘ and tensor unit Id_A.

・ロン ・回 と ・ ヨ と ・ ヨ と

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories (Examples)

Take the Ext-algebra of the tensor unit \rightsquigarrow interesting cohomology theories.

Exact Categories and Extensions Exact Monoidal Categories

Exact Monoidal Categories (Examples)

Take the Ext-algebra of the tensor unit \rightsquigarrow interesting cohomology theories.

- $\mathrm{H}^{\bullet}(\mathcal{P}, A) = \mathrm{Ext}^{\bullet}_{\mathcal{P}}(A, A) \cong \mathrm{Ext}^{\bullet}_{A^{ev}}(A, A)$ (Hochschild cohomology)
- ② H[●](M, k) = Ext[●]_M(k, k) ≃ Ext[●]_H(k, k) (cohomology of Hopf algebras)
- H[•](𝔅, Id_𝔅) = Ext[•]_𝔅(Id_𝔅, Id_𝔅) =: HH[•](𝔅) (Hochschild cohomology of abelian categories)

・ロン ・回と ・ヨン ・ヨン

The Bracket and its Properties

Eckmann-Hilton argument: H[●](E, 1) := Ext[●]_E(1, 1) is a graded commutative k-algebra.

イロン イヨン イヨン イヨン

The Bracket and its Properties

- Eckmann-Hilton argument: H[●](E, 1) := Ext[●]_E(1, 1) is a graded commutative k-algebra.
- Our setting admits an alternative way to see this.

イロン イヨン イヨン イヨン

The Bracket and its Properties

- Eckmann-Hilton argument: H[●](E, 1) := Ext[●]_E(1, 1) is a graded commutative k-algebra.
- Our setting admits an alternative way to see this.

The tensor functor on $\mathcal E$ yields

$$-\boxtimes -: \operatorname{Ext}_{\mathcal{E}}^{m}(\mathbb{1},\mathbb{1}) \times \operatorname{Ext}_{\mathcal{E}}^{n}(\mathbb{1},\mathbb{1}) \to \operatorname{Ext}_{\mathcal{E}}^{m+n}(\mathbb{1},\mathbb{1}).$$

The Bracket and its Properties

- Eckmann-Hilton argument: H[●](E, 1) := Ext[●]_E(1, 1) is a graded commutative k-algebra.
- Our setting admits an alternative way to see this.

The tensor functor on \mathcal{E} yields

$$-\boxtimes -: \operatorname{Ext}_{\mathcal{E}}^{m}(\mathbb{1},\mathbb{1}) \times \operatorname{Ext}_{\mathcal{E}}^{n}(\mathbb{1},\mathbb{1}) \to \operatorname{Ext}_{\mathcal{E}}^{m+n}(\mathbb{1},\mathbb{1}).$$

 $\stackrel{\text{$\sim \rightarrow Loop in $\pi_1(\mathcal{E}xt_{\mathcal{E}}^{m+n}(\mathbb{1},\mathbb{1}), s \boxtimes t) \cong \operatorname{Ext}^{m+n-1}(\mathbb{1},\mathbb{1})$ for all sequences $s := s(1,1), t := t(1,1)$ with $|s| = m$, $|t| = n$. }$

The Bracket and its Properties

Loop in $\pi_1(\mathcal{E} \times t_{\mathcal{E}}^{m+n}(\mathbb{1},\mathbb{1}), \mathsf{s} \boxtimes \mathsf{t}) \cong \operatorname{Ext}^{m+n-1}(\mathbb{1},\mathbb{1})$ for sequences $\mathsf{s} := \mathsf{s}(\mathbb{1},\mathbb{1}), \mathsf{t} := \mathsf{t}(\mathbb{1},\mathbb{1})$ with $|\mathsf{s}| = m, |\mathsf{t}| = n$.

Upper hemisphere of the loop $\rightsquigarrow H^{\bullet}(\mathcal{E}, \mathbb{1})$ is graded commutative.

The Bracket and its Properties

We obtain a k-linear map

[-,-]: $\operatorname{Ext}_{\mathcal{E}}^{m}(\mathbb{1},\mathbb{1})\otimes_{k}\operatorname{Ext}_{\mathcal{E}}^{n}(\mathbb{1},\mathbb{1}) \to \operatorname{Ext}_{\mathcal{E}}^{m+n-1}(\mathbb{1},\mathbb{1}).$

イロト イヨト イヨト イヨト

2

The Bracket and its Properties

We obtain a k-linear map

[-,-]: $\operatorname{Ext}_{\mathcal{E}}^{m}(\mathbb{1},\mathbb{1})\otimes_{k}\operatorname{Ext}_{\mathcal{E}}^{n}(\mathbb{1},\mathbb{1}) \to \operatorname{Ext}_{\mathcal{E}}^{m+n-1}(\mathbb{1},\mathbb{1}).$

Lemma

Let \mathcal{E}' be another k-linear exact and monoidal category having the same properties as \mathcal{E} . Let $\mathcal{F} : \mathcal{E} \to \mathcal{E}'$ be an exact and monoidal functor. Then $\mathcal{F}[-,-] = [\mathcal{F}(-), \mathcal{F}(-)]'$.

The Bracket and its Properties

We obtain a k-linear map

[-,-]: $\operatorname{Ext}_{\mathcal{E}}^{m}(\mathbb{1},\mathbb{1})\otimes_{k}\operatorname{Ext}_{\mathcal{E}}^{n}(\mathbb{1},\mathbb{1}) \to \operatorname{Ext}_{\mathcal{E}}^{m+n-1}(\mathbb{1},\mathbb{1}).$

Lemma

Let \mathcal{E}' be another k-linear exact and monoidal category having the same properties as \mathcal{E} . Let $\mathcal{F} : \mathcal{E} \to \mathcal{E}'$ be an exact and monoidal functor. Then $\mathcal{F}[-,-] = [\mathcal{F}(-), \mathcal{F}(-)]'$.

Proposition

Suppose that the monoidal structure on \mathcal{E} admits a braiding, that is 'nice' natural morphisms $\gamma_{X,Y} : X \otimes Y \to Y \otimes X, X, Y \in Ob\mathcal{E}$. Then [-,-] is the zero map.

Hochschild Cohomology of Hopf Algebras Perspectives

Hochschild Cohomology of Hopf Algebras

H = Hopf k-algebra, projective over k (e.g. H = kG, G a finite group).

イロト イヨト イヨト イヨト

2

Hochschild Cohomology of Hopf Algebras Perspectives

Hochschild Cohomology of Hopf Algebras

H = Hopf k-algebra, projective over k (e.g. H = kG, G a finite group).

Cohomology ring of H: $H^{\bullet}(H, k) = Ext_{H}^{\bullet}(k, k)$.

(ロ) (同) (E) (E) (E)

Hochschild Cohomology of Hopf Algebras Perspectives

Hochschild Cohomology of Hopf Algebras

H = Hopf k-algebra, projective over k (e.g. H = kG, G a finite group).

Cohomology ring of H: $H^{\bullet}(H, k) = Ext^{\bullet}_{H}(k, k)$.

Have a well-defined functor $\mathcal{F} := - \otimes_k H : Mod(H) \to Mod(H^{ev})$.

(ロ) (同) (E) (E) (E)

Hochschild Cohomology of Hopf Algebras Perspectives

Hochschild Cohomology of Hopf Algebras

H = Hopf k-algebra, projective over k (e.g. H = kG, G a finite group).

Cohomology ring of H: $H^{\bullet}(H, k) = Ext^{\bullet}_{H}(k, k)$.

Have a well-defined functor $\mathcal{F} := - \otimes_k H : Mod(H) \to Mod(H^{ev})$.

Lemma

The functor \mathcal{F} gives rise to an exact and monoidal functor

$$\mathcal{F}: \mathfrak{M} = \mathsf{Mod}(H) \cap \mathsf{Proj}(k) \to {}_{H} \mathsf{Proj}_{H} = \mathfrak{P}.$$

Hochschild Cohomology of Hopf Algebras Perspectives

Hochschild Cohomology of Hopf Algebras

H = Hopf k-algebra, projective over k (e.g. H = kG, G a finite group).

Cohomology ring of H: $H^{\bullet}(H, k) = Ext^{\bullet}_{H}(k, k)$.

Have a well-defined functor $\mathcal{F} := - \otimes_k H : Mod(H) \to Mod(H^{ev})$.

Lemma

The functor \mathcal{F} gives rise to an exact and monoidal functor

$$\mathcal{F}: \mathfrak{M} = \mathsf{Mod}(H) \cap \mathsf{Proj}(k) \to {}_{H} \mathsf{Proj}_{H} = \mathfrak{P}.$$

Moreover, it induces a split monomorphism of graded k-algebras:

 $\mathrm{H}^{\bullet}(H,k) \cong \mathrm{Ext}^{\bullet}_{\mathcal{M}}(k,k) \to \mathrm{Ext}^{\bullet}_{\mathcal{P}}(H,H) \cong \mathrm{HH}^{\bullet}(H).$

く ヨト くヨト

Hochschild Cohomology of Hopf Algebras Perspectives

Hochschild Cohomology of Hopf Algebras

Fact: *H* cocommutative Hopf *k*-algebra \rightsquigarrow braiding on \mathcal{M} .

イロト イヨト イヨト イヨト

3

Hochschild Cohomology of Hopf Algebras Perspectives

Hochschild Cohomology of Hopf Algebras

Fact: *H* cocommutative Hopf *k*-algebra \rightsquigarrow braiding on \mathcal{M} .

The Lemma and the Proposition of the previous section lead to:

Hochschild Cohomology of Hopf Algebras Perspectives

Hochschild Cohomology of Hopf Algebras

Fact: *H* cocommutative Hopf *k*-algebra \rightsquigarrow braiding on \mathcal{M} .

The Lemma and the Proposition of the previous section lead to:

Theorem

Let H be a cocommutative Hopf k-algebra being projective over k. Then the restriction of $\{-,-\}$ on $HH^{\bullet}(H)$ to the subring $H^{\bullet}(H, k) \subseteq HH^{\bullet}(H)$ is zero:

 $\{\mathrm{H}^{\bullet}(H,k),\mathrm{H}^{\bullet}(H,k)\}=0.$

イロン イヨン イヨン イヨン

 Schwede's Theorem → H[•](E, 1) is a Gerstenhaber k-algebra for E ∈ {_A Proj_A, End_k(Mod(A))}, if A is k-projective.

Hochschild Cohomology of Hopf Algebras Perspectives

Perspectives

 Schwede's Theorem ~→ H[•](E, 1) is a Gerstenhaber k-algebra for E ∈ {_A Proj_A, End_k(Mod(A))}, if A is k-projective.

Still true if we drop the projectivity assumption?

Hochschild Cohomology of Hopf Algebras Perspectives

Perspectives

 Schwede's Theorem → H[•](E, 1) is a Gerstenhaber k-algebra for E ∈ {_A Proj_A, End_k(Mod(A))}, if A is k-projective.

Still true if we drop the projectivity assumption?

 More generally: Can we proof the Gerstenhaber structure for *E* = End_k(*A*), *A* a *k*-linear abelian category (possibly under additional assumptions)?

<ロ> (日) (日) (日) (日) (日)

Hochschild Cohomology of Hopf Algebras Perspectives

Perspectives

 Schwede's Theorem → H[•](E, 1) is a Gerstenhaber k-algebra for E ∈ {_A Proj_A, End_k(Mod(A))}, if A is k-projective.

Still true if we drop the projectivity assumption?

- More generally: Can we proof the Gerstenhaber structure for *E* = End_k(*A*), *A* a *k*-linear abelian category (possibly under additional assumptions)?
- If this also should fail, the time has come for doubts to arise. Generate a counterexample?

<ロ> (日) (日) (日) (日) (日)

Hochschild Cohomology of Hopf Algebras Perspectives

Perspectives

 Schwede's Theorem → H[•](E, 1) is a Gerstenhaber k-algebra for E ∈ {_A Proj_A, End_k(Mod(A))}, if A is k-projective.

Still true if we drop the projectivity assumption?

- More generally: Can we proof the Gerstenhaber structure for *E* = End_k(*A*), *A* a *k*-linear abelian category (possibly under additional assumptions)?
- If this also should fail, the time has come for doubts to arise. Generate a counterexample?
- Ultimative dream:

・ロン ・回 と ・ ヨ と ・ ヨ と

Hochschild Cohomology of Hopf Algebras Perspectives

Perspectives

 Schwede's Theorem → H[•](E, 1) is a Gerstenhaber k-algebra for E ∈ {_A Proj_A, End_k(Mod(A))}, if A is k-projective.

Still true if we drop the projectivity assumption?

- More generally: Can we proof the Gerstenhaber structure for *E* = End_k(*A*), *A* a *k*-linear abelian category (possibly under additional assumptions)?
- If this also should fail, the time has come for doubts to arise. Generate a counterexample?
- Ultimative dream: Show that H[●](*E*, 1) is a Gerstenhaber *k*-algebra for general *E*!

・ロン ・回と ・ヨン ・ヨン

Hochschild Cohomology of Hopf Algebras Perspectives

The End

Thank you for your attention!

イロン 不同と 不同と 不同と

æ